Medial Collateral Ligament (MCL) Sprain
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Total HIP Replacement Exercise Program 1. Ankle Pumps 2. Quad
3 sets of 10 reps (30 ea) 2 times a day Total HIP Replacement Exercise Program 5. Heel slides 1. Ankle Pumps Bend knee and pull heel toward buttocks. DO NOT GO Gently point toes up towards your nose and down PAST 90* HIP FLEXION towards the surface. Do both ankles at the same time or alternating feet. Perform slowly. 2. Quad Sets Slowly tighten thigh muscles of legs, pushing knees down into the surface. Hold for 10 count. 6. Short Arc Quads Place a large can or rolled towel (about 8”diameter) under the leg. Straighten knee and leg. Hold straight for 5 count. 3. Gluteal Sets Squeeze the buttocks together as tightly as possible. Hold for a 10 count. 7. Knee extension - Long Arc Quads Slowly straighten operated leg and try to hold it for 5 sec. Bend knee, taking foot under the chair. 4. Abduction and Adduction Slide leg out to the side. Keep kneecap pointing toward ceiling. Gently bring leg back to pillow. May do both legs at the same time. Copywriter VHI Corp 3 sets of 10 reps (30 ea) 2 times a day Total HIP Replacement Exercise Program 8. Standing Stair/Step Training: Heel/Toe Raises: 1. The “good” (non-operated) leg goes Holding on to an immovable surface. UP first. Rise up on toes slowly 2. The “bad” (operated) leg goes for a 5 count. Come back to foot flat and lift DOWN first. toes from floor. 3. The cane stays on the level of the operated leg. Resting positions: To Stretch your hip to neutral position: 1. -
Arthroscopic and Open Anatomy of the Hip 11
CHAPTER Arthroscopic and o'pen Anatomy of the Hip Michael B. Gerhardt, Kartik Logishetty, Morteza lV1eftah, and Anil S. Ranawat INTRODUCTION movements that they induce at the joint: 1) flexors; 2) extensors; 3) abductors; 4) adductors; 5) external rotators; and 6) interI12 I The hip joint is defined by the articulation between the head rotators. Although some muscles have dual roles, their primary of the femur and the aeetahulum of the pelvis. It is covered by functions define their group placem(:)nt, and they all have ullique :l large soft-tissue envelope and a complex array of neurovascu- neurovascular supplies (TIt ble 2-1). lar and musculotendinous structures. The joint's morphology The vascular supply of tbe hip stems from the external and anu orientation are complex, and there are wide anatomi c varia- internal iLiac ancries. An understanding of the course of these tions seen among individuals. The joint's deep location makes vessels is critical fo r ,lVo iding catasu"ophic vascular injury. fn both arthroscopic and open access challenging. To avoid iatro- addition, the blood supply to the fel11()ra l head is vulnerahle to genic injury while establishing functional and efficient access, both traumatic and iatrogenic injury; the disruption of this sup- the hip surgeon should possess a sound ana tomic knowledge of ply can result in avascular necrosis (Figure 2-2). the hip. T he human "hip" can be subdivided into three categories: I) the superficial surface anatomy; 2) the deep femoroacetabu- la r Joint and capsule; and 3) the associated structures, including the muscles, nerves, and vasculature, all of which directly affeet HIP MUSCULATURE its function. -
Hip Extensor Mechanics and the Evolution of Walking and Climbing Capabilities in Humans, Apes, and Fossil Hominins
Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins Elaine E. Kozmaa,b,1, Nicole M. Webba,b,c, William E. H. Harcourt-Smitha,b,c,d, David A. Raichlene, Kristiaan D’Aoûtf,g, Mary H. Brownh, Emma M. Finestonea,b, Stephen R. Rossh, Peter Aertsg, and Herman Pontzera,b,i,j,1 aGraduate Center, City University of New York, New York, NY 10016; bNew York Consortium in Evolutionary Primatology, New York, NY 10024; cDepartment of Anthropology, Lehman College, New York, NY 10468; dDivision of Paleontology, American Museum of Natural History, New York, NY 10024; eSchool of Anthropology, University of Arizona, Tucson, AZ 85721; fInstitute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom; gDepartment of Biology, University of Antwerp, 2610 Antwerp, Belgium; hLester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614; iDepartment of Anthropology, Hunter College, New York, NY 10065; and jDepartment of Evolutionary Anthropology, Duke University, Durham, NC 27708 Edited by Carol V. Ward, University of Missouri-Columbia, Columbia, MO, and accepted by Editorial Board Member C. O. Lovejoy March 1, 2018 (received for review September 10, 2017) The evolutionary emergence of humans’ remarkably economical their effects on climbing performance or tested whether these walking gait remains a focus of research and debate, but experi- traits constrain walking and running performance. mentally validated approaches linking locomotor -
FLOOR EXERCISES for Strengthening Your Hip and Knee INTERMEDIATE LEVEL THIGH STRENGTHENING 3
