Southeastern Palmspalms

Total Page:16

File Type:pdf, Size:1020Kb

Southeastern Palmspalms SoutheasternSoutheastern PalmsPalms Volume 21-3 1 www.sepalms.org Visit SPS on Facebook Southeastern Palms is the journal of the Southeastern Palm Society (SPS). The society, founded in 1992, is the southeastern United States (north-of-Florida) chapter of the renowned International Palm Society. Members are devoted to growing hardy palms and other subtropical plants. The Southeastern Palm Society also provides to members a quarterly newsletter. Editor and Tom McClendon, St. Marys, Georgia article submissions [email protected] Design, layout, Jeff Stevens, Apison, Tennessee production, mailing [email protected] Address changes, membership and Phil Bennion, Marietta, Georgia payment questions [email protected] Online membership renewal, bookstore www.sepalms.org Rhapidophyllum and Southeastern Palms editors emeritus: ● Will Roberds: 1992–1997 ● Alan Bills: 1997–2000 ● Jeff Stevens: 2001–2008 ©2014 Southeastern Palm Society and/or the authors and photographers. 2 Contents Volume 21-3 July 2014 4 Sabal minor Distribution at the Northern Edge of Its Range Tom McClendon and Hayes Jackson Where to search for native dwarf palmettos on the northern edge of its range in the Piedmont. 14 Let’s Get Reacquainted with Butia Palms Jeff Stevens Understanding the reorganization of Butia palms and looking for more species worth growing in the southeastern United States. Front and back covers: Butia yatay growing in El Palmar National Park, located on the bank of the Uruguay River in Entre Rios, Argentina. The 21,000-acre park was established in 1966 to protect the largest remaining concentration of yatay jelly palms. See article by on page 14. Photo @2014 iStockphoto. 3 4 Sabal minor Distribution at the Northern Edge of Its Range Tom McClendon, St. Marys, Georgia Hayes Jackson, Anniston, Alabama Sabal minor, the dwarf palmetto, is the most widely distributed native palm in North America, so for many palm enthusiasts, it would seem to be the most likely for Southerners to encounter in habitat. Ranging from North Carolina west to Oklahoma and south to northeastern Mexico, Sabal minor in the Southeast is most commonly an inhabitant of hardwood bottomland areas on the Gulf and Atlantic Coastal Plains. These areas quite commonly are flooded in the winter and deeply shaded in summer, so many people never see Sabal minor. Ironically, while most people are familiar with Sabal palmetto and recognize Serenoa repens for its ubiquity on the coast, most people who live near native populations of Sabal minor in the upper Coastal Plain and Piedmont are unaware of the presence of this palm. Along major rivers, creeks, and streams on the Coastal Plain, Sabal minor can be quite common, and large populations exist along nearly every watershed within the range of this species. Figure 1. Sabal minor growing in a typical setting just above winter high water on Cane Creek in Calhoun County, Alabama. All photos accompanying this article were taken above the Fall Line. Photo: Hayes Jackson. 5 Figure 2. Turkey Creek, a tributary of the Little Ogeechee River in Hancock County, Georgia, is home to Sabal minor. A typical Piedmont bluff is in the background. Photo: Tom McClendon. Above the Fall Line on the Piedmont Plateau, however, populations decrease rapidly, and it is rare to encounter Sabal minor anywhere more than 30 miles north or west of the Fall Line in Georgia or Alabama. We sought to learn more about why the sudden drop-off in populations of Sabal minor north of the Fall Line is the case, especially knowing that Sabal minor is among the hardiest of all palms, and reproduces and naturalizes in cultivation far north of its natural range. While there is a positive correlation between higher average temperatures and the presence of Sabal minor (Butler et al, 2011), average temperatures do not drop off rapidly from the upper Coastal Plain to the lower Piedmont, and the entire area is included in USDA Zone 8 on most recent hardiness zone maps. In addition, in Alabama, Sabal minor does occur as far north as the upper Coosa River Valley within a few miles of the Georgia state 6 Figure 3. More Sabal minor in an overflow area in Hancock County, Georgia, well above the Fall Line. This population extends for a half-mile or more. Photo: Tom McClendon. line and within 20 miles of Rome, Georgia, an area typically listed as Zone 7. Discounting temperatures (within certain limits), there must be other factors at work. The two major factors that differentiate the Piedmont and Coastal Plain areas are elevation and soil types. In Georgia at the Fall Line, elevations on the Piedmont (literally, “foot of the mountains”) typically average between 300 and 500 feet, increasing gradually to