Advances in the Management of Keratomycosis and Acanthamoeba Keratitis

Total Page:16

File Type:pdf, Size:1020Kb

Advances in the Management of Keratomycosis and Acanthamoeba Keratitis Cornea 19(5): 681–687, 2000. © 2000 Lippincott Williams & Wilkins, Inc., Philadelphia Advances in the Management of Keratomycosis and Acanthamoeba Keratitis Denis M. O’Day, M.D., and W. Steven Head Purpose. In the late 1960s, the management of fungal keratitis was initiation of a focused research program on ophthalmic fungal a serious unresolved problem. Little was known of the epidemi- disease at Moorefield’s and elsewhere. ology of the disease, and there were no antifungal agents formu- At about the same time Dr. Herbert Kaufman, who was in lated for use in the eye. Methods. A thorough review of the lit- Gainesville, FL, and aware of the problem of fungal keratitis erature was done back to 1969 on clinical reports and experimental among orange pickers who had corneal injuries with vegetable studies for keratomycosis and Acanthamoeba keratitis. Results. contamination, had obtained some pimaricin, then used in the pro- Since 1969, through basic and clinical research, the epidemiology 3 of the disease worldwide is better understood. One new topical cessing of cheese, (Mycofarm Ltd., Delft, Holland). He and his antifungal agent, natamycin, with efficacy against filamentous associates investigated the antifungal properties of this agent as a fungi has been developed and the pharmacokinetics of topically possible substitute for the sulfonamides, then used for fungal in- applied antifungal drops have been explored. Progress has been fection, although of little real value. His studies and the work of slow but the prognosis for keratomycosis has immeasurably im- Dr. Dan Jones, Dr. Robert Sexton, and others at the Bascom- proved over the period. Acanthamoeba was first recognized as an Palmer Eye Institute in Miami led to the introduction of the only ocular pathogen in 1973 and was the cause of an epidemic in the new ophthalmic antifungal preparation in the past 30 years.4–7 1980s caused by contaminated contact lens, although other risk What each of these investigators realized at the time was the in- factors were also identified. At the onset of the epidemic, there was adequate state of knowledge of the pathogenicity of ophthalmic no known treatment, but as a result of intense research efforts, fungal infections and the lack of any effective therapy. within a few years a well-defined therapeutic approach had been developed that had a significant impact on the prognosis for this Before the discovery of the antifungal properties of pimaricin initially devastating infection. For both infections, the role of cor- (now known as natamycin), the only agent available for treatment ticosteroids for controlling the inflammation remains controver- with any hope of efficacy was amphotericin B. The prognosis for sial, but the place for keratoplasty is now well defined. Conclu- successful therapy was extremely bleak. There were of course, sions. Although there has been steady progress in the management several preparations including the polyene nystatin and griseoful- of both infections, continued research is the way to define more vin, but no efficacy studies had ever been performed (Table 1). effective medical and surgical therapy. Hampering any advance in an understanding of these infections Key Words: Acanthamoeba keratitis—Keratomycosis. was a virtually complete ignorance of the epidemiology. Not only was the prevalence of fungal infection unknown, but there was little understanding of the relative importance of different fungi, in terms of their virulence and geographic distribution. KERATOMYCOSIS The events in the late 1960s and early 1970s in the United The modern era for the treatment of keratomycosis began in Kingdom and the United States were critical to setting the stage for London, England, and in Gainesville, FL, in the late 1960s. In progress up to the present time. Serious work began on identifying 1967, an ophthalmologist in Singapore sent a patient who had important pathogens, thus bringing a sense of order to what ap- sustained a penetrating corneal injury to Professor Barry Jones at peared to be an impossibly chaotic field of possibilities. As a Moorefield’s Eye Hospital in London. The organism isolated was result, by the World Corneal Congress in 1987, the prevalence and Fusarium solani. Ultimately, the eye was lost, but only after pro- geographic distribution of fungal keratitis around the world could longed but futile therapeutic attack, incorporating both medical be mapped.8 This was an important step for it provided a practical and surgical treatment.1 In the course of managing the patient, research focus on the principal corneal pathogens. Professor Jones and his group conducted a wide-ranging review of The therapeutic issues that faced researchers in the late 1960s the then-current knowledge. Their efforts culminated in a “Sym- were substantial. Not only was there