2Kht Lichtarge Lab 2006

Total Page:16

File Type:pdf, Size:1020Kb

2Kht Lichtarge Lab 2006 Pages 1–4 2kht Evolutionary trace report by report maker March 31, 2010 4.3.5 LaTex 4 4.3.6 Muscle 4 4.3.7 Pymol 4 4.4 Note about ET Viewer 4 4.5 Citing this work 4 4.6 About report maker 4 4.7 Attachments 4 1 INTRODUCTION From the original Protein Data Bank entry (PDB id 2kht): Title: Nmr structure of human alpha defensin hnp-1 Compound: Mol id: 1; molecule: neutrophil defensin 1; chain: a; fragment: residues 65-94; synonym: hnp-1, hp-1, hp1, defensin, alpha 1, hp 1-56, neutrophil defensin 2, hnp-2, hp-2, hp2; engineered: yes Organism, scientific name: Homo Sapiens; CONTENTS 2kht contains a single unique chain 2khtA (30 residues long). This is an NMR-determined structure – in this report the first model in the 1 Introduction 1 file was used. 2 Chain 2khtA 1 2.1 Q6EZF6 overview 1 2.2 Multiple sequence alignment for 2khtA 1 2.3 Residue ranking in 2khtA 1 2.4 Top ranking residues in 2khtA and their position on 2 CHAIN 2KHTA the structure 1 2.1 Q6EZF6 overview 2.4.1 Clustering of residues at 80% coverage. 1 From SwissProt, id Q6EZF6, 100% identical to 2khtA: Description: Novel protein, similar to DEFA1 (Defensin, alpha 1, 3 Notes on using trace results 2 myeloid-related sequence) (Defensin, alpha 1, preproprotein). 3.1 Coverage 2 Organism, scientific name: Homo sapiens (Human). 3.2 Known substitutions 2 Taxonomy: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; 3.3 Surface 2 Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; 3.4 Number of contacts 2 Catarrhini; Hominidae; Homo. 3.5 Annotation 3 3.6 Mutation suggestions 3 4 Appendix 3 4.1 File formats 3 2.2 Multiple sequence alignment for 2khtA 4.2 Color schemes used 3 For the chain 2khtA, the alignment 2khtA.msf (attached) with 5 4.3 Credits 3 sequences was used. The alignment was assembled through combi- 4.3.1 Alistat 3 nation of BLAST searching on the UniProt database and alignment 4.3.2 CE 3 using Muscle program. It can be found in the attachment to this 4.3.3 DSSP 3 report, under the name of 2khtA.msf. Its statistics, from the alistat 4.3.4 HSSP 3 program are the following: 1 Lichtarge lab 2006 Fig. 1. Residues 1-30 in 2khtA colored by their relative importance. (See Appendix, Fig.4, for the coloring scheme.) Format: MSF Number of sequences: 5 Total number of residues: 150 Smallest: 30 Largest: 30 Average length: 30.0 Alignment length: 30 Average identity: 88% Most related pair: 97% Most unrelated pair: 80% Most distant seq: 93% Furthermore, 80% of residues show as conserved in this alignment. The alignment consists of 80% eukaryotic ( 80% vertebrata) Fig. 2. Residues in 2khtA, colored by their relative importance. Clockwise: sequences. (Descriptions of some sequences were not readily availa- front, back, top and bottom views. ble.) The file containing the sequence descriptions can be found in the attachment, under the name 2khtA.descr. 2.3 Residue ranking in 2khtA The 2khtA sequence is shown in Fig. 1, with each residue colored according to its estimated importance. The full listing of residues in 2khtA can be found in the file called 2khtA.ranks sorted in the attachment. 2.4 Top ranking residues in 2khtA and their position on the structure In the following we consider residues ranking among top 80% of resi- dues in the protein (the closest this analysis allows us to get to 25%). Figure 2 shows residues in 2khtA colored by their importance: bright red and yellow indicate more conserved/important residues (see Appendix for the coloring scheme). A Pymol script for producing this figure can be found in the attachment. 