about 1,500 to 2,000 feet at the base of the Appalachian Mountains. Although average elevations are lower in Alabama, the ranges of elevations there in a small area can be quite dramatic, with areas of Calhoun County along the Coosa River averaging 600 feet above sea level and rising to more than 2,000 feet in the mountains just to the east. In our sampling, Sabal minor does not seem to be present in Georgia in areas that are more than 500 feet in elevation, and in Alabama, about 600 feet. 7 Differences in soil types between geographic regions are much more pronounced. Coastal Plain soils can range from sharply drained sands to silty clays, but the entire region is characterized by the fact that at one time it was submerged by the sea and its soil base, consequently, is sedimentary in origin. While much of the Coastal Plain region in Alabama and Georgia has acidic soils, the subsoil often has a limestone base. In the Piedmont, soil types change abruptly to a crystalline base. Lower Piedmont soils tend to be granitic in origin, while upper Piedmont and Appalachian soils can be either granitic or basaltic. In either case, the predominant soil type is red clay, though there are many soil types present in the Piedmont that range from red clay to sandy loam. An exception to this is the Ridge and Valley province of central Alabama and northwest Georgia. Although typed with other highland regions, like the Coastal Plain region it too was once submerged. Ridges tend to have crystalline and limestone rocks, and the valleys are broad and relatively flat, giving the river valleys a look and feel much like the Coastal Plain. Map 1 (pages 12-13) shows the physiographic regions of Alabama and Georgia and a best-guess range of Sabal minor from the authors. It is likely that the range indicated extends farther north and west than that indicated. The red line on the map indicates the area below which Sabal minor has been located (shown as pink dots). Major river systems that should be investigated further are highlighted in yellow north of the red line. Where it is native above the Fall Line, Sabal minor occurs in very specific habitats. In Alabama and Georgia, Sabal minor most often will be found in dense hardwood bottomland forests along major river drainages. Many of these areas experience periodic flooding, especially in winter, and it is not unusual on the Coastal Plain to see hundreds of Sabal minor with just the tops of their leaves sticking up through running water. However, only rarely does Sabal minor occur in swampy areas with stagnant water. 8 Figure 4. Sabal minor growing with Podophyllum peltatum (May apple) along Beaver Creek in St. Clair County, Alabama. Photo: Hayes Jackson. In the Piedmont, Sabal minor is less likely to be found directly on major rivers, and more likely to be found on smaller streams that feed major drainages. This is because above the Fall Line, large rivers have narrower floodplains and often are rocky or swift with high, steep banks on both sides. Smaller feeder streams, on the other hand, often will have long stretches that more or less resemble a Coastal Plain environment. A summary of suitable habitat is as follows: ● Hardwood bottoms ● Running water (not stagnant) ● Wide, flat valleys ● Silty-clay soils. 9 Figure 5. This smooth, silty, brown clay is the preferred characteristic soil for Sabal minor in the Piedmont. Photo: Tom McClendon. North of the Fall Line, the key to finding Sabal minor is to locate areas that have these qualities. Most streams and rivers in the Piedmont are lined with hardwood trees, so this criterion is usually a given. Running water also is a given, but it is the type of running water available that can differentiate a typical Piedmont stream valley from one that will support a native population of Sabal minor. In the Piedmont, water levels on streams can fluctuate wildly from season to season and even from day to day. The narrower drainage systems of the Piedmont are much more prone to local flooding and often have very sandy “runs.” These areas are not favored by Sabal minor. Where it is found, Sabal minor clearly prefers the flat overflow areas that only rarely flood but remain damp most of the year (Table 1). These habitats become increasingly rare in the Piedmont as the elevation increases, but they are present and when they are, Sabal minor can often be found (Figures 1-4). Most importantly, soil type is very different from the typical red clay of the uplands and flatwoods or the sandy runs of streams. If overflow areas have a dark brown, smooth, silty clay soil (Figure 5), this is strong evidence that the area is a good habitat for Sabal minor. Butler et al. (2011) listed this soil type as preferred by Sabal minor in Oklahoma and is a good indicator for its presence.
