Hip Replacement Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Total HIP Replacement Exercise Program 1. Ankle Pumps 2. Quad
3 sets of 10 reps (30 ea) 2 times a day Total HIP Replacement Exercise Program 5. Heel slides 1. Ankle Pumps Bend knee and pull heel toward buttocks. DO NOT GO Gently point toes up towards your nose and down PAST 90* HIP FLEXION towards the surface. Do both ankles at the same time or alternating feet. Perform slowly. 2. Quad Sets Slowly tighten thigh muscles of legs, pushing knees down into the surface. Hold for 10 count. 6. Short Arc Quads Place a large can or rolled towel (about 8”diameter) under the leg. Straighten knee and leg. Hold straight for 5 count. 3. Gluteal Sets Squeeze the buttocks together as tightly as possible. Hold for a 10 count. 7. Knee extension - Long Arc Quads Slowly straighten operated leg and try to hold it for 5 sec. Bend knee, taking foot under the chair. 4. Abduction and Adduction Slide leg out to the side. Keep kneecap pointing toward ceiling. Gently bring leg back to pillow. May do both legs at the same time. Copywriter VHI Corp 3 sets of 10 reps (30 ea) 2 times a day Total HIP Replacement Exercise Program 8. Standing Stair/Step Training: Heel/Toe Raises: 1. The “good” (non-operated) leg goes Holding on to an immovable surface. UP first. Rise up on toes slowly 2. The “bad” (operated) leg goes for a 5 count. Come back to foot flat and lift DOWN first. toes from floor. 3. The cane stays on the level of the operated leg. Resting positions: To Stretch your hip to neutral position: 1. -
Arthroscopic and Open Anatomy of the Hip 11
CHAPTER Arthroscopic and o'pen Anatomy of the Hip Michael B. Gerhardt, Kartik Logishetty, Morteza lV1eftah, and Anil S. Ranawat INTRODUCTION movements that they induce at the joint: 1) flexors; 2) extensors; 3) abductors; 4) adductors; 5) external rotators; and 6) interI12 I The hip joint is defined by the articulation between the head rotators. Although some muscles have dual roles, their primary of the femur and the aeetahulum of the pelvis. It is covered by functions define their group placem(:)nt, and they all have ullique :l large soft-tissue envelope and a complex array of neurovascu- neurovascular supplies (TIt ble 2-1). lar and musculotendinous structures. The joint's morphology The vascular supply of tbe hip stems from the external and anu orientation are complex, and there are wide anatomi c varia- internal iLiac ancries. An understanding of the course of these tions seen among individuals. The joint's deep location makes vessels is critical fo r ,lVo iding catasu"ophic vascular injury. fn both arthroscopic and open access challenging. To avoid iatro- addition, the blood supply to the fel11()ra l head is vulnerahle to genic injury while establishing functional and efficient access, both traumatic and iatrogenic injury; the disruption of this sup- the hip surgeon should possess a sound ana tomic knowledge of ply can result in avascular necrosis (Figure 2-2). the hip. T he human "hip" can be subdivided into three categories: I) the superficial surface anatomy; 2) the deep femoroacetabu- la r Joint and capsule; and 3) the associated structures, including the muscles, nerves, and vasculature, all of which directly affeet HIP MUSCULATURE its function. -
Hip Extensor Mechanics and the Evolution of Walking and Climbing Capabilities in Humans, Apes, and Fossil Hominins
Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins Elaine E. Kozmaa,b,1, Nicole M. Webba,b,c, William E. H. Harcourt-Smitha,b,c,d, David A. Raichlene, Kristiaan D’Aoûtf,g, Mary H. Brownh, Emma M. Finestonea,b, Stephen R. Rossh, Peter Aertsg, and Herman Pontzera,b,i,j,1 aGraduate Center, City University of New York, New York, NY 10016; bNew York Consortium in Evolutionary Primatology, New York, NY 10024; cDepartment of Anthropology, Lehman College, New York, NY 10468; dDivision of Paleontology, American Museum of Natural History, New York, NY 10024; eSchool of Anthropology, University of Arizona, Tucson, AZ 85721; fInstitute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom; gDepartment of Biology, University of Antwerp, 2610 Antwerp, Belgium; hLester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614; iDepartment of Anthropology, Hunter College, New York, NY 10065; and jDepartment of Evolutionary Anthropology, Duke University, Durham, NC 27708 Edited by Carol V. Ward, University of Missouri-Columbia, Columbia, MO, and accepted by Editorial Board Member C. O. Lovejoy March 1, 2018 (received for review September 10, 2017) The evolutionary emergence of humans’ remarkably economical their effects on climbing performance or tested whether these walking gait remains a focus of research and debate, but experi- traits constrain walking and running performance. mentally validated approaches linking locomotor -
FLOOR EXERCISES for Strengthening Your Hip and Knee INTERMEDIATE LEVEL THIGH STRENGTHENING 3
