Defensin–Encoding DEFA1A3 Associate with Urinary Tract Infection Risk in Children with Vesicoureteral Reflux

Total Page:16

File Type:pdf, Size:1020Kb

Defensin–Encoding DEFA1A3 Associate with Urinary Tract Infection Risk in Children with Vesicoureteral Reflux CLINICAL RESEARCH www.jasn.org Polymorphisms in a-Defensin–Encoding DEFA1A3 Associate with Urinary Tract Infection Risk in Children with Vesicoureteral Reflux † ‡ Andrew L. Schwaderer,* Huanyu Wang,* SungHwan Kim, Jennifer M. Kline, Dong Liang,§ | † Pat D. Brophy, Kirk M. McHugh,¶ George C. Tseng, Vijay Saxena,* Evan Barr-Beare,* †† ‡ Keith R. Pierce,§ Nader Shaikh,** J. Robert Manak, Daniel M. Cohen, Brian Becknell,* ‡‡ || John D. Spencer,* Peter B. Baker, Chack-Yung Yu,§§ and David S. Hains§ *The Centers for Clinical and Translational Medicine and §§Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio; Departments of †Biostatistics and **Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania; ‡Emergency Medicine and ‡‡Department of Pathology, Nationwide Children’s Hospital, Columbus, Ohio; §Innate Immunity Translational Research Center, Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Memphis, Tennessee; |Division of Nephrology, Department of Pediatrics, University of Iowa Children’s Hospital, Iowa City, Iowa; ¶Division of Anatomy, The Ohio State University, Columbus, Ohio; ††Departments of Biology and Pediatrics, University of Iowa, Iowa; and ||Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee ABSTRACT The contribution of genetic variation to urinary tract infection (UTI) risk in children with vesicoureteral reflux is largely unknown. The innate immune system, which includes antimicrobial peptides, such as the a-defensins, encoded by DEFA1A3, is important in preventing UTIs but has not been investigated in the vesicoureteral reflux population. We used quantitative real–time PCR to determine DEFA1A3 DNA copy numbers in 298 individuals with confirmed UTIs and vesicoureteral reflux from the Randomized Interven- tion for Children with Vesicoureteral Reflux (RIVUR) Study and 295 controls, and we correlated copy numbers with outcomes. Outcomes studied included reflux grade, UTIs during the study on placebo or antibiotics, bowel and bladder dysfunction, and renal scarring. Overall, 29% of patients and 16% of con- trols had less than or equal to five copies of DEFA1A3 (odds ratio, 2.09; 95% confidence interval, 1.40 to 3.11; P,0.001). For each additional copy of DEFA1A3, the odds of recurrent UTI in patients receiving antibiotic prophylaxis decreased by 47% when adjusting for vesicoureteral reflux grade and bowel and bladder dysfunction. In patients receiving placebo, DEFA1A3 copy number did not associate with risk of recurrent UTI. Notably, we found that DEFA1A3 is expressed in renal epithelium and not restricted to myeloid-derived cells, such as neutrophils. In conclusion, low DEFA1A3 copy number associated with recurrent UTIs in subjects in the RIVUR Study randomized to prophylactic antibiotics, providing evidence that copy number polymorphisms in an antimicrobial peptide associate with UTI risk. J Am Soc Nephrol 27: 3175–3186, 2016. doi: 10.1681/ASN.2015060700 Vesicoureteral reflux (VUR), which is present in Received June 25, 2015. Accepted January 13, 2016. – 1% 2% of children, is a risk factor for the develop- A.L.S. and H.W. contributed equally to this work. ment of urinary tract infections (UTIs).1 The Ran- Published online ahead of print. Publication date available at domized Intervention for Children with Vesicoureteral www.jasn.org. Reflux (RIVUR) Trial recently randomized children Correspondence: Dr. David S. Hains, Children’sFoundation with a history of UTI and VUR to daily antibiotic Research Institute, Innate Immunity Translational Research Center, 50 prophylaxis or placebo and followed them for 2 years North Dunlap Street, Memphis, TN, 38103. Email: [email protected] to monitor for UTI recurrence risk. Additional details Copyright © 2016 by the American Society