Recommended publications
  • Análisis Aeropalinológico Del Parque Nacional El Palmar
    Bol. Soc. Argent. Bot. 52 (3) 2017 N. E. Muñoz et al. - Análisis aeropalinológico del Parque NacionalISSN El0373-580 Palmar X Bol. Soc. Argent. Bot. 52 (3): 473-496. 2017 ANÁLISIS AEROPALINOLÓGICO EN TRES ÁREAS DE VEGETACIÓN DENTRO DEL PARQUE NACIONAL EL PALMAR (COLÓN, ENTRE RÍOS) Y SU RELACIÓN CON LA VEGETACIÓN LOCAL Y REGIONAL NADIA E. MUÑOZ1, MERCEDES DI PASQUO1, FERNANDO BIGANZOLI2 y WILLIAM B. BATISTA2,3 Summary: Aeropalinological analysis in three vegetation areas within El Palmar National Park (Colón, Entre Ríos) and its relationship with the local and regional vegetation. The diversity of pollen rain monthly collected during two years (2011-2013) from the atmosphere in Tauber traps located at three sites in El Palmar National Park (Entre Ríos Province) is used to characterize the source vegetation. Site 1 is a mixed area composed of grassland, palm savanna, and wetland communities, site 2 is a grassland area and site 3 is a dense palm savanna. A total of 71 pollen-grain types grouped in 43 families coming from local, regional and extra- regional areas are identified. Of them, sixteen pollen types with more than 1% of Annual Pollen Influx in at least two samples were used in this analysis. Different factors involved in quali-quantitave changes of taxa during the observation interval (e.g. pollination affinity, origin of pollen grains, canopy effect, meteorological variables) are further considered. The floral composition of each site compared to their palynoassemblages revealed that site 2 is characterized by a high abundance of Asteraeceae-Asteroideae, with an increase in the value of Vernonia (Asteraceae Cichoroidea) and Lamiaceae during the second year.
    [Show full text]
  • 09-Plantas Alimentícias.Indd
    Iheringia Série Botânica Museu de Ciências Naturais ISSN ON-LINE 2446-8231 Fundação Zoobotânica do Rio Grande do Sul Lista preliminar das plantas alimentícias nativas de Mato Grosso do Sul, Brasil Ieda Maria Bortolotto, Geraldo Alves Damasceno-Junior & Arnildo Pott Fundação Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, Laboratório de Botânica. Bairro Universitário, CEP 79070-900, Campo Grande, Mato Grosso do Sul. [email protected] Recebido em 27.IX.2014 Aceito em 17.V.2016 DOI 10.21826/2446-8231201873s101 RESUMO – Apresentamos o inventário preliminar das plantas alimentícias silvestres do Mato Grosso do Sul usadas na dieta humana ou com potencial para uso. Incluímos espécies que constam em publicações e em trabalhos inéditos dos autores, cujas coletas, realizadas no estado, estão incorporadas nos herbários CGMS, COR e CPAP. Adicionalmente, foram incluídas espécies de Arecaceae, coletadas no estado depositadas em outros Herbários e espécies dos gêneros Arachis, Dioscorea e Passifl ora que constam na Lista de Espécies da Flora do Brasil para o Mato Grosso do Sul. Foram encontradas 294 espécies, distribuídas em 160 gêneros e 67 famílias botânicas. As famílias mais ricas foram Fabaceae (49) e Myrtaceae (38), seguidas por Arecaceae (32) e Passifl oraceae (12). Esta é a primeira listagem de espécies alimentícias do estado. Palavras chaves: frutos comestíveis, Cerrado, Pantanal ABSTRACT – Preliminary list of native food plants of Mato Grosso do Sul, Brazil - We present a preliminary inventory of wild food plants found in Mato Grosso do Sul that are used in human diet or potentially useful. Species were compiled from publications and from data collected by the authors; specimens deposited in CGMS, COR and CPAP herbaria were also included.