a pressing need to sort out the posium on Direct Fungal Infection of the Eye”2 in 1969 and the efficacy of existing preparations, more effective compounds also had to be found. Then there was the question of developing animal models for testing the efficacy of pharmacologic preparations and Submitted January 30, 2000. Revision received March 7, 2000. Ac- cepted March 11, 2000. treatment strategies, as well as investigating the pharmacokinetics From the Department of Ophthalmology and Visual Sciences, Vander- of existing and new therapeutic agents. bilt University Medical School, Nashville, Tennessee, U.S.A. Address correspondence and reprint requests to Dr. D.M. O’Day, Medi- cal Center East, Room 8032, Department of Ophthalmology and Visual Development of Antifungal Agents Sciences, Vanderbilt University Medical School, Nashville, TN 37232- The past 25 years have been witness to solid progress on all 8808, U.S.A. E-mail denis.m.o’[email protected] fronts. Although it is regrettably true that no one has been able to 681 682 D.M. O’DAY AND W.S. HEAD TABLE 1. Agents with potential for use as antifungal agents in A variety of other agents were evaluated for possible use as 115 keratomycosis: 1969 ophthalmic preparations. All were systemic fungal agents modified Polyene antibiotics for topical administration. Amphotericin B, a polyene, was the Non-Polyene antibiotics (cyclohexamide and griseofulvin) most well established. Flucytosine, which experienced a brief pe- Imidazoles riod of popularity, was rapidly discarded after its limited spectrum Diamidines 47 Dithiocarbamates and its capacity for rapidly induced resistance were recognized. Pyrimidines Amphotericin B was first used topically on an empirical basis as Hydroxyquinolones Mercurials a 0.5–1% preparation. Its spectrum of activity, pharmacokinetics, and toxicity was not well understood. As a result, it gained an ill-deserved reputation for toxicity and an apparent lack of effi- cacy. In 1976, Wood and associates,48 in a series of cases treated repeat the unique achievement of developing a new ophthalmic with a dilute preparation (0.15%), demonstrated efficacy with a antifungal preparation, advances in epidemiology, diagnosis, remarkable lack of toxicity. Studies in an animal model subse- therapeutics, and pharmacokinetics have enabled us to exploit quently confirmed the observations of Wood et al.,36,38,49 and by more effectively both new and existing systemic agents in the the early 1980s the ocular pharmacokinetics of topical amphoteri- treatment of keratomycosis. cin B were well established.19,20 At concentrations of 0.15%, it is An important step forward was the identification of Fusarium efficacious against susceptible organisms (mostly yeasts) and is solani as an important corneal pathogen in tropical climates, first virtually nontoxic. Topically, amphotericin B was shown to pen- in the United States and then in the rest of the world. This led etrate the corneal epithelium poorly, but in the nonepithelized eventually to the recognition that among the large number of fun- cornea, high levels can be obtained in the corneal stroma.19,20 gal species, Fusarium, Aspergillus, and Candida are the most Despite initial high hopes, isolated case reports of efficacy and prevalent and perhaps also the most pathogenic.1,2,5,7,9–14 experimental studies, the imidazoles (miconazole, econazole, clo- A second step was the development of a much more systematic trimazole, and ketoconazole) turned out to be a disappointing approach to the understanding of the pharmacology of topical an- group of agents. Difficulties with solubility, poor pharmacokinet- tifungal agents than had previously been possible.15–25 This was ics, and a limited spectrum of activity all combined to make these by the development of practical animal models of disease4,15,26–44 fungistatic agents inferior to amphotericin B.26,33,49 and by the increased reporting of a series of clinical In the 1980s, a second generation of azole compounds, the tria- cases.1,2,5,7,10,45 zoles, became available as systemic agents. Two of them, itracona- The efficacy of natamycin in the treatment of infections caused zole and fluconazole, showed considerable promise in the treat- by Fusarium, particularly F. solani, was convincingly demon- ment of systemic infections owing to Candida.50,51 As well, there strated in successive case series.1,5,7,9,10 Although randomized was evidence of therapeutic activity, particularly with itracona- controlled studies have not been performed because of the diffi- zole, against Aspergillus infections.51 culty in assembling sufficient cases in a reasonable period of time, Animal studies with systemically administered fluconazole
Recommended publications
  • Confocal Microscopy in Cornea Guttata and Fuchs' Endothelial Dystrophy