FLOOR EXERCISES for strengthening your hip and knee INTERMEDIATE LEVEL THIGH STRENGTHENING 3 HIP STRENGTHENING ON YOUR SIDE 5 HIP STRENGTHENING ON YOUR BACK 8 ALL 4’S WITH LEG LIFT 10 hen you have pain or an injury to your knee or lower extremity, Wit’s necessary to strengthen muscles in your whole lower body to have the best recovery possible, even if your injury is just in one area. The hip and trunk muscles support your knee, ankle and foot, and they all work together when you move. The exercises in this booklet will help you strengthen these muscles to help you recover. Please read the instructions carefully and follow the advice of your physical therapist or doctor when starting or progressing an exer- cise program such as this. If your symptoms get worse while doing these exercises, please read the instructions again to be sure you are doing the exercises exactly as described. If your symptoms con- tinue to worsen, talk to your health care provider. Equipment needed: • exercise ball • pillow • foam • towel(s) • exercise band ________ (color) or resistance band 2 THIGH (QUADRICEPS) STRENGTHENING q Quadriceps set: Place a small towel roll under your knee. Straighten your knee by tightening your thigh muscles. Press the back of your knee into the floor or towel and hold for 5-10 seconds. This may also be done sitting. FREQUENCY_____________ q Straight leg raise: Lie on your back with your affected leg straight and your other leg bent. Tighten your thigh muscle then lift your straight leg no higher than the other knee without allow- ing your knee to bend. -
BJH24901 Hip Replacement
ORTHOPEDICS Hip Replacement Surgery PRIMARY TOTAL HIP REPLACEMENT HEALTHY HIP A primary total hip replacement is a first time hip replacement surgery. Socket lined with cartilage Muscle (acetabulum) Why have a hip replaced? The goals of a hip replacement are to get rid of hip pain and help Tendon you be more active. A hip that is stiff and painful can be replaced with an artificial joint. This is called hip prosthesis. Hip replacements also help with damaged hips caused by Ball covered arthritis, rheumatoid arthritis and other hip-related issues. with cartilage (head of the thighbone) Pelvic bone How the hip works Thighbone The hip is a ball-and-socket-joint. In this case, the ball component (femur) is attached to the top of the femur (long bone of the thigh). The acetabulum (socket) is part of the pelvis. The ball rotating in the socket helps you move your leg. With a healthy hip, smooth cartilage covering the ends of the thigh Image courtesy of Krames StayWell bone and pelvis allows the ball to glide easily inside the socket. DAMAGED HIP DAMAGED HIP With a damaged hip, the worn cartilage no longer serves as a cushion. The surfaces of these bones become rough. This Cartilage Joint damage Tendon inflammation causes pain when they rub together. The cartilage may wear away, leaving nothing to help the bones move smoothly. Arthritis can cause inflammation and swelling around the joint. This causes pain and stiffness in the hip. (continued) Images courtesy of Krames StayWell ORTHOPEDICS PRIMARY TOTAL HIP REPLACEMENT (continued) PROBLEMS FROM SURGERY Although hip replacement can help with pain, there’s also the chance that surgery will cause problems. -
Medial Collateral Ligament (MCL) Sprain
INFORMATION FOR PATIENTS Medial collateral ligament (MCL) sprain This leaflet intends to educate you on Knee ligament sprains are graded in the immediate management of your severity from one to three: knee injury. It also contains exercises to prevent stiffening of your knee, Grade one: Mild sprain with ligaments whilst your ligament heals. stretched but not torn. Grade two: Moderate sprain with some What is an MCL injury? ligaments torn. Grade three: Severe sprain with There are two collateral ligaments, one complete tear of ligaments. either side of the knee, which act to stop side to side movement of the knee. The Symptoms you may experience medial collateral ligament (MCL) is most commonly injured. It lies on the inner side Pain in the knee, especially on the of your knee joint, connecting your thigh inside, particularly with twisting bone (femur) to your shin bone (tibia) and movements. provides stability to the knee. Tenderness along the ligament on the inside. Injuries to this ligament tend to occur Stiffness. when a person is bearing weight and the Swelling and some bruising. knee is forced inwards, such as slipping depending on the grade of the injury. on ice or playing sports, e.g. skiing, You may have the feeling the knee will football and rugby. In older people, this give way or some unstable feeling can be injured during a fall. An MCL injury can be a partial or complete tear, or overstretching of the ligament. Knee ligament injuries are also referred to as sprains. It’s common to injure one of your cruciate ligaments (the two ligaments that cross in the middle of your knee which help to stabilise), or your meniscus (cartilage discs that help provide a cushion between your thigh and shin bone), at the same time as your MCL. -
Modern Advances in Joint Replacement and Rapid Recovery