2.4.1 Clustering of residues at 80% coverage. Fig. 3 shows the top 80% of all residues, this time colored according to clusters they belong to. The clusters in Fig.3 are composed of the residues listed in Table 1. Fig. 3. Residues in 2khtA, colored according to the cluster they belong to: Table 1. red, followed by blue and yellow are the largest clusters (see Appendix for cluster size member the coloring scheme). Clockwise: front, back, top and bottom views. The corresponding Pymol script is attached. color residues red 24 2,3,4,5,6,7,8,9,11,12,13,14 15,16,17,18,19,21,24,26,27 28,29,30 3 NOTES ON USING TRACE RESULTS 3.1 Coverage Table 1. Clusters of top ranking residues in 2khtA. Trace results are commonly expressed in terms of coverage: the resi- due is important if its “coverage” is small - that is if it belongs to some small top percentage of residues [100% is all of the residues 2 in a chain], according to trace. The ET results are presented in the form of a table, usually limited to top 25% percent of residues (or to some nearby percentage), sorted by the strength of the presumed evolutionary pressure. (I.e., the smaller the coverage, the stronger the pressure on the residue.) Starting from the top of that list, mutating a COVERAGE couple of residues should affect the protein somehow, with the exact effects to be determined experimentally. V 3.2 Known substitutions 100% 50% 30% 5% One of the table columns is “substitutions” - other amino acid types seen at the same position in the alignment. These amino acid types may be interchangeable at that position in the protein, so if one wants to affect the protein by a point mutation, they should be avoided. For example if the substitutions are “RVK” and the original protein has V an R at that position, it is advisable to try anything, but RVK. Conver- RELATIVE IMPORTANCE sely, when looking for substitutions which will not affect the protein, one may try replacing, R with K, or (perhaps more surprisingly), with V. The percentage of times the substitution appears in the alignment Fig. 4. Coloring scheme used to color residues by their relative importance. is given in the immediately following bracket. No percentage is given in the cases when it is smaller than 1%. This is meant to be a rough guide - due to rounding errors these percentages often do not add up [WFYHR], hydrophobic [LPVAMWFI], polar [GTCY ]; posi- to 100%. tively [KHR], or negatively [DE] charged, aromatic [WFYH], long aliphatic chain [EKRQM], OH-group possession [SDETY ], 3.3 Surface and NH2 group possession [NQRK]. The suggestions are listed To detect candidates for novel functional interfaces, first we look for according to how different they appear to be from the original amino residues that are solvent accessible (according to DSSP program) by acid, and they are grouped in round brackets if they appear equally 2 at least 10A˚ , which is roughly the area needed for one water mole- disruptive. From left to right, each bracketed group of amino acid cule to come in the contact with the residue. Furthermore, we require types resembles more strongly the original (i.e. is, presumably, less that these residues form a “cluster” of residues which have neighbor disruptive) These suggestions are tentative - they might prove disrup- within 5A˚ from any of their heavy atoms. tive to the fold rather than to the interaction. Many researcher will Note, however, that, if our picture of protein evolution is correct, choose, however, the straightforward alanine mutations, especially in the neighboring residues which are not surface accessible might be the beginning stages of their investigation. equally important in maintaining the interaction specificity - they should not be automatically dropped from consideration when choo- 4 APPENDIX sing the set for mutagenesis. (Especially if they form a cluster with the surface residues.) 