Available online at www.worldscientificnews.com WSN 77(2) (2017) 314-325 EISSN 2392-2192 Photocurrent and Photovoltaic of Photodetector based on Porous Silicon Hasan A. Hadi Department of Physics, Education Faculty, AL Mustansiriyah University, Baghdad, Iraq E-mail address:
[email protected] ABSTRACT We have studied the dependence of photodetector photocurrent on incident power density of light with anodization current and time. The fabrication of Al/PS/p-Si photodetector heterojunction PDH by electrochemical etching method ECE and semi-transparent Al films in thickness range of 80 nm are deposited by thermal evaporation on porous silicon layers to investigate the photocurrent - voltage characteristics of the PDH. When the anodization current varied from 20 to 60 mA, the photocurrent PC was increase according to the anodization parameters at 1.2 mw/cm2 power density. The results also show that the short current Isc and open circuit voltage Voc saturate at high power density. The difference in the value of Voc and Isc at different etching current density is related to the Si nano crystallites layer thickness and the porosity which itself is greatly affected by the etching current density. Keywords: Porous Silicon, ECE, Photovoltaic, PDH, PC 1. INTRODUCTION Nanostructured porous silicon PS was received on bulk Si wafers by the method of anodic electrochemical etching in hydrofluoric acid solution .The electrochemical etching of silicon has been utilized as a structuration technique to obtain nano and micro porous surfaces [1] .Electrochemical etching is one of the simplest and most reliable method used to synthesis porous silicon [2]. The material has since been the subject of various investigations and reviews of its physical properties, including the nature of its bandgap and the presence of World Scientific News 77(2) (2017) 314-325 quantum confinement in the nano crystallites contained in the material, for their potential applications in electroluminescent devices ,photo-sensors [3].