of Nephrology J Am Soc Nephrol 27: 3175–3186, 2016 ISSN : 1046-6673/2710-3175 3175 CLINICAL RESEARCH www.jasn.org about the RIVUR Study design and outcomes have been pre- DEFA1A3 DNA copy numbers, contribute to UTI risk in pa- viously reported as well as our methods.2–4 The RIVUR Study tients with VUR. The objectives of this study included (1) showed that 25.4% of children with VUR treated with placebo comparison of DEFA1A3 CNP in children from the RIVUR experience UTI recurrence over a 2-year period, whereas anti- Trial who had a history of VUR and one or two UTIs with biotic prophylaxis reduces the UTI recurrence risk to 13%.3 healthy controls and (2) determination of the biologic rele- These recurrent UTIs can lead to renal scarring, hypertension, vance of DEFA1A3 expression in the kidney.2,3 and CKD.5,6 However, the broad application of antibiotic pro- phylaxis to all patients with VUR remains controversial, because only 30% of children with VUR will experience an initial UTI.7,8 RESULTS Therefore, strategies are needed to identify a subset of patients with VUR who will experience UTIs and benefit from antibiotic Patient Cohorts Analyzed Were Matched for Sex and prophylaxis. Ethnic/Racial Category The innate immune system is largely responsible for the DNA was obtained on 298 white girl patients in the RIVUR body’s defense against UTIs. Innate immune effectors include Trial. Two hundred ninety-five white girl controls with no antimicrobial peptides (AMPs) that rapidly destroy microbes history of UTI or VUR were enrolled between 2010 and 2014. and chemokines that result in inflammatory cell migration to The mean age of the patients in the RIVUR Trial was 22.7 the affected site and the inflammatory cells.9–11 AMPs, such as months (range =2–71) at the start of the 2-year study. defensins, have a broad range of antimicrobial activity The mean age of the control patients was 129.8 months against a wide variety of microbes, including Gram-negative (range =3.5–215). The patients in the RIVUR Trial were and -positive bacteria.12 Defensins are categorized into two matched with controls the same age or older to have equal or families, the a-defensins and the b-defensins, depending on more years to acquire a UTI. Complete clinical characteristics their disulfide-bridging pattern. b-Defensins are widely ex- of our cohorts are summarized in Table 1. pressed by epithelial cells, whereas a-defensins are expressed by neutrophils or in the case of a-defensin-5 (DEFA5), the Patients in the RIVUR Study Have Decreased DNA epithelia of the gastrointestinal tract, the genitourinary tract Copy Number of DEFA1A3 Compared with Controls in girls, and the urinary tract.13–15 We determined DEFA1A3 gene copy number per diploid ge- Neutrophil-associated DEFA1 differs from an adjacent nome using quantitative real–time PCR and verified it in a gene, DEFA3, by a single nucleotide. This gene locus has col- subset of samples using pulsed–field gel electrophoresis. Pa- lectively been renamed DEFA1A3, and it encodes the protein tients in the RIVUR Trial and matched controls were copy Human Neutrophil Peptide 1–3(HNP1–3).16 Historically, typed. The DEFA1A3 copy number in the patients in the myeloid-derived cells were the only cells thought to produce RIVUR Trial varied from three to 13, with a mean copy num- HNP1–3.17–19 HNP1–3 possesses broad spectrum antimicro- ber of 6.361.4. The DEFA1A3 copy number for controls bial activity against a range of bacteria, including Escherichia ranged between four and 18, with a mean copy number 762.0. coli, and urine levels of HNP1–3increaseeightfoldwith The distributions of copy numbers were significantly pyelonephritis versus controls.18,20,21 However, DEFA1A3/ different between the two groups (P,0.001) (Figure 1). HNP1–3 has not been extensively evaluated in the kidney. Overall, a higher percentage of patients in the RIVUR Trial Genetic variations in humans range from single-nucleotide (n=86; 29%) had five or fewer copies of DEFA1A3 compared