    Br J Ophthalmol 1999;83:185–189 185 Confocal microscopy in cornea guttata and Fuchs’ Br J Ophthalmol: first published as 10.1136/bjo.83.2.185 on 1 February 1999. Downloaded from endothelial dystrophy Auguste G-Y Chiou, Stephen C Kaufman, Roger W Beuerman, Toshihiko Ohta, Hisham Soliman, Herbert E Kaufman Abstract conventional imaging methods.3–13 Because of Aims—To report the appearances of cor- its ability to focus the light source and the nea guttata and Fuchs’ endothelial dystro- image on the same focal plane, it allows real phy from white light confocal microscopy. time in vivo assessment of the diVerent layers Methods—Seven eyes of four consecutive of the cornea, including the endothelial layer. patients with cornea guttata were pro- Therefore, it may be an alternative method in spectively examined. Of the seven eyes, evaluating cornea guttata or Fuchs’ endothelial three also had corneal oedema (Fuchs’ dystrophy. dystrophy). In vivo white light tandem In the current study, we analysed the scanning confocal microscopy was per- appearances of cornea guttata and Fuchs’ dys- formed in all eyes. Results were compared trophy from confocal microscopy and compare with non-contact specular microscopy. the technique with non-contact specular mi- Results—Specular microscopy was pre- croscopy. cluded by corneal oedema in one eye. In the remaining six eyes, it demonstrated typical changes including pleomorphism, polymegathism, and the presence of gut- tae appearing as dark bodies, some with a central bright reflex. In all seven eyes, confocal microscopy revealed the pres- ence of round hyporeflective images with an occasional central highlight at the level of the endothelium.
    [Show full text]
  • Curvularia Keratitis*
    09 Wilhelmus Final 11/9/01 11:17 AM Page 111 CURVULARIA KERATITIS* BY Kirk R. Wilhelmus, MD, MPH, AND Dan B. Jones, MD ABSTRACT Purpose: To determine the risk factors and clinical signs of Curvularia keratitis and to evaluate the management and out- come of this corneal phæohyphomycosis. Methods: We reviewed clinical and laboratory records from 1970 to 1999 to identify patients treated at our institution for culture-proven Curvularia keratitis. Descriptive statistics and regression models were used to identify variables associ- ated with the length of antifungal therapy and with visual outcome. In vitro susceptibilities were compared to the clini- cal results obtained with topical natamycin. Results: During the 30-year period, our laboratory isolated and identified Curvularia from 43 patients with keratitis, of whom 32 individuals were treated and followed up at our institute and whose data were analyzed. Trauma, usually with plants or dirt, was the risk factor in one half; and 69% occurred during the hot, humid summer months along the US Gulf Coast. Presenting signs varied from superficial, feathery infiltrates of the central cornea to suppurative ulceration of the peripheral cornea. A hypopyon was unusual, occurring in only 4 (12%) of the eyes but indicated a significantly (P = .01) increased risk of subsequent complications. The sensitivity of stained smears of corneal scrapings was 78%. Curvularia could be detected by a panfungal polymerase chain reaction. Fungi were detected on blood or chocolate agar at or before the time that growth occurred on Sabouraud agar or in brain-heart infusion in 83% of cases, although colonies appeared only on the fungal media from the remaining 4 sets of specimens.
    [Show full text]
  • Original Article
    Clinical and Experimental Ophthalmology 2007; 35: 124–130 doi:10.1111/j.1442-9071.2006.01405.x Original Article Fungal keratitis in Melbourne Prashant Bhartiya FRCS,1,2 Mark Daniell FRANZCO,1,2 Marios Constantinou BScHons BOrth,1,2 FM Amirul Islam PhD1,2 and Hugh R Taylor AC FRANZCO1,2 1Centre for Eye Research Australia, University of Melbourne, and 2Corneal Clinic, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia ABSTRACT INTRODUCTION Background: Description of the clinical and microbiolog- Fungal keratitis is a potentially blinding ocular disease. The ical spectrum of fungal keratitis at a tertiary eye care hos- incidence of fungal keratitis varies widely throughout the pital in Melbourne, Australia. world. A report from India showed that nearly 50% of all corneal ulcers were caused by fungi.1 This high prevalence Methods: Retrospective review of all patients with keratitis of fungal pathogens in south India is significantly greater with positive fungal cultures from corneal or associated than that found in similar studies in Nepal (17%),2 samples presenting to the Royal Victorian Eye and Ear Hos- Bangladesh (36%)3 and south Florida (35%).4 Several large pital, Melbourne, Australia from July 1996 to May 2004. studies on fungal keratitis have been published from North 4–12 Demographic data, predisposing factors, features on pre- and South America, Africa and the Indian subcontinent. However, there is a paucity of data on the spectrum of fungal sentation, management, outcomes and microbiological data keratitis in patients from Australia. This study reviewed a were collected and analysed. series of patients with keratitis who had fungal growth on Results: The study included 56 eyes of 56 patients.