4.1 File formats Files with extension “ranks sorted” are the actual trace results. The 3.4 Number of contacts fields in the table in this file: Another column worth noting is denoted “noc/bb”; it tells the num- • ber of contacts heavy atoms of the residue in question make across alignment# number of the position in the alignment the interface, as well as how many of them are realized through the • residue# residue number in the PDB file backbone atoms (if all or most contacts are through the backbone, • type amino acid type mutation presumably won’t have strong impact). Two heavy atoms • rank rank of the position according to older version of ET are considered to be “in contact” if their centers are closer than 5A˚ . • variability has two subfields: 3.5 Annotation 1. number of different amino acids appearing in in this column If the residue annotation is available (either from the pdb file or of the alignment from other sources), another column, with the header “annotation” 2. their type appears. Annotations carried over from PDB are the following: site • rho ET score - the smaller this value, the lesser variability of (indicating existence of related site record in PDB ), S-S (disulfide this position across the branches of the tree (and, presumably, bond forming residue), hb (hydrogen bond forming residue, jb (james the greater the importance for the protein) bond forming residue), and sb (for salt bridge forming residue). • cvg coverage - percentage of the residues on the structure which 3.6 Mutation suggestions have this rho or smaller Mutation suggestions are completely heuristic and based on comple- • gaps percentage of gaps in this column mentarity with the substitutions found in the alignment. Note that they are meant to be disruptive to the interaction of the protein 4.2 Color schemes used with its ligand. The attempt is made to complement the following The following color scheme is used in figures with residues colored properties: small [AV GSTC], medium [LPNQDEMIK], large by cluster size: black is a single-residue cluster; clusters composed of 3 more than one residue colored according to this hierarchy (ordered http://www.drive5.com/muscle/ by descending size): red, blue, yellow, green, purple, azure, tur- 4.3.7 Pymol The figures in this report were produced using quoise, brown, coral, magenta, LightSalmon, SkyBlue, violet, gold, Pymol.
Recommended publications
  • Copy Number Variation and Huntington's Disease
    UNIVERSIDADE DE LISBOA FACULDADE DE MEDICINA DE LISBOA Copy number variation and Huntington’s disease Angelica Vittori Ramo das Ciências Biomédicas Especialidade – Neurociências Outubro 2013 UNIVERSIDADE DE LISBOA FACULDADE DE MEDICINA DE LISBOA Copy number variation and Huntington’s disease Candidata: Angelica Vittori Orientadores: Prof . Doutor Tiago Fleming Outeiro Doutor Flaviano Giorgini Doutor Edward J. Hollox Ramo das Ciências Biomédicas Especialidade – Neurociências Todas as afirmações efectuadas no presente documento são da exclusiva II responsabilidade do seu autor, não cabendo qualquer responsabilidade à faculdade de medicina de lisboa pelos conteúdos nela apresentados. A impressão são da exclusiva está dissertação foi aprovada pelo Conselho Cientifico da Faculdade de Medicina em reunião de 19 de Novembro de 2013. III Resumo A variação de número de cópias (CNV em inglês) é uma modificação de uma sequência de DNA que apresenta uma inserção ou deleção em comparação com um genoma de referência com um número de cópias de N = 2. Com um comprimento variável, desde 50 pares de bases até várias megabases, as CNVs identificadas têm um tamanho médio de ~ 3 Kb e representam cerca de 4% do genoma humano. As CNVs, como outras variações genéticas, podem afetar directamente os níveis de expressão dos genes afectados. Os efeitos indirectos na expressão genética podem ser causados por alterações da posição, interrompendo o quadro de leitura do gene ou posteriormente, perturbando as redes de regulação genética. Foi demonstrado que as CNVs são em grande parte responsáveis pela evolução humana e diversidade genética entre os indivíduos. A relevância das CNVs no genoma humano foi salientada por vários estudos de associação que mostraram o efeito das CNVs na susceptibilidade a doenças neurodegenerativas, doenças de características complexas, e por serem a principal causa do aparecimento de doenças mendelianas ou por conferirem um fenótipo benigno.