changesto large microscopically visible chromosome defects.22 with controls (n=48; 16%; odds ratio [OR], 2.09; 95% confi- Duplications, deletions, or insertions of $1000 bp have been dence interval, 1.40 to 3.11; P,0.001). Conversely, a higher identified in humans and designated DNA copy number var- percentage of controls (n=93; 31%) had eight or more copies iations (CNVs).23 Some genes, including DEFA1A3, exist as compared with patients in the RIVUR Trial (n=55; 18%; OR, multiallelic genes, meaning that they exist in multiple copies 0.50; 95% confidence interval, 0.34–0.73); P,0.001). A similar (more than two per diploid genome). Because 70% of CNVs statistically significant difference was seen in white boys in span genes, they likely affect genetic networks. Thus, although single-nucleotide polymorphisms and point mutations occur Table 1. Clinical characteristics of subjects and controls more frequently, CNVs are more likely to be important com- Characteristics RIVUR, N=298 Control, N=295 ponents of genomic diversity and phenotypic variation by – – their ability to generate significant gene dosage effects.24 Mean age, mo (range) 22.7 (2 71) 129.8 (3.5 215) White, % 100 100 CNVs that occur in .1% of the population have been Girls, % 100 100 termed copy number polymorphisms (CNPs). CNPs may rep- Antibiotic group, n (%) 154 (52) N/A fi resent excellent candidates for disease risk modi ers. For in- Breakthrough UTI 23 (15) N/A stance, DEFA1A3 CNPs have been associated with various Placebo group, n (%) 144 (48) N/A inflammation and autoimmune diseases, including sepsis, Breakthrough UTI 47 (33) N/A Crohn disease, and Behcet disease.25–27 We hypothesize that Acquired scar, n (%) 22 (9) N/A deficiencies in the host innate immune defense, such as low N/A, not applicable. 3176 Journal of the American Society of Nephrology J Am Soc Nephrol 27: 3175–3186, 2016 www.jasn.org CLINICAL RESEARCH the RIVUR Trial compared with control white boys (Supple- group. Patients treated with antibiotic prophylaxis who expe- mental Figure 1). Thus, a lower copy number of DEFA1A3 was rienced breakthrough UTIs (5.82 copies) averaged a 0.5-copy found in patients in the RIVUR Trial (VUR and UTI).
Recommended publications
  • Downregulation of Salivary Proteins, Protective Against Dental Caries, in Type 1 Diabetes
    proteomes Article Downregulation of Salivary Proteins, Protective against Dental Caries, in Type 1 Diabetes Eftychia Pappa 1,* , Konstantinos Vougas 2, Jerome Zoidakis 2 , William Papaioannou 3, Christos Rahiotis 1 and Heleni Vastardis 4 1 Department of Operative Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; [email protected] 2 Proteomics Laboratory, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; [email protected] (K.V.); [email protected] (J.Z.) 3 Department of Preventive and Community Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; [email protected] 4 Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; [email protected] * Correspondence: effi[email protected] Abstract: Saliva, an essential oral secretion involved in protecting the oral cavity’s hard and soft tissues, is readily available and straightforward to collect. Recent studies have analyzed the sali- vary proteome in children and adolescents with extensive carious lesions to identify diagnostic and prognostic biomarkers. The current study aimed to investigate saliva’s diagnostic ability through proteomics to detect the potential differential expression of proteins specific for the occurrence of carious lesions. For this study, we performed bioinformatics and functional analysis of proteomic datasets, previously examined by our group, from samples of adolescents with regulated and unreg- ulated type 1 diabetes, as they compare with healthy controls. Among the differentially expressed Citation: Pappa, E.; Vougas, K.; proteins relevant to caries pathology, alpha-amylase 2B, beta-defensin 4A, BPI fold containing family Zoidakis, J.; Papaioannou, W.; Rahiotis, C.; Vastardis, H.