    [Show full text]
  • Review the Global Incidence and Diagnosis of Fungal Keratitis
    Review The global incidence and diagnosis of fungal keratitis Lottie Brown, Astrid K Leck, Michael Gichangi, Matthew J Burton, David W Denning Fungal keratitis is a severe corneal infection that often results in blindness and eye loss. The disease is most prevalent Lancet Infect Dis 2020 in tropical and subtropical climates, and infected individuals are frequently young agricultural workers of low Published Online socioeconomic status. Early diagnosis and treatment can preserve vision. Here, we discuss the fungal keratitis October 22, 2020 diagnostic literature and estimate the global burden through a complete systematic literature review from January, 1946 https://doi.org/10.1016/ S1473-3099(20)30448-5 to July, 2019. An adapted GRADE score was used to evaluate incidence papers—116 studies provided the incidence of University of Manchester, fungal keratitis as a proportion of microbial keratitis and 18 provided the incidence in a defined population. We Manchester, UK (L Brown MSc, calculated a minimum annual incidence estimate of 1 051 787 cases (736 251–1 367 323), with the highest rates in Asia Prof D W Denning FRCP); and Africa. If all culture-negative cases are assumed to be fungal, the annual incidence would be 1 480 916 cases International Centre for Eye (1 036 641–1 925 191). In three case series, 8–11% of patients had to have the eye removed, which represents an annual Health, London School of Hygiene & Tropical Medicine, loss of 84 143–115 697 eyes. As fungal keratitis probably affects over a million people annually, an inexpensive, simple London, UK (A K Leck PhD, diagnostic method and affordable treatment are needed in every country.
    [Show full text]
  • Topical Corticosteroids and Fungal Keratitis: a Review of the Literature and Case Series
    Journal of Clinical Medicine Review Topical Corticosteroids and Fungal Keratitis: A Review of the Literature and Case Series Karl Anders Knutsson 1,*, Alfonso Iovieno 2,3, Stanislav Matuska 1, Luigi Fontana 2 and Paolo Rama 1 1 Cornea and Ocular Surface Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; [email protected] (S.M.); [email protected] (P.R.) 2 Arcispedale Santa Maria Nuova—IRCCS, 42123 Reggio Emilia, Italy; [email protected] (A.I.); [email protected] (L.F.) 3 Department of Ophthalmology, University of British Columbia, Vancouver, BC V6T 1Z, Canada * Correspondence: [email protected] or [email protected]; Tel./Fax: +39-022-6432-648 Abstract: The management of fungal keratitis is complex since signs and symptoms are subtle and ocular inflammation is minimal in the preliminary stages of infection. Initial misdiagnosis of the condition and consequent management of inflammation with corticosteroids is a frequent occurrence. Topical steroid use is considered to be a principal factor for development of fungal keratitis. In this review, we assess the studies that have reported outcomes of fungal keratitis in patients receiving steroids prior to diagnosis. We also assess the possible rebound effect present when steroids are abruptly discontinued and the clinical characteristics of three patients in this particular clinical scenario. Previous reports and the three clinical descriptions presented suggest that in fungal keratitis, discontinuing topical steroids can induce worsening of clinical signs. In these cases, we recommend to slowly taper steroids and continue or commence appropriate antifungal therapy. Citation: Knutsson, K.A.; Iovieno, A.; Keywords: fungal keratitis; topical corticosteroids; topical steroids; rebound effect Matuska, S.; Fontana, L.; Rama, P.