FLOOR EXERCISES for strengthening your hip and knee INTERMEDIATE LEVEL THIGH STRENGTHENING 3 HIP STRENGTHENING ON YOUR SIDE 5 HIP STRENGTHENING ON YOUR BACK 8 ALL 4’S WITH LEG LIFT 10 hen you have pain or an injury to your knee or lower extremity, Wit’s necessary to strengthen muscles in your whole lower body to have the best recovery possible, even if your injury is just in one area. The hip and trunk muscles support your knee, ankle and foot, and they all work together when you move. The exercises in this booklet will help you strengthen these muscles to help you recover. Please read the instructions carefully and follow the advice of your physical therapist or doctor when starting or progressing an exer- cise program such as this. If your symptoms get worse while doing these exercises, please read the instructions again to be sure you are doing the exercises exactly as described. If your symptoms con- tinue to worsen, talk to your health care provider. Equipment needed: • exercise ball • pillow • foam • towel(s) • exercise band ________ (color) or resistance band 2 THIGH (QUADRICEPS) STRENGTHENING q Quadriceps set: Place a small towel roll under your knee. Straighten your knee by tightening your thigh muscles. Press the back of your knee into the floor or towel and hold for 5-10 seconds. This may also be done sitting. FREQUENCY_____________ q Straight leg raise: Lie on your back with your affected leg straight and your other leg bent. Tighten your thigh muscle then lift your straight leg no higher than the other knee without allow- ing your knee to bend. -
Hip Acetabular Labral Repair with Juggerknot Long
Hip Acetabular Labral Repair with the JuggerKnot® Long Soft Anchor Surgical Technique by Dean Matsuda, M.D. and Jason Hurst, M.D. Table of Contents Introduction .............................................................................................................. 3 Patient Preparation ................................................................................................... 3 Portal Placement ...................................................................................................... 4 Labral Repair Preparation......................................................................................... 5 Drill Guide and Hole Placement ................................................................................ 5 Curved Guide with Optional Centering Sleeve ........................................................ 6 Insert the Anchor ...................................................................................................... 8 Deploy the Anchor .................................................................................................... 9 Repair the Labrum .................................................................................................. 10 Ordering Information ............................................................................................. 12 Indications For Use ................................................................................................. 13 Contraindications .................................................................................................. -
Hip Conditioning Program
Our knowledge of orthopaedics. Your best health. Prepared for: Prepared by: Hip Conditioning Program Purpose of Program _________________________________________________________________ After an injury or surgery, an exercise conditioning program will help you return to daily activities and enjoy a more active, healthy lifestyle. Following a well-structured conditioning program will also help you return to sports and other recreational activities. This is a general conditioning program that provides a wide range of exercises. To ensure that the program is safe and effective for you, it should be performed under your doctor’s supervision. Talk to your doctor or physical therapist about which exercises will best help you meet your rehabilitation goals. Strength: Strengthening the muscles that support your hip will help keep your hip joint stable. Keeping these muscles strong can relieve pain and prevent further injury. Flexibility: Stretching the muscles that you strengthen is important for restoring range of motion and preventing injury. Gently stretching after strengthening exercises can help reduce muscle soreness and keep your muscles long and flexible. Target Muscles: The muscle groups targeted in this conditioning program include: • Gluteus maximus (buttocks) • Adductors (inner thigh) • Gluteus medius (buttocks) • Abductors (outer thigh) • Hamstrings (back of thigh) • Tensor Fascia (outer thigh) • Piriformis (buttocks) Length of program: This hip conditioning program should be continued for 4 to 6 weeks, unless otherwise specified by your doctor or physical therapist. After your recovery, these exercises can be continued as a maintenance program for lifelong protection and health of your hips and thighs. Performing the exercises two to three days a week will maintain strength and range of motion in your hips and thighs. -
About Your Knee