    [Show full text]
  • Enteric Alpha Defensins in Norm and Pathology Nikolai a Lisitsyn1*, Yulia a Bukurova1, Inna G Nikitina1, George S Krasnov1, Yuri Sykulev2 and Sergey F Beresten1
    Lisitsyn et al. Annals of Clinical Microbiology and Antimicrobials 2012, 11:1 http://www.ann-clinmicrob.com/content/11/1/1 REVIEW Open Access Enteric alpha defensins in norm and pathology Nikolai A Lisitsyn1*, Yulia A Bukurova1, Inna G Nikitina1, George S Krasnov1, Yuri Sykulev2 and Sergey F Beresten1 Abstract Microbes living in the mammalian gut exist in constant contact with immunity system that prevents infection and maintains homeostasis. Enteric alpha defensins play an important role in regulation of bacterial colonization of the gut, as well as in activation of pro- and anti-inflammatory responses of the adaptive immune system cells in lamina propria. This review summarizes currently available data on functions of mammalian enteric alpha defensins in the immune defense and changes in their secretion in intestinal inflammatory diseases and cancer. Keywords: Enteric alpha defensins, Paneth cells, innate immunity, IBD, colon cancer Introduction hydrophobic structure with a positively charged hydro- Defensins are short, cysteine-rich, cationic peptides philic part) is essential for the insertion into the micro- found in vertebrates, invertebrates and plants, which bial membrane and the formation of a pore leading to play an important role in innate immunity against bac- membrane permeabilization and lysis of the microbe teria, fungi, protozoa, and viruses [1]. Mammalian [10]. Initial recognition of numerous microbial targets is defensins are predominantly expressed in epithelial cells a consequence of electrostatic interactions between the of skin, respiratory airways, gastrointestinal and geni- defensins arginine residues and the negatively charged tourinary tracts, which form physical barriers to external phospholipids of the microbial cytoplasmic membrane infectious agents [2,3], and also in leukocytes (mostly [2,5].
    [Show full text]
  • Copy Number Variation and Huntington's Disease
    UNIVERSIDADE DE LISBOA FACULDADE DE MEDICINA DE LISBOA Copy number variation and Huntington’s disease Angelica Vittori Ramo das Ciências Biomédicas Especialidade – Neurociências Outubro 2013 UNIVERSIDADE DE LISBOA FACULDADE DE MEDICINA DE LISBOA Copy number variation and Huntington’s disease Candidata: Angelica Vittori Orientadores: Prof . Doutor Tiago Fleming Outeiro Doutor Flaviano Giorgini Doutor Edward J. Hollox Ramo das Ciências Biomédicas Especialidade – Neurociências Todas as afirmações efectuadas no presente documento são da exclusiva II responsabilidade do seu autor, não cabendo qualquer responsabilidade à faculdade de medicina de lisboa pelos conteúdos nela apresentados. A impressão são da exclusiva está dissertação foi aprovada pelo Conselho Cientifico da Faculdade de Medicina em reunião de 19 de Novembro de 2013. III Resumo A variação de número de cópias (CNV em inglês) é uma modificação de uma sequência de DNA que apresenta uma inserção ou deleção em comparação com um genoma de referência com um número de cópias de N = 2. Com um comprimento variável, desde 50 pares de bases até várias megabases, as CNVs identificadas têm um tamanho médio de ~ 3 Kb e representam cerca de 4% do genoma humano. As CNVs, como outras variações genéticas, podem afetar directamente os níveis de expressão dos genes afectados. Os efeitos indirectos na expressão genética podem ser causados por alterações da posição, interrompendo o quadro de leitura do gene ou posteriormente, perturbando as redes de regulação genética. Foi demonstrado que as CNVs são em grande parte responsáveis pela evolução humana e diversidade genética entre os indivíduos. A relevância das CNVs no genoma humano foi salientada por vários estudos de associação que mostraram o efeito das CNVs na susceptibilidade a doenças neurodegenerativas, doenças de características complexas, e por serem a principal causa do aparecimento de doenças mendelianas ou por conferirem um fenótipo benigno.