    [Show full text]
  • Alpha Defensin 1 Antibody / DEFA1 (R32739)
    Alpha Defensin 1 Antibody / DEFA1 (R32739) Catalog No. Formulation Size R32739 0.5mg/ml if reconstituted with 0.2ml sterile DI water 100 ug Bulk quote request Availability 1-3 business days Species Reactivity Human, Rat Format Antigen affinity purified Clonality Polyclonal (rabbit origin) Isotype Rabbit IgG Purity Antigen affinity Buffer Lyophilized from 1X PBS with 2.5% BSA, 0.025% sodium azide UniProt P59665 Applications Western Blot : 0.5-1ug/ml Limitations This Alpha Defensin 1 antibody is available for research use only. Western blot testing of 1) rat testis and 2) human HeLa lysate with Alpha Defensin 1 antibody at 0.5ug/ml. Predicted molecular weight ~10 kDa. Description Defensin, alpha 1, also known as human alpha defensin 1, human neutrophil peptide 1 (HNP-1) or neutrophil defensin 1 is a human protein that is encoded by the DEFA1 gene. Defensins are a family of antimicrobial and cytotoxic peptides thought to be involved in host defense. They are abundant in the granules of neutrophils and also found in the epithelia of mucosal surfaces such as those of the intestine, respiratory tract, urinary tract, and vagina. Members of the defensin family are highly similar in protein sequence and distinguished by a conserved cysteine motif. The protein encoded by this gene, defensin, alpha 1, is found in the microbicidal granules of neutrophils and likely plays a role in phagocyte-mediated host defense. Several alpha defensin genes are clustered on chromosome 8. This gene differs from defensin, alpha 3 by only one amino acid. This gene and the gene encoding defensin, alpha 3 are both subject to copy number variation.
    [Show full text]
  • DEFA1 Rabbit Pab
    Leader in Biomolecular Solutions for Life Science DEFA1 Rabbit pAb Catalog No.: A6897 Basic Information Background Catalog No. Defensins are a family of antimicrobial and cytotoxic peptides thought to be involved in host A6897 defense. They are abundant in the granules of neutrophils and also found in the epithelia of mucosal surfaces such as those of the intestine, respiratory tract, urinary tract, and vagina. Observed MW Members of the defensin family are highly similar in protein sequence and distinguished by a 10KDa conserved cysteine motif. The protein encoded by this gene, defensin, alpha 1, is found in the microbicidal granules of neutrophils and likely plays a role in phagocyte-mediated host defense. Several alpha defensin genes are clustered on chromosome 8. This gene differs Calculated MW from defensin, alpha 3 by only one amino acid. This gene and the gene encoding defensin, 10kDa alpha 3 are both subject to copy number variation. Category Primary antibody Applications WB, IHC, IF Cross-Reactivity Human, Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 1667 P59665 IHC 1:50 - 1:100 Immunogen IF 1:50 - 1:100 Recombinant fusion protein containing a sequence corresponding to amino acids 1-94 of human DEFA1 (NP_004075.1). Synonyms DEFA1;DEF1;DEFA2;HNP-1;HP-1;HP1;MRS Contact Product Information 400-999-6126 Source Isotype Purification Rabbit IgG Affinity purification [email protected] Storage www.abclonal.com.cn Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using DEFA1 antibody (A6897) at 1:1000 dilution.