    [Show full text]
  • Fusarium Keratitis and Corneal Collagen Cross
    FUSARIUM KERATITIS AND SURGERY REFRACTIVE CORNEAL COLLAGEN CROSS-LINKING BY MINAS CORONEO, AO, BSC(MED), MBBS, MSC SYD, MD, MS, UNSW, FRACS, FRANZCO; RAJESH FOGLA, DNB, FRCS(EDIN), MMED(OPHTH); WILLIAM B. TRATTLER, MD; ASHIYANA NARIANI, MD, MPH; COMPLEX CASE MANAGEMENT COMPLEX GARGI KHARE VORA, MD; AND ALAN N. CARLSON, MD CASE PRESENTATION A 42-year-old white man is referred to the Duke University Eye Center Cornea Service for a central corneal ulcer with a hypopyon in his right eye. The patient sustained the ocular injury while mowing the lawn, with debris getting into the eye while he was wearing contact lenses. He was diagnosed with culture-positive Fusarium species by the referring ophthalmologist and was treat- ed with oral voriconazole 200 mg twice daily and frequent topical natamycin 5% and voriconazole 10 mg/mL. The patient under- went epithelium-off corneal collagen cross-linking (CXL) approxi- Figure 1. Initial evaluation of the eye with a Fusarium corneal mately 4 weeks after diagnosis of the ulcer and was treated with infiltrate and hypopyon. a loteprednol steroid taper after the procedure. His condition subsequently progressed, with increasing eye pain, a nonhealing epithelial defect, and a worsening corneal infiltrate. Upon evaluation, the patient has a large corneal infiltrate with necrotic stroma, which is approaching the limbus, and a hypopyon (Figure 1). His UCVA measures 20/70-1. B-scan ultrasound of the right eye shows no evidence of posterior segment involvement. Reculturing of the corneal infiltrate is negative for bacteria, fungus, and Acanthamoeba. Confocal microscopy reveals no evidence of hyphae or cysts.
    [Show full text]
  • Herpetic Corneal Infections
    FocalPoints Clinical Modules for Ophthalmologists VOLUME XXVI, NUMBER 8 SEPTEMBER 2008 (MODULE 2 OF 3) Herpetic Corneal Infections Sonal S. Tuli, MD Reviewers and Contributing Editors Consultants George A. Stern, MD, Editor for Cornea & External Disease James Chodosh, MD, MPH Kristin M. Hammersmith, MD, Basic and Clinical Science Course Faculty, Section 8 Kirk R. Wilhelmus, MD, PhD Christie Morse, MD, Practicing Ophthalmologists Advisory Committee for Education Focal Points Editorial Review Board George A. Stern, MD, Missoula, MT Claiming CME Credit Editor in Chief, Cornea & External Disease Thomas L. Beardsley, MD, Asheville, NC Academy members: To claim Focal Points CME cred- Cataract its, visit the Academy web site and access CME Central (http://www.aao.org/education/cme) to view and print William S. Clifford, MD, Garden City, KS Glaucoma Surgery; Liaison for Practicing Ophthalmologists Advisory your Academy transcript and report CME credit you Committee for Education have earned. You can claim up to two AMA PRA Cate- gory 1 Credits™ per module. This will give you a maxi- Bradley S. Foster, MD, Springfield, MA Retina & Vitreous mum of 24 credits for the 2008 subscription year. CME credit may be claimed for up to three (3) years from Anil D. Patel, MD, Oklahoma City, OK date of issue. Non-Academy members: For assistance Neuro-Ophthalmology please send an e-mail to [email protected] or a Eric P. Purdy, MD, Fort Wayne, IN fax to (415) 561-8575. Oculoplastic, Lacrimal, & Orbital Surgery Steven I. Rosenfeld, MD, FACS, Delray Beach, FL Refractive Surgery, Optics & Refraction C. Gail Summers, MD, Minneapolis, MN Focal Points (ISSN 0891-8260) is published quarterly by the American Academy of Ophthalmology at 655 Beach St., San Francisco, CA 94109-1336.