    [Show full text]
  • Downloaded from the Protein Data Bank (PDB
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.07.451411; this version posted July 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. CAT, AGTR2, L-SIGN and DC-SIGN are potential receptors for the entry of SARS-CoV-2 into human cells Dongjie Guo 1, 2, #, Ruifang Guo1, 2, #, Zhaoyang Li 1, 2, Yuyang Zhang 1, 2, Wei Zheng 3, Xiaoqiang Huang 3, Tursunjan Aziz 1, 2, Yang Zhang 3, 4, Lijun Liu 1, 2, * 1 College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China 2 Key Laboratory of Data Analytics and Optimization for Smart Industry (Ministry of Education), Northeastern University, Shenyang, Liaoning, China 3 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, USA 4 Department of Biological Chemistry, University of Michigan, Ann Arbor, USA * Corresponding author. College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China. E-mail address: [email protected] (L. Liu) # These authors contributed equally to this work. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.07.451411; this version posted July 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Since December 2019, the COVID-19 caused by SARS-CoV-2 has been widely spread all over the world.
    [Show full text]
  • Alpha Defensin 1 Antibody / DEFA1 (R32739)
    Alpha Defensin 1 Antibody / DEFA1 (R32739) Catalog No. Formulation Size R32739 0.5mg/ml if reconstituted with 0.2ml sterile DI water 100 ug Bulk quote request Availability 1-3 business days Species Reactivity Human, Rat Format Antigen affinity purified Clonality Polyclonal (rabbit origin) Isotype Rabbit IgG Purity Antigen affinity Buffer Lyophilized from 1X PBS with 2.5% BSA, 0.025% sodium azide UniProt P59665 Applications Western Blot : 0.5-1ug/ml Limitations This Alpha Defensin 1 antibody is available for research use only. Western blot testing of 1) rat testis and 2) human HeLa lysate with Alpha Defensin 1 antibody at 0.5ug/ml. Predicted molecular weight ~10 kDa. Description Defensin, alpha 1, also known as human alpha defensin 1, human neutrophil peptide 1 (HNP-1) or neutrophil defensin 1 is a human protein that is encoded by the DEFA1 gene. Defensins are a family of antimicrobial and cytotoxic peptides thought to be involved in host defense. They are abundant in the granules of neutrophils and also found in the epithelia of mucosal surfaces such as those of the intestine, respiratory tract, urinary tract, and vagina. Members of the defensin family are highly similar in protein sequence and distinguished by a conserved cysteine motif. The protein encoded by this gene, defensin, alpha 1, is found in the microbicidal granules of neutrophils and likely plays a role in phagocyte-mediated host defense. Several alpha defensin genes are clustered on chromosome 8. This gene differs from defensin, alpha 3 by only one amino acid. This gene and the gene encoding defensin, alpha 3 are both subject to copy number variation.