    [Show full text]
  • Papain-Like Protease Regulates SARS-Cov-2 Viral Spread and Innate Immunity
    Article Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity https://doi.org/10.1038/s41586-020-2601-5 Donghyuk Shin1,2,3, Rukmini Mukherjee1,2, Diana Grewe2, Denisa Bojkova4, Kheewoong Baek5, Anshu Bhattacharya1,2, Laura Schulz6, Marek Widera4, Ahmad Reza Mehdipour6, Georg Tascher1, Received: 30 April 2020 Paul P. Geurink7, Alexander Wilhelm4,8, Gerbrand J. van der Heden van Noort7, Huib Ovaa7,13, Accepted: 23 July 2020 Stefan Müller1, Klaus-Peter Knobeloch9, Krishnaraj Rajalingam10, Brenda A. Schulman5, Jindrich Cinatl4, Gerhard Hummer6,11, Sandra Ciesek4,8,12 & Ivan Dikic1,2,3,12 ✉ Published online: 29 July 2020 Check for updates The papain-like protease PLpro is an essential coronavirus enzyme that is required for processing viral polyproteins to generate a functional replicase complex and enable viral spread1,2. PLpro is also implicated in cleaving proteinaceous post-translational modifcations on host proteins as an evasion mechanism against host antiviral immune responses3–5. Here we perform biochemical, structural and functional characterization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PLpro (SCoV2-PLpro) and outline diferences with SARS-CoV PLpro (SCoV-PLpro) in regulation of host interferon and NF-κB pathways. SCoV2-PLpro and SCoV-PLpro share 83% sequence identity but exhibit diferent host substrate preferences; SCoV2-PLpro preferentially cleaves the ubiquitin-like interferon-stimulated gene 15 protein (ISG15), whereas SCoV-PLpro predominantly targets ubiquitin chains. The crystal structure of SCoV2-PLpro in complex with ISG15 reveals distinctive interactions with the amino-terminal ubiquitin-like domain of ISG15, highlighting the high afnity and specifcity of these interactions.
    [Show full text]
  • DEFA1) Antibody Catalogue No.:Abx005247
    Datasheet Version: 1.0.0 Revision date: 19 Nov 2020 Defensin Alpha 1, Neutrophil (DEFA1) Antibody Catalogue No.:abx005247 Western blot analysis of extracts of various cell lines, using DEFA1 antibody (abx005247) at 1/1000 dilution. Immunohistochemistry of paraffin-embedded rat heart using DEFA1 antibody (abx005247) at dilution of 1/100 (40x lens). Immunofluorescence analysis of HeLa cells using DEFA1 antibody (abx005247). Blue: DAPI for nuclear staining. DEFA1 Antibody is a Rabbit Polyclonal antibody against DEFA1. Defensins are a family of antimicrobial and cytotoxic peptides thought to be involved in host defense. They are abundant in the granules of neutrophils and also found in the epithelia of mucosal surfaces such as those of the intestine, respiratory tract, urinary tract, and vagina. Members of the defensin family are highly similar in protein sequence and distinguished by a conserved cysteine motif. The protein encoded by this gene, defensin, alpha 1, is found in the microbicidal granules of neutrophils and likely plays a role in phagocyte-mediated host defense. Several alpha defensin genesFor are clustered on chromosomeReference 8. This gene differs from defensin, alpha Only 3 by only one amino acid. This gene and the gene encoding defensin, alpha 3 are both subject to copy number variation. Target: DEFA1 Clonality: Polyclonal Reactivity: Human, Mouse, Rat v1.0.0 Abbexa Ltd, Cambridge, UK · Phone: +44 1223 755950 · Fax: +44 1223 755951 1 Abbexa LLC, Houston, TX, USA · Phone: +1 832 327 7413 www.abbexa.com · Email: [email protected] Datasheet Version: 1.0.0 Revision date: 19 Nov 2020 Tested Applications: WB, IHC, IF/ICC Host: Rabbit Recommended dilutions: WB: 1/500 - 1/2000, IHC: 1/50 - 1/100, IF/ICC: 1/50 - 1/100.
    [Show full text]
  • Downloaded from the Tranche Distributed File System (Tranche.Proteomecommons.Org) and Ftp://Ftp.Thegpm.Org/Data/Msms
    Research Article Title: The shrinking human protein coding complement: are there now fewer than 20,000 genes? Authors: Iakes Ezkurdia1*, David Juan2*, Jose Manuel Rodriguez3, Adam Frankish4, Mark Diekhans5, Jennifer Harrow4, Jesus Vazquez 6, Alfonso Valencia2,3, Michael L. Tress2,*. Affiliations: 1. Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Melchor Fernández Almagro, 3, rid, 28029, MadSpain 2. Structural Biology and Bioinformatics Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029, Madrid, Spain 3. National Bioinformatics Institute (INB), Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029, Madrid, Spain 4. Wellcome Trust Sanger Institute, Wellcome Trust Campus, Hinxton, Cambridge CB10 1SA, UK 5. Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), 1156 High Street, Santa Cruz, CA 95064, USA 6. Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Melchor Fernández Almagro, 3, 28029, Madrid, Spain *: these two authors wish to be considered as joint first authors of the paper. Corresponding author: Michael Tress, [email protected], Tel: +34 91 732 80 00 Fax: +34 91 224 69 76 Running title: Are there fewer than 20,000 protein-coding genes? Keywords: Protein coding genes, proteomics, evolution, genome annotation Abstract Determining the full complement of protein-coding genes is a key goal of genome annotation. The most powerful approach for confirming protein coding potential is the detection of cellular protein expression through peptide mass spectrometry experiments. Here we map the peptides detected in 7 large-scale proteomics studies to almost 60% of the protein coding genes in the GENCODE annotation the human genome.