    [Show full text]
  • NATACYN® (Natamycin Ophthalmic Suspension) 5% Sterile
    NATACYN® (natamycin ophthalmic suspension) 5% Sterile DESCRIPTION: NATACYN® (natamycin ophthalmic suspension) 5% is a sterile, antifungal drug for topical ophthalmic administration. Each mL of NATACYN® (natamycin ophthalmic suspension) contains: Active: natamycin 5% (50 mg). Preservative: benzalkonium chloride 0.02%. Inactive: sodium hydroxide and/or hydrochloric acid (neutralized to adjust the pH), purified water. The active ingredient is represented by the chemical structure: Established Name: Natamycin Molecular Formula: C33H47NO13 Molecular Weight: 665.73 g/mol Chemical Name: Stereoisomer of 22-[(3-amino-3,6-dideoxy- β-D-mannopyranosyl)oxy]-1,3,26- trihydroxy-12-methyl-10-oxo-6,11,28-trioxatricyclo[22.3.1.05,7] octacosa-8,14,16,18,20-pentaene-25- carboxylic acid. Other: Pimaricin The pH range is 5.0-7.5. CLINICAL PHARMACOLOGY: Natamycin is a tetraene polyene antibiotic derived from Streptomyces natalensis. It possesses in vitro activity against a variety of yeast and filamentous fungi, including Candida, Aspergillus, Cephalosporium, Fusarium and Penicillium. The mechanism of action appears to be through binding of the molecule to the sterol moiety of the fungal cell membrane. The polyenesterol complex alters the permeability of the membrane to produce depletion of essential cellular constituents. Although the activity against fungi is dose-related, natamycin is predominantly fungicidal. Natamycin is not effective in vitro against gram-positive or gram- negative bacteria. Topical administration appears to produce effective concentrations of natamycin within the corneal stroma but not in intraocular fluid. Systemic absorption should not be expected following topical administration of NATACYN® (natamycin ophthalmic suspension) 5%. As with other polyene antibiotics, absorption from the gastrointestinal tract is very poor.
    [Show full text]
  • Infectious Keratitis: Short Answers
    Q Infectious keratitis: Short answers What is the #1 bacterium in CL-related K ulcer? A Infectious keratitis: Short answers What is the #1 bacterium in CL-related K ulcer? Pseudomonas Infectious keratitis: Short answers Pseudomonas corneal ulcer associated with CL wear Q Infectious keratitis: Short answers What is the #1 bacterium in CL-related K ulcer? Pseudomonas What is the #1 risk factor for Acanthamoeba keratitis? A Infectious keratitis: Short answers What is the #1 bacterium in CL-related K ulcer? Pseudomonas What is the #1 risk factor for Acanthamoeba keratitis? CL wear Infectious keratitis: Short answers Acanthamoeba keratitis associated with CL wear Q Infectious keratitis: Short answers What is the #1 bacterium in CL-related K ulcer? Pseudomonas What is the #1 risk factor for Acanthamoeba keratitis? CL wear What are the three main culprits in fungal keratitis? What is the topical antifungal of choice for each? Fusarium:fungus 1 Topical…natamycin Aspergillisfungus 2 and Candida:fungus 3 A Infectious keratitis: Short answers What is the #1 bacterium in CL-related K ulcer? Pseudomonas What is the #1 risk factor for Acanthamoeba keratitis? CL wear What are the three main culprits in fungal keratitis? What is the topical antifungal of choice for each? Candida: Topical…natamycin Aspergillis and Fusarium: Q Infectious keratitis: Short answers What is the #1 bacterium in CL-related K ulcer? Pseudomonas What is the #1 risk factor for Acanthamoeba keratitis? CL wear What are the three main culprits in fungal keratitis?
    [Show full text]
  • Updates in Ocular Antifungal Pharmacotherapy: Formulation and Clinical Perspectives
    Current Fungal Infection Reports (2019) 13:45–58 https://doi.org/10.1007/s12281-019-00338-6 PHARMACOLOGY AND PHARMACODYNAMICS OF ANTIFUNGAL AGENTS (N BEYDA, SECTION EDITOR) Updates in Ocular Antifungal Pharmacotherapy: Formulation and Clinical Perspectives Ruchi Thakkar1,2 & Akash Patil1,2 & Tabish Mehraj1,2 & Narendar Dudhipala1,2 & Soumyajit Majumdar1,2 Published online: 2 May 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review In this review, a compilation on the current antifungal pharmacotherapy is discussed, with emphases on the updates in the formulation and clinical approaches of the routinely used antifungal drugs in ocular therapy. Recent Findings Natamycin (Natacyn® eye drops) remains the only approved medication in the management of ocular fungal infections. This monotherapy shows therapeutic outcomes in superficial ocular fungal infections, but in case of deep-seated mycoses or endophthalmitis, successful therapeutic outcomes are infrequent, as a result of which alternative therapies are sought. In such cases, amphotericin B, azoles, and echinocandins are used off-label, either in combination with natamycin or with each other (frequently) or as standalone monotherapies, and have provided effective therapeutic outcomes. Summary In recent times, amphotericin B, azoles, and echinocandins have come to occupy an important niche in ocular antifungal pharmacotherapy, along with natamycin (still the preferred choice in most clinical cases), in the management of ocular fungal infections.