Modern Advances in Joint Replacement and Rapid Recovery UCSF Osher Mini-Med School Lecture Series Jeffrey Barry, M.D. Assistant Professor of Orthopaedic Surgery Division of Adult Reconstruction University of California, San Francisco Disclosures . No relevant disclosures to this talk About Me . Bay Area Native . UCSF - U Can Stay Forever Outline . Burden of Disease and Epidemiology . The Basics of Hip and Knee Replacement . What’s improving over the last decade - Longevity - Pain Management - Hospital Stay - Thromboembolism prophylaxis - Risk Reduction Question What is the most common inpatient surgery performed in the US? 1. Percutaneous coronary angioplasty 2. Total hip replacement 3. Lumbar Laminectomy 4. Appendectomy 5. Total knee replacement Burden of Disease . Arthritis = most common cause of disability in the US . 22.7% of adults have doctor-diagnosed arthritis - 43.2% of patients with arthritis report activity limitations due to disease . By 2030: - 3.5 million TKA (673%) - 570,000 THA (174%) . Curve updated 2014 – just as predicted! Causes of Increased Utilization . Aging Population . Patients receiving arthroplasty at a younger age - Improvements in technology - Obesity Why Replace a Joint? Arthritis arthro – joint itis – inflammation What is Arthritis – Disease of Cartilage . Cartilage Degeneration - Pain - Limp - Swelling - Loss of range of motion - Eventual deformity Arthritis Affects on Your Life • Quality of Life • Independence • Movement, Walking, Exercise • Self-image • Self-esteem • Family Life • Sleep • Everything and Everybody Causes of Arthritis . Osteoarthritis - “wear and tear” . Inflammatory arthritis . Trauma, old fractures . Infection . Osteonecrosis - “lack of oxygen to the bone” . Childhood/ developmental disease Diagnosis . Clinical Symptoms + Radiographic . Radiographs – Standing or Weight bearing! . MRI is RARELY needed!!! - Expensive - Brings in other issues - Unnecessary treatment - Unnecessary explanations Knee Arthritis . -
Hip Acetabular Labral Repair with Juggerknot Long
Hip Acetabular Labral Repair with the JuggerKnot® Long Soft Anchor Surgical Technique by Dean Matsuda, M.D. and Jason Hurst, M.D. Table of Contents Introduction .............................................................................................................. 3 Patient Preparation ................................................................................................... 3 Portal Placement ...................................................................................................... 4 Labral Repair Preparation......................................................................................... 5 Drill Guide and Hole Placement ................................................................................ 5 Curved Guide with Optional Centering Sleeve ........................................................ 6 Insert the Anchor ...................................................................................................... 8 Deploy the Anchor .................................................................................................... 9 Repair the Labrum .................................................................................................. 10 Ordering Information ............................................................................................. 12 Indications For Use ................................................................................................. 13 Contraindications .................................................................................................. -
Hip Conditioning Program
Our knowledge of orthopaedics. Your best health. Prepared for: Prepared by: Hip Conditioning Program Purpose of Program _________________________________________________________________ After an injury or surgery, an exercise conditioning program will help you return to daily activities and enjoy a more active, healthy lifestyle. Following a well-structured conditioning program will also help you return to sports and other recreational activities. This is a general conditioning program that provides a wide range of exercises. To ensure that the program is safe and effective for you, it should be performed under your doctor’s supervision. Talk to your doctor or physical therapist about which exercises will best help you meet your rehabilitation goals. Strength: Strengthening the muscles that support your hip will help keep your hip joint stable. Keeping these muscles strong can relieve pain and prevent further injury. Flexibility: Stretching the muscles that you strengthen is important for restoring range of motion and preventing injury. Gently stretching after strengthening exercises can help reduce muscle soreness and keep your muscles long and flexible. Target Muscles: The muscle groups targeted in this conditioning program include: • Gluteus maximus (buttocks) • Adductors (inner thigh) • Gluteus medius (buttocks) • Abductors (outer thigh) • Hamstrings (back of thigh) • Tensor Fascia (outer thigh) • Piriformis (buttocks) Length of program: This hip conditioning program should be continued for 4 to 6 weeks, unless otherwise specified by your doctor or physical therapist. After your recovery, these exercises can be continued as a maintenance program for lifelong protection and health of your hips and thighs. Performing the exercises two to three days a week will maintain strength and range of motion in your hips and thighs. -
Effects of Transverse and Frontal Plane Knee Laxity on Hip and Knee Neuromechanics During Drop Landings