    [Show full text]
  • A New Vision of Iga Nephropathy: the Missing Link
    International Journal of Molecular Sciences Review A New Vision of IgA Nephropathy: The Missing Link Fabio Sallustio 1,2,* , Claudia Curci 2,3,* , Vincenzo Di Leo 3 , Anna Gallone 2, Francesco Pesce 3 and Loreto Gesualdo 3 1 Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, 70124 Bari, Italy 2 Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; [email protected] 3 Nephrology, Dialysis and Transplantation Unit, DETO, University “Aldo Moro”, 70124 Bari, Italy; [email protected] (V.D.L.); [email protected] (F.P.); [email protected] (L.G.) * Correspondence: [email protected] (F.S.); [email protected] (C.C.) Received: 7 December 2019; Accepted: 24 December 2019; Published: 26 December 2019 Abstract: IgA Nephropathy (IgAN) is a primary glomerulonephritis problem worldwide that develops mainly in the 2nd and 3rd decade of life and reaches end-stage kidney disease after 20 years from the biopsy-proven diagnosis, implying a great socio-economic burden. IgAN may occur in a sporadic or familial form. Studies on familial IgAN have shown that 66% of asymptomatic relatives carry immunological defects such as high IgA serum levels, abnormal spontaneous in vitro production of IgA from peripheral blood mononuclear cells (PBMCs), high serum levels of aberrantly glycosylated IgA1, and an altered PBMC cytokine production profile. Recent findings led us to focus our attention on a new perspective to study the pathogenesis of this disease, and new studies showed the involvement of factors driven by environment, lifestyle or diet that could affect the disease.
    [Show full text]
  • DEFA1 Rabbit Pab
    Leader in Biomolecular Solutions for Life Science DEFA1 Rabbit pAb Catalog No.: A6897 Basic Information Background Catalog No. Defensins are a family of antimicrobial and cytotoxic peptides thought to be involved in host A6897 defense. They are abundant in the granules of neutrophils and also found in the epithelia of mucosal surfaces such as those of the intestine, respiratory tract, urinary tract, and vagina. Observed MW Members of the defensin family are highly similar in protein sequence and distinguished by a 10KDa conserved cysteine motif. The protein encoded by this gene, defensin, alpha 1, is found in the microbicidal granules of neutrophils and likely plays a role in phagocyte-mediated host defense. Several alpha defensin genes are clustered on chromosome 8. This gene differs Calculated MW from defensin, alpha 3 by only one amino acid. This gene and the gene encoding defensin, 10kDa alpha 3 are both subject to copy number variation. Category Primary antibody Applications WB, IHC, IF Cross-Reactivity Human, Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 1667 P59665 IHC 1:50 - 1:100 Immunogen IF 1:50 - 1:100 Recombinant fusion protein containing a sequence corresponding to amino acids 1-94 of human DEFA1 (NP_004075.1). Synonyms DEFA1;DEF1;DEFA2;HNP-1;HP-1;HP1;MRS Contact Product Information 400-999-6126 Source Isotype Purification Rabbit IgG Affinity purification [email protected] Storage www.abclonal.com.cn Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using DEFA1 antibody (A6897) at 1:1000 dilution.
    [Show full text]
  • Ontogeny of the Intestinal Circadian Clock and Its Role in the Response to Clostridium Difficile Toxin B
    Ontogeny of the intestinal circadian clock and its role in the response to Clostridium difficile toxin B A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfilment of the requirements for the degree of Doctor of Philosophy In the Department of Pharmacology & Systems Physiology of the College of Medicine by Andrew Rosselot B.S. Biology, Wittenberg University October 2019 Committee Chair: Christian I. Hong Ph.D. Abstract: The endogenous clock of the intestine regulates physiological processes ranging from nutrient absorption to the pathogenic response. The developmental timepoint when the human intestinal clock becomes active is unknown. We investigated intestinal circadian clock ontogeny using in vitro samples that are representative of distinct developmental timepoints. Induced pluripotent stem cells (iPSCs) were differentiated into 3D human intestinal organoids (HIOs) to mimic intestinal embryonic development in vitro. HIOs were then matured beyond their early fetal state via kidney capsule transplantation. Differentiation of iPSCs into HIOs did not activate robust circadian clock activity. Enteroids isolated from kidney capsule matured HIOs possessed a functional circadian clock, similar to adult biopsy derived human intestinal enteroids (bHIEs). Samples were challenged with toxin B (TcdB) from Clostridium difficile to provide functional insights on intestinal clock activity. The necrotic cell death response to TcdB was clock phase- dependent in samples that possessed an active clock and anti-phasic between mouse enteroids and bHIEs. RNA-seq analysis of mouse enteroids and bHIEs showed both possess robust rhythmic gene expression with up to 20% and 8% of their transcriptome oscillating, respectively. The phase and identity of rhythmic genes was however species-dependent.