OrthoInfo Basics About Your Knee What are the parts of the knee? Your knee is Your knee is made up of four main things: bones, cartilage, ligaments, the largest joint and tendons. in your body Bones. Three bones meet to form your knee joint: your thighbone and one of the (femur), shinbone (tibia), and kneecap (patella). Your patella sits in most complex. front of the joint and provides some protection. It is also vital Articular cartilage. The ends of your thighbone and shinbone are covered with articular cartilage. This slippery substance to movement. helps your knee bones glide smoothly across each other as you bend or straighten your leg. Because you use it so Two wedge-shaped pieces of meniscal cartilage act as much, it is vulnerable to Meniscus. “shock absorbers” between your thighbone and shinbone. Different injury. Because it is made from articular cartilage, the meniscus is tough and rubbery to help up of so many parts, cushion and stabilize the joint. When people talk about torn cartilage many different things in the knee, they are usually referring to torn meniscus. can go wrong. Knee pain or injury Femur is one of the most (thighbone) common reasons people Patella (kneecap) see their doctors. Most knee problems can be prevented or treated with simple measures, such as exercise or Articular cartilage training programs. Other problems require surgery Meniscus to correct. Tibia (shinbone) 1 OrthoInfo Basics — About Your Knee What are ligaments and tendons? Ligaments and tendons connect your thighbone Collateral ligaments. These are found on to the bones in your lower leg. -
Anterior (Cranial) Cruciate Ligament Rupture
Cranial Cruciate Ligament Rupture in Dogs The cruciate ligaments are tough fibrous bands that connect the distal femur (thigh bone) to the proximal tibia (shin bone). Two cruciate ligaments, the cranial (anterior) and the posterior cruciate ligaments, are found in the knee joint of dogs and cats (and most other domestic animals). These ligaments work like a hinge joint in the knee and are responsible for providing anterior-posterior stability to the knee joint. Normal Knee Joint of a Dog Rupture of the cranial cruciate ligament is rare in cats. It occurs frequently in overweight, middle- and older-aged dogs. Certain dog breeds appear to be predisposed to cranial cruciate ligament rupture. Most commonly, the cocker spaniel and rottweiler are affected. The miniature and toy poodle, Lhasa apso, bichon frise, golden retriever, Labrador retriever, German shepherd and mastiff seem to be predisposed as well. The normal knee joint works as a hinge, keeping the knee stable as it bends. Tearing of the cranial cruciate ligament causes instability of the knee joint and it ceases to function properly. Most cranial cruciate ligament tears in dogs occur gradually, resulting in a low-level lameness that may or nay not improve over time. After the ligament tears, inflammation occurs within the joint. Continued use and weight bearing by the dog often causes the ligament to rupture completely. Dogs that rupture one cruciate ligament have about a fifty percent chance of rupturing the other. Normal Knee Joint of a Dog Rupture of the cranial cruciate ligament in dogs can also occur acutely. Similar to cranial cruciate ligament rupture in humans, resulting from athletic injuries to the knee, dogs can tear this ligament by jumping up to catch a ball or Frisbee or by jumping out of a truck or off a porch. -
Joints Classification of Joints
Joints Classification of Joints . Functional classification (Focuses on amount of movement) . Synarthroses (immovable joints) . Amphiarthroses (slightly movable joints) . Diarthroses (freely movable joints) . Structural classification (Based on the material binding them and presence or absence of a joint cavity) . Fibrous mostly synarthroses . Cartilagenous mostly amphiarthroses . Synovial diarthroses Table of Joint Types Functional across Synarthroses Amphiarthroses Diarthroses (immovable joints) (some movement) (freely movable) Structural down Bony Fusion Synostosis (frontal=metopic suture; epiphyseal lines) Fibrous Suture (skull only) Syndesmoses Syndesmoses -fibrous tissue is -ligaments only -ligament longer continuous with between bones; here, (example: radioulnar periosteum short so some but not interosseous a lot of movement membrane) (example: tib-fib Gomphoses (teeth) ligament) -ligament is periodontal ligament Cartilagenous Synchondroses Sympheses (bone united by -hyaline cartilage -fibrocartilage cartilage only) (examples: (examples: between manubrium-C1, discs, pubic epiphyseal plates) symphesis Synovial Are all diarthrotic Fibrous joints . Bones connected by fibrous tissue: dense regular connective tissue . No joint cavity . Slightly immovable or not at all . Types . Sutures . Syndesmoses . Gomphoses Sutures . Only between bones of skull . Fibrous tissue continuous with periosteum . Ossify and fuse in middle age: now technically called “synostoses”= bony junctions Syndesmoses . In Greek: “ligament” . Bones connected by ligaments only . Amount of movement depends on length of the fibers: longer than in sutures Gomphoses . Is a “peg-in-socket” . Only example is tooth with its socket . Ligament is a short periodontal ligament Cartilagenous joints . Articulating bones united by cartilage . Lack a joint cavity . Not highly movable . Two types . Synchondroses (singular: synchondrosis) . Sympheses (singular: symphesis) Synchondroses . Literally: “junction of cartilage” . Hyaline cartilage unites the bones . Immovable (synarthroses) . -
The Ligament Anatomy of the Deltoid Complex of the Ankle: a Qualitative and Quantitative Anatomical Study