    [Show full text]
  • Anti-Alpha Defensin 1 Antibody (ARG65200)
    Product datasheet [email protected] ARG65200 Package: 100 μg anti-alpha Defensin 1 antibody Store at: -20°C Summary Product Description Goat Polyclonal antibody recognizes alpha Defensin 1 Tested Reactivity Hu Tested Application IHC-P, WB Specificity This antibody is expected to equally recognize DEFA1 precursor and DEFA3 precursor. Host Goat Clonality Polyclonal Isotype IgG Target Name alpha Defensin 1 Antigen Species Human Immunogen C-DESLAPKHPGSRKN Conjugation Un-conjugated Alternate Names DEF1; Neutrophil defensin 1; HNP-1; HNP-2; HP-2; HP1; Defensin, alpha 1; MRS; DEFA2; HP2; HP-1 Application Instructions Application table Application Dilution IHC-P 3 - 6 µg/ml WB 1 - 3 µg/ml Application Note IHC-P: Antigen Retrieval: Steam tissue section in Citrate buffer (pH 6.0). WB: Recommend incubate at RT for 1h. * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 10 kDa Properties Form Liquid Purification Purified from goat serum by ammonium sulphate precipitation followed by antigen affinity chromatography using the immunizing peptide. Buffer Tris saline (pH 7.3), 0.02% Sodium azide and 0.5% BSA Preservative 0.02% Sodium azide Stabilizer 0.5% BSA Concentration 0.5 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated www.arigobio.com 1/2 freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use.
    [Show full text]
  • 2016 Abstracts for Poster Presentation (PDF)
    1 Rat Bite Fever Resembling Rheumatoid Arthritis in a 46 Year Old Female Ripa Akter (Memorial University, St. John’s); Paul Boland (Memorial University, St. John’s); Peter Daley (Memorial University, St. John’s); Proton Rahman (Memorial University, St. John’s); Nayef Al Ghanim (Memorial University, St. John’s) A 46 year old female was admitted with a 1 week history of fever and symmetrical inflammatory polyarthritis associated with morning stiffness of 30 minutes duration. Past medical history was significant for seizure disorder, irritable bowel syndrome, chronic back pain and iron deficiency anemia. Family history was unremarkable for any rheumatological disease. On examination, she was febrile (38 degree celsius) with synovitis of her wrists, ankles, bilateral 5th metatarsophalangeal joints and left 3rd metacarpophalangeal joint. ESR and CRP were found to be elevated (76 MM/HR and 149 mg/L). Initial blood culture and serological tests including hepatitis B and C, parvovirus B19, HIV, Lyme disease and Neisseria gonorrhea were negative. Rheumatological work up including rheumatoid factor, anti-nuclear antibody, anti-cyclic citrullinated peptide antibody, anti-neutrophil cytoplasmic antibodies, anti-dsDNA antibody and compliment levels were all within normal limits. The patient was treated with a presumed diagnosis of rheumatoid arthritis with oral prednisone with mild improvement in synovitis. She was discharged home on triple therapy (methotrexate, sulphasalazine and hydroxychloroquine). The patient then returned to the hospital next day with worsening synovitis, fever 39 degree celcius and significant worsening of lower back pain. Sulphasalazine and methotrexate were discontinued due to mild elevation of liver enzymes. She continued to be febrile intermittently with ongoing elevated ESR of 124 MM/HR and CRP of 170 mg/L.