    [Show full text]
  • Natamycin Ophthalmic Suspension)5% Sterile
    NDA 50-514/S-009 Page 3 Natacyn® (natamycin ophthalmic suspension)5% Sterile DESCRIPTION: NATACYN® (natamycin ophthalmic suspension) 5% is a sterile, antifungal drug for topical ophthalmic administration. Each mL of the suspension contains: Active: natamycin 5% (50mg). Preservative: benzalkonium chloride 0.02%. Inactive: sodium hydroxide and/or hydrochloric acid (neutralized to adjust the pH), purified water. The active ingredient is represented by the chemical structure: Established name: Natamycin Chemical Structure Molecular Formula: C33H47NO13 Molecular Weight: 665.73 Chemical name: Stereoisomer of 22-[(3-amino-3,6-dideoxy- β-D-mannopyranosyl)oxy]-1,3,26­ trihydroxy-12- methyl-10-oxo-6,11,28- trioxatricyclo[22.3.1.05,7] octacosa-8,14,16,18,20-pentaene-25-carboxylic acid. Other: Pimaricin The pH range is 5.0 – 7.5. CLINICAL PHARMACOLOGY: Natamycin is a tetraene polyene antibiotic derived from Streptomyces natalensis. It possesses in vitro activity against a variety of yeast and filamentous fungi, including Candida, Aspergillus, Cephalosporium, Fusarium and Penicillium. The mechanism of action appears to be through binding of the molecule to the sterol moiety of the fungal cell membrane. The polyenesterol complex alters the permeability of the membrane to produce depletion of essential cellular constituents. Although the activity against fungi is dose-related, natamycin is predominantly fungicidal.* Natamycin is not effective in vitro against gram-positive or gram-negative bacteria. Topical administration appears to produce effective concentrations of natamycin within the corneal stroma but not in intraocular fluid. Systemic absorption should not be expected following topical administration of NATACYN® (natamycin ophthalmic suspension) 5%. As with other polyene antibiotics, absorption from the gastrointestinal tract is very poor.
    [Show full text]
  • Acanthamoeba, Fungal, and Bacterial Keratitis: a Comparison of Risk Factors and Clinical Features
    Acanthamoeba, Fungal, and Bacterial Keratitis: A Comparison of Risk Factors and Clinical Features JEENA MASCARENHAS, PRAJNA LALITHA, N. VENKATESH PRAJNA, MUTHIAH SRINIVASAN, MANORANJAN DAS, SEAN S. D’SILVA, CATHERINE E. OLDENBURG, DURGA S. BORKAR, ELIZABETH J. ESTERBERG, THOMAS M. LIETMAN, AND JEREMY D. KEENAN PURPOSE: To determine risk factors and clinical signs acanthamoeba keratitis research has been conducted in that may differentiate between bacterial, fungal, and industrialized countries, acanthamoeba keratitis also acanthamoeba keratitis among patients presenting with occurs in developing countries, often in non–contact presumed infectious keratitis. lens–wearing individuals.6,7 DESIGN: Hospital-based cross-sectional study. Acanthamoeba keratitis is frequently misdiagnosed as METHODS: We examined the medical records of 115 herpetic or fungal keratitis, and is subsequently treated incor- patients with laboratory-proven bacterial keratitis, 115 rectly, which can lead to poor outcomes.8 Case series of acan- patients with laboratory-proven fungal keratitis, and thamoeba keratitis have identified several important clinical 115 patients with laboratory-proven acanthamoeba kera- signs, such as pseudodendrites, perineural infiltrates, and ring titis seen at Aravind Eye Hospital, Madurai, India, from infiltrates.9,10 However, we are unaware of any studies that 2006-2011. Risk factors and clinical features of the 3 have compared the clinical findings of acanthamoeba organisms were compared using multinomial logistic keratitis with those of bacterial and fungal keratitis. regression. Clinical signs can be especially useful for differentiating the RESULTS: Of 95 patients with bacterial keratitis, 103 cause of infectious keratitis when microbiological testing is patients with fungal keratitis, and 93 patients with acan- not available—which is frequently the case in developing thamoeba keratitis who had medical records available for countries.
    [Show full text]