e62(1) COPYRIGHT Ó 2014 BY THE JOURNAL OF BONE AND JOINT SURGERY,INCORPORATED The Ligament Anatomy of the Deltoid Complex of the Ankle: A Qualitative and Quantitative Anatomical Study Kevin J. Campbell, BS, Max P. Michalski, MSc, Katharine J. Wilson, MSc, Mary T. Goldsmith, MS, Coen A. Wijdicks, PhD, Robert F. LaPrade, PhD, MD, and Thomas O. Clanton, MD Investigation performed at the Department of Biomedical Engineering, Steadman Philippon Research Institute, and the Steadman Clinic, Vail, Colorado Background: The deltoid ligament has both superficial and deep layers and consists of up to six ligamentous bands. The prevalence of the individual bands is variable, and no consensus as to which bands are constant or variable exists. Although other studies have looked at the variance in the deltoid anatomy, none have quantified the distance to relevant osseous landmarks. Methods: The deltoid ligaments from fourteen non-paired, fresh-frozen cadaveric specimens were isolated and the ligamentous bands were identified. The lengths, footprint areas, orientations, and distances from relevant osseous landmarks were measured with a three-dimensional coordinate measurement device. Results: In all specimens, the tibionavicular, tibiospring, and deep posterior tibiotalar ligaments were identified. Three additional bands were variable in our specimen cohort: the tibiocalcaneal, superficial posterior tibiotalar, and deep anterior tibiotalar ligaments. The deep posterior tibiotalar ligament was the largest band of the deltoid ligament. The origins from the distal center of the intercollicular groove were 16.1 mm (95% confidence interval, 14.7 to 17.5 mm) for the tibionavicular ligament, 13.1 mm (95% confidence interval, 11.1 to 15.1 mm) for the tibiospring ligament, and 7.6 mm (95% confidence interval, 6.7 to 8.5 mm) for the deep posterior tibiotalar ligament. -
Effects of Transverse and Frontal Plane Knee Laxity on Hip and Knee Neuromechanics During Drop Landings
Effects of Transverse and Frontal Plane Knee Laxity on Hip and Knee Neuromechanics During Drop Landings Shultz SJ, Schmitz RJ. Effects of Transverse and Frontal Plane Knee Laxity on Hip and Knee Neuromechanics During Drop Landings. American Journal of Sports Medicine 2009; 37(9): 1821-1830. doi: 10.1177/0363546509334225 Made available courtesy of SAGE Publications (UK and US): http://ajs.sagepub.com/ ***Reprinted with permission. No further reproduction is authorized without written permission from SAGE Publications (UK and US). This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document.*** Abstract: Background Varus-valgus (LAXVV) and internal-external (LAXIER) rotational knee laxity have received attention as potential contributing factors in anterior cruciate ligament injury. This study compared persons with above-and below-average LAXVV and LAXIER values on hip and knee neuromechanics during drop jump landings. Hypothesis People with greater LAXVV and LAXIER values will have greater challenges controlling frontal and transverse plane knee motions, as evidenced by greater joint excursions, joint moments, and muscle activation levels during the landing phase. Study Design Descriptive laboratory study. Methods Recreationally active participants (52 women and 44 men) between 18 and 30 years old were measured for LAXVV and LAXIER and for their muscle activation and transverse and frontal plane hip and knee kinetics and kinematics during the initial landing phase of a drop jump. The mean value was obtained for each sex, and those with above-average values on LAXVV and LAXIER (LAXHIGH = 17 women, 16 men) were compared with those with below-average values (LAXLOW = 18 women, 17 men). -
Acetabular Labral Tears with Underlying Chondromalacia: a Possible Association with High-Level Running
Acetabular Labral Tears With Underlying Chondromalacia: A Possible Association With High-Level Running Carlos A. Guanche, M.D., and Robby S. Sikka, B.A. Purpose: The use of hip arthroscopy has helped delineate intra-articular pathology and has enabled clinicians to further elucidate the factors responsible for injuries, such as running. The subtle development of degenerative changes may be a result of repetitive impact loading associated with this sport. This study presents a population of runners with common pathologic acetabular changes. Type of Study: Case series. Methods: Eight high-level runners with an average age of 36 years (range, 19 to 45 years) were seen for complaints of increasing hip pain with running without any history of macrotrauma. All of the patients had either run several marathons (4), were triathletes (1), Olympic middle distance runners (1), or had run more than 10 miles per week for longer than 5 years (2). Plain radiographic analysis revealed no degenerative changes and an average center-edge (CE) angle of 36.7° (range, 28° to 44°). Results: All patients underwent hip arthroscopy with labral debridement. In 6 patients (75%), a chondral injury of the acetabular cartilage underlying the labral tear was noted. In addition, 3 patients had ligamentum teres disruptions. Conclusions: It is possible that the development of these tears is the result of subtle instability, which may be exacerbated by running, eventually leading to labral tearing and possible ligamentum teres disruption. While perhaps con- currently, subtle acetabular dysplasia may play a role. Although this study does not confirm an association between running and the development of labral tears or chondral lesions in the hip, it certainly questions whether there is an injury pattern common to this population, a “runner’s hip.” Level of Evidence: Level IV.