    [Show full text]
  • Human Alpha Defensin 1 ELISA Kit (ARG82004)
    Product datasheet [email protected] ARG82004 Package: 96 wells Human alpha Defensin 1 ELISA Kit Store at: 4°C Component Cat. No. Component Name Package Temp ARG82004-001 Antibody-coated 8 X 12 strips 4°C. Unused strips microplate should be sealed tightly in the air-tight pouch. ARG82004-002 Standard 2 X 10 ng/vial 4°C ARG82004-003 Standard/Sample 30 ml (Ready to use) 4°C diluent ARG82004-004 Antibody conjugate 1 vial (100 µl) 4°C concentrate (100X) ARG82004-005 Antibody diluent 12 ml (Ready to use) 4°C buffer ARG82004-006 HRP-Streptavidin 1 vial (100 µl) 4°C concentrate (100X) ARG82004-007 HRP-Streptavidin 12 ml (Ready to use) 4°C diluent buffer ARG82004-008 25X Wash buffer 20 ml 4°C ARG82004-009 TMB substrate 10 ml (Ready to use) 4°C (Protect from light) ARG82004-010 STOP solution 10 ml (Ready to use) 4°C ARG82004-011 Plate sealer 4 strips Room temperature Summary Product Description ARG82004 Human alpha Defensin 1 ELISA Kit is an Enzyme Immunoassay kit for the quantification of Human alpha Defensin 1 in serum, plasma (heparin, EDTA) and cell culture supernatants. Tested Reactivity Hu Tested Application ELISA Specificity Cross Reactivity: There is no detectable cross-reactivity with recombinant human α-Defensin 5, β- Defensin 3, C1qB, MCP-2 and Serpin F2 and the kit might also react to HNP2 and HNP3. Target Name alpha Defensin 1 Conjugation HRP Conjugation Note Substrate: TMB and read at 450 nm. Sensitivity 156 pg/ml Sample Type Serum, plasma (heparin, EDTA) and cell culture supernatants.
    [Show full text]
  • DEFA Gene Variants Associated with Iga Nephropathy in a Chinese Population
    Genes and Immunity (2015) 16, 231–237 © 2015 Macmillan Publishers Limited All rights reserved 1466-4879/15 www.nature.com/gene ORIGINAL ARTICLE DEFA gene variants associated with IgA nephropathy in a Chinese population YY Qi1,2,3,4, XJ Zhou1,2,3,4, FJ Cheng1,2,3,4, P Hou1,2,3,4, L Zhu1,2,3,4, SF Shi1,2,3,4, LJ Liu1,2,3,4,JCLv1,2,3,4 and H Zhang1,2,3,4 IgA nephropathy (IgAN) is a complex syndrome with high genetic heterogeneity. More recently, a genome-wide association study (GWAS) from Southern Han population revealed that variants within 8p23.1, where the DEFA genes encoding a-defensins assembled, were associated with susceptibility to IgAN. To replicate the association and fine-map the genetic variants, a case–control genetic study from an independent Northern Han cohort was conducted. A total of 60 single-nucleotide polymorphisms in a region spanning 350 kb encompassing the DEFA genes cluster were analyzed in 2096 individuals. Copy number variations of DEFA1A3 within the loci were also checked for the independent association. Functional significance of the associated variants was further examined by the in silico method as well as by cis-acting expression quantitative trait loci analysis with mRNA. It showed that 17 out of 60 (28.3%) variants were associated with susceptibility to IgAN. Two independent signals with functional potentials were discovered (rs2738058, P = 4.64 × 10− 5, odds ratio (OR) = 0.76, 95% confidence interval (CI) 0.66–0.87 and rs9644778, P = 4.78 × 10 − 3, OR = 1.21, 95% CI 1.06–1.39).