Effects of Transverse and Frontal Plane Knee Laxity on Hip and Knee Neuromechanics During Drop Landings Shultz SJ, Schmitz RJ. Effects of Transverse and Frontal Plane Knee Laxity on Hip and Knee Neuromechanics During Drop Landings. American Journal of Sports Medicine 2009; 37(9): 1821-1830. doi: 10.1177/0363546509334225 Made available courtesy of SAGE Publications (UK and US): http://ajs.sagepub.com/ ***Reprinted with permission. No further reproduction is authorized without written permission from SAGE Publications (UK and US). This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document.*** Abstract: Background Varus-valgus (LAXVV) and internal-external (LAXIER) rotational knee laxity have received attention as potential contributing factors in anterior cruciate ligament injury. This study compared persons with above-and below-average LAXVV and LAXIER values on hip and knee neuromechanics during drop jump landings. Hypothesis People with greater LAXVV and LAXIER values will have greater challenges controlling frontal and transverse plane knee motions, as evidenced by greater joint excursions, joint moments, and muscle activation levels during the landing phase. Study Design Descriptive laboratory study. Methods Recreationally active participants (52 women and 44 men) between 18 and 30 years old were measured for LAXVV and LAXIER and for their muscle activation and transverse and frontal plane hip and knee kinetics and kinematics during the initial landing phase of a drop jump. The mean value was obtained for each sex, and those with above-average values on LAXVV and LAXIER (LAXHIGH = 17 women, 16 men) were compared with those with below-average values (LAXLOW = 18 women, 17 men). -
Acetabular Labral Tears with Underlying Chondromalacia: a Possible Association with High-Level Running
Acetabular Labral Tears With Underlying Chondromalacia: A Possible Association With High-Level Running Carlos A. Guanche, M.D., and Robby S. Sikka, B.A. Purpose: The use of hip arthroscopy has helped delineate intra-articular pathology and has enabled clinicians to further elucidate the factors responsible for injuries, such as running. The subtle development of degenerative changes may be a result of repetitive impact loading associated with this sport. This study presents a population of runners with common pathologic acetabular changes. Type of Study: Case series. Methods: Eight high-level runners with an average age of 36 years (range, 19 to 45 years) were seen for complaints of increasing hip pain with running without any history of macrotrauma. All of the patients had either run several marathons (4), were triathletes (1), Olympic middle distance runners (1), or had run more than 10 miles per week for longer than 5 years (2). Plain radiographic analysis revealed no degenerative changes and an average center-edge (CE) angle of 36.7° (range, 28° to 44°). Results: All patients underwent hip arthroscopy with labral debridement. In 6 patients (75%), a chondral injury of the acetabular cartilage underlying the labral tear was noted. In addition, 3 patients had ligamentum teres disruptions. Conclusions: It is possible that the development of these tears is the result of subtle instability, which may be exacerbated by running, eventually leading to labral tearing and possible ligamentum teres disruption. While perhaps con- currently, subtle acetabular dysplasia may play a role. Although this study does not confirm an association between running and the development of labral tears or chondral lesions in the hip, it certainly questions whether there is an injury pattern common to this population, a “runner’s hip.” Level of Evidence: Level IV. -
Periacetabular Osteotomy (PAO) of the Hip
UW HEALTH SPORTS REHABILITATION Rehabilitation Guidelines For Periacetabular Osteotomy (PAO) Of The Hip The hip joint is composed of the femur (the thigh bone) and the Lunate surface of acetabulum acetabulum (the socket formed Articular cartilage by the three pelvic bones). The Anterior superior iliac spine hip joint is a ball and socket joint Head of femur Anterior inferior iliac spine that not only allows flexion and extension, but also rotation of the Iliopubic eminence Acetabular labrum thigh and leg (Fig 1). The head of Greater trochanter (fibrocartilainous) the femur is encased by the bony Fat in acetabular fossa socket in addition to a strong, (covered by synovial) Neck of femur non-compliant joint capsule, Obturator artery making the hip an extremely Anterior branch of stable joint. Because the hip is Intertrochanteric line obturator artery responsible for transmitting the Posterior branch of weight of the upper body to the obturator artery lower extremities and the forces of Obturator membrane Ischial tuberosity weight bearing from the foot back Round ligament Acetabular artery up through the pelvis, the joint (ligamentum capitis) Lesser trochanter Transverse is subjected to substantial forces acetabular ligament (Fig 2). Walking transmits 1.3 to Figure 1 Hip joint (opened) lateral view 5.8 times body weight through the joint and running and jumping can generate forces across the joint fully form, the result can be hip that is shared by the whole hip, equal to 6 to 8 times body weight. dysplasia. This causes the hip joint including joint surfaces and the to experience load that is poorly previously-mentioned acetabular The labrum is a circular, tolerated over time, resulting in labrum.