    [Show full text]
  • Papain-Like Protease Regulates SARS-Cov-2 Viral Spread and Innate Immunity
    Article Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity https://doi.org/10.1038/s41586-020-2601-5 Donghyuk Shin1,2,3, Rukmini Mukherjee1,2, Diana Grewe2, Denisa Bojkova4, Kheewoong Baek5, Anshu Bhattacharya1,2, Laura Schulz6, Marek Widera4, Ahmad Reza Mehdipour6, Georg Tascher1, Received: 30 April 2020 Paul P. Geurink7, Alexander Wilhelm4,8, Gerbrand J. van der Heden van Noort7, Huib Ovaa7,13, Accepted: 23 July 2020 Stefan Müller1, Klaus-Peter Knobeloch9, Krishnaraj Rajalingam10, Brenda A. Schulman5, Jindrich Cinatl4, Gerhard Hummer6,11, Sandra Ciesek4,8,12 & Ivan Dikic1,2,3,12 ✉ Published online: 29 July 2020 Check for updates The papain-like protease PLpro is an essential coronavirus enzyme that is required for processing viral polyproteins to generate a functional replicase complex and enable viral spread1,2. PLpro is also implicated in cleaving proteinaceous post-translational modifcations on host proteins as an evasion mechanism against host antiviral immune responses3–5. Here we perform biochemical, structural and functional characterization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PLpro (SCoV2-PLpro) and outline diferences with SARS-CoV PLpro (SCoV-PLpro) in regulation of host interferon and NF-κB pathways. SCoV2-PLpro and SCoV-PLpro share 83% sequence identity but exhibit diferent host substrate preferences; SCoV2-PLpro preferentially cleaves the ubiquitin-like interferon-stimulated gene 15 protein (ISG15), whereas SCoV-PLpro predominantly targets ubiquitin chains. The crystal structure of SCoV2-PLpro in complex with ISG15 reveals distinctive interactions with the amino-terminal ubiquitin-like domain of ISG15, highlighting the high afnity and specifcity of these interactions.
    [Show full text]
  • DEFA1) Antibody Catalogue No.:Abx005247
    Datasheet Version: 1.0.0 Revision date: 19 Nov 2020 Defensin Alpha 1, Neutrophil (DEFA1) Antibody Catalogue No.:abx005247 Western blot analysis of extracts of various cell lines, using DEFA1 antibody (abx005247) at 1/1000 dilution. Immunohistochemistry of paraffin-embedded rat heart using DEFA1 antibody (abx005247) at dilution of 1/100 (40x lens). Immunofluorescence analysis of HeLa cells using DEFA1 antibody (abx005247). Blue: DAPI for nuclear staining. DEFA1 Antibody is a Rabbit Polyclonal antibody against DEFA1. Defensins are a family of antimicrobial and cytotoxic peptides thought to be involved in host defense. They are abundant in the granules of neutrophils and also found in the epithelia of mucosal surfaces such as those of the intestine, respiratory tract, urinary tract, and vagina. Members of the defensin family are highly similar in protein sequence and distinguished by a conserved cysteine motif. The protein encoded by this gene, defensin, alpha 1, is found in the microbicidal granules of neutrophils and likely plays a role in phagocyte-mediated host defense. Several alpha defensin genesFor are clustered on chromosomeReference 8. This gene differs from defensin, alpha Only 3 by only one amino acid. This gene and the gene encoding defensin, alpha 3 are both subject to copy number variation. Target: DEFA1 Clonality: Polyclonal Reactivity: Human, Mouse, Rat v1.0.0 Abbexa Ltd, Cambridge, UK · Phone: +44 1223 755950 · Fax: +44 1223 755951 1 Abbexa LLC, Houston, TX, USA · Phone: +1 832 327 7413 www.abbexa.com · Email: [email protected] Datasheet Version: 1.0.0 Revision date: 19 Nov 2020 Tested Applications: WB, IHC, IF/ICC Host: Rabbit Recommended dilutions: WB: 1/500 - 1/2000, IHC: 1/50 - 1/100, IF/ICC: 1/50 - 1/100.