    [Show full text]
  • Systemic Upregulation of Neutrophil A-Defensins and Serine Proteases In
    Asthma Systemic upregulation of neutrophil a-defensins and Thorax: first published as 10.1136/thx.2010.157719 on 23 July 2011. Downloaded from serine proteases in neutrophilic asthma Katherine J Baines,1,2 Jodie L Simpson,1,2 Lisa G Wood,1,2 Rodney J Scott,3 Peter G Gibson1,2 1Priority Research Centre for ABSTRACT Asthma and Respiratory Background The well-characterised airway inflammatory Key messages Diseases, The University of phenotypes of asthma include eosinophilic, neutrophilic, Newcastle, Callaghan, Australia 2Department of Respiratory and mixed eosinophilic/neutrophilic and paucigranulocytic What is the key question? Sleep Medicine, Hunter Medical asthma, identified based on the proportion of sputum < Are systemic gene expression profiles different Research Institute, John Hunter granulocytes. Systemic inflammation is now recognised between inflammatory phenotypes of asthma? Hospital, New Lambton, as an important part of some airway diseases, but the Australia 3 involvement of systemic inflammation in the What is the bottom line? Priority Research Centre of < Information Based Medicine, pathogenesis of airway inflammatory phenotypes of The neutrophilic phenotype of asthma is Hunter Medical Research asthma remains unknown. associated with increased systemic gene Institute, The University of Methods Induced sputum samples and peripheral blood expression of neutrophil a-defensins and prote- Newcastle, Callaghan, Australia were collected from participants with asthma (n¼36). ases elastase and cathepsin G. Airway inflammatory cell counts were performed from Correspondence to Why read on? Dr Katherine J Baines, Level 3, induced sputum and inflammatory phenotype assigned < HMRI, John Hunter Hospital, based on the airway eosinophil and neutrophil cut-offs of This study explores the relationship between Locked Bag 1, Hunter Region 3% and 61%, respectively.
    [Show full text]
  • Increased Gene Copy Number of DEFA1/DEFA3 Worsens Sepsis by Inducing Endothelial Pyroptosis
    Increased gene copy number of DEFA1/DEFA3 worsens sepsis by inducing endothelial pyroptosis QiXing Chena, Yang Yangb, JinChao Houb, Qiang Shua, YiXuan Yinc, WeiTao Fuc, Feng Hanc, TingJun Houc,d, CongLi Zengb, Elizabeta Nemethe, Rose Linzmeiere, Tomas Ganze,1, and XiangMing Fanga,b,1 aDepartment of Clinical Research Center, Children’s Hospital, Zhejiang University School of Medicine, 310052 Hangzhou, China; bDepartment of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003 Hangzhou, China; cCollege of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China; dInstitute of Functional Nano and Soft Materials, Soochow University, 215123 Suzhou, China; and eDepartment of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 Edited by Michael Zasloff, Georgetown University Medical Center, Washington, DC, and accepted by Editorial Board Member Ruslan Medzhitov December 27, 2018 (received for review July 26, 2018) Sepsis claims an estimated 30 million episodes and 6 million deaths The mechanisms causing the quiescent endothelium to develop per year, and treatment options are rather limited. Human barrier dysfunction during sepsis might hold the key to future neutrophil peptides 1–3 (HNP1–3) are the most abundant neutro- therapeutic strategies, but they are still largely unknown. phil granule proteins but their neutrophil content varies because Defensins are short cationic, amphiphilic, cysteine-rich anti- of unusually extensive gene copy number polymorphism. A ge- microbial peptides with three or four intramolecular disulfide netic association study found that increased copy number of the bonds. They are classified as α-, β-, and θ-defensins, of which the HNP-encoding gene DEFA1/DEFA3 is a risk factor for organ dys- first two are the most common human antimicrobial peptides function during sepsis development.
    [Show full text]