    [Show full text]
  • Downloaded from the Tranche Distributed File System (Tranche.Proteomecommons.Org) and Ftp://Ftp.Thegpm.Org/Data/Msms
    Research Article Title: The shrinking human protein coding complement: are there now fewer than 20,000 genes? Authors: Iakes Ezkurdia1*, David Juan2*, Jose Manuel Rodriguez3, Adam Frankish4, Mark Diekhans5, Jennifer Harrow4, Jesus Vazquez 6, Alfonso Valencia2,3, Michael L. Tress2,*. Affiliations: 1. Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Melchor Fernández Almagro, 3, rid, 28029, MadSpain 2. Structural Biology and Bioinformatics Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029, Madrid, Spain 3. National Bioinformatics Institute (INB), Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029, Madrid, Spain 4. Wellcome Trust Sanger Institute, Wellcome Trust Campus, Hinxton, Cambridge CB10 1SA, UK 5. Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), 1156 High Street, Santa Cruz, CA 95064, USA 6. Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Melchor Fernández Almagro, 3, 28029, Madrid, Spain *: these two authors wish to be considered as joint first authors of the paper. Corresponding author: Michael Tress, [email protected], Tel: +34 91 732 80 00 Fax: +34 91 224 69 76 Running title: Are there fewer than 20,000 protein-coding genes? Keywords: Protein coding genes, proteomics, evolution, genome annotation Abstract Determining the full complement of protein-coding genes is a key goal of genome annotation. The most powerful approach for confirming protein coding potential is the detection of cellular protein expression through peptide mass spectrometry experiments. Here we map the peptides detected in 7 large-scale proteomics studies to almost 60% of the protein coding genes in the GENCODE annotation the human genome.
    [Show full text]
  • Anti-Alpha Defensin 1 Antibody (ARG65200)
    Product datasheet [email protected] ARG65200 Package: 100 μg anti-alpha Defensin 1 antibody Store at: -20°C Summary Product Description Goat Polyclonal antibody recognizes alpha Defensin 1 Tested Reactivity Hu Tested Application IHC-P, WB Specificity This antibody is expected to equally recognize DEFA1 precursor and DEFA3 precursor. Host Goat Clonality Polyclonal Isotype IgG Target Name alpha Defensin 1 Antigen Species Human Immunogen C-DESLAPKHPGSRKN Conjugation Un-conjugated Alternate Names DEF1; Neutrophil defensin 1; HNP-1; HNP-2; HP-2; HP1; Defensin, alpha 1; MRS; DEFA2; HP2; HP-1 Application Instructions Application table Application Dilution IHC-P 3 - 6 µg/ml WB 1 - 3 µg/ml Application Note IHC-P: Antigen Retrieval: Steam tissue section in Citrate buffer (pH 6.0). WB: Recommend incubate at RT for 1h. * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 10 kDa Properties Form Liquid Purification Purified from goat serum by ammonium sulphate precipitation followed by antigen affinity chromatography using the immunizing peptide. Buffer Tris saline (pH 7.3), 0.02% Sodium azide and 0.5% BSA Preservative 0.02% Sodium azide Stabilizer 0.5% BSA Concentration 0.5 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated www.arigobio.com 1/2 freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use.
    [Show full text]