    [Show full text]
  • Winter-Fall Sale 2002 Palm Trees-Web
    Mailing Address: 3233 Brant St. San Diego Ca, 92103 Phone: (619) 291 4605 Fax: (619) 574 1595 E mail: [email protected] Fall/Winter 2002 Palm Price List Tree Citrus 25/+ Band$ 1 gal$ 2 gal$ 3/5 gal$ 7 gal$ 15 gal$ 20 gal$ Box$ Species Pot$ Pot$ gal$ Acanthophoenix crinita $ 30 $ 30-40 $ 35-45 $ 55-65 $ 95 $ 125+ Acanthophoenix rubra $ 35 Acanthophoenix sp. $ 25+ $ 35+ $ 55+ Acoelorrhaphe wrightii $ 15 $ 300 Acrocomia aculeata $ 25+ $ 35 $ 35-45 $ 65 $ 65 $ 100- $ 150+ Actinokentia divaricata 135 Actinorhytis calapparia $ 55 $ 125 Aiphanes acanthophylla $ 45-55 inquire $ 125 Aiphanes caryotaefolia $ 25 $ 55-65 $ 45-55 $ 85 $ 125 Aiphanes elegans $ 20 $ 35 Aiphanes erosa $ 45-55 $ 125 Aiphanes lindeniana $ 55 $ 125 Aiphanes vincentsiana $ 55 Allagoptera arenaria $ 25 $ 40 $ 55 $ 135 Allagoptera campestris $ 35 Alloschmidtia glabrata $ 35 $ 45 $ 55 $ 85 $ 150 $ 175 Alsmithia longipes $ 35+ $ 55 Aphandra natalia $ 35 $ 55 Archontophoenix Alexandrae $ 55 $ 85 $ 125 inquire Archontophoenix Beatricae $ 20 $ 35 $ 55 $ 125 Archontophoenix $ 25 $ 45 $ 65 $ 100 $ 150- $ 200+ $ 310- 175 350 cunninghamiana Archontophoenix maxima $ 25 $ 30 inquire Archontophoenix maxima (Wash River) Archontophoenix myolaensis $ 25+ $ 30 $ 50 $ 75 $ 125 Archontophoenix purpurea $ 30 $ 25 $ 35 $ 50 $ 85 $ 125 $ 300+ Archontophoenix sp. Archontophoenix tuckerii (peach $ 25+ $ 55 river) Areca alicae $ 45 Areca catechu $ 20 $ 35 $ 45 $ 125 Areca guppyana $ 30 $ 45 Areca ipot $ 45 Areca triandra $ 25 $ 30 $ 95 $ 125 Areca vestiaria $ 25 $ 30-35 $ 35-40 $ 55 $ 85-95 $ 125 Arecastrum romanzoffianum $ 125 Arenga australasica $ 20 $ 30 $ 35 $ 45-55 $ 85 $ 125 Arenga caudata $ 20 $ 30 $ 45 $ 55 $ 75 $ 100 Arenga engleri $ 20 $ 60 $ 35 $ 45 $ 85 $ 125 $ 200 $ 300+ Arenga hastata $ 25 www.junglemusic.net Page 1 of 22 Tree Citrus 25/+ Band$ 1 gal$ 2 gal$ 3/5 gal$ 7 gal$ 15 gal$ 20 gal$ Box$ Species Pot$ Pot$ gal$ Arenga hookeriana inquire Arenga micranthe 'Lhutan' $ 20 inquire Arenga pinnata $ 35 $ 50 $ 85 $ 125 Arenga sp.
    [Show full text]
  • CITY of NAPLES PLANS for PALMS Submitted by Heather Shields, City Arborist and Project Manager - City of Naples
    CouncilThe Quarterly Quarterly Newsletter of the Florida Urban Forestry Council 2019 Issue Two The Council Quarterly newsletter is published quarterly by the Florida Urban Forestry Council and is intended as an educational benefit to our members. Information may be reprinted if credit is given to the author(s) and this newsletter. All pictures, articles, advertisements, and other data are in no way to be construed as an endorsement of the author, products, services, or techniques. Likewise, the statements and opinions expressed herein are those of the individual authors and do not represent the view of the Florida Urban Forestry Council or its Executive Committee. This newsletter is made possible by the generous support of the Florida Department of Agriculture and Consumer Services, Florida Forest Service, Nikki Fried Commissioner. CITY OF NAPLES PLANS FOR PALMS Submitted by Heather Shields, City Arborist and Project Manager - City of Naples The City of Naples is a beautiful the inventoried publicly-owned trees, Therefore, the City continuously works to community located on the Gulf of Mexico. representing 41 different species of palms. maintain a diverse and resilient urban forest. Residents and elected officials take great There are approximately 2,959 viable Naples strives to plant native species of both pride in the integration of natural and planting locations that are vacant. The canopy trees and palms. The City works built environments that provide for an City of Naples is proud to have earned the diligently to ensure the local tree population appealing quality of life. Having a diverse designation of “Tree City USA” for the is diverse and to avoid the dominance and and well-managed urban forest adds greatly past 22 years and has received the Tree City vulnerabilities of monocultures.
    [Show full text]
  • Breeding Biology of the White-Winged Nightjar (Eleothreptus Candicans) in Eastern Paraguay
    Revista Brasileira de Ornitologia, 22(2), 219-233 ARTICLE June 2014 Breeding biology of the White-winged Nightjar (Eleothreptus candicans) in eastern Paraguay Robert G. Pople Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK. Email: [email protected] Current address: BirdLife International, Wellbrook Court, Girton Road, Cambridge, CB3 0NA, UK. Received on 03 September 2013. Accepted on 02 October 2013. ABSTRACT: Breeding biology of the White-winged Nightjar (Eleothreptus candicans) in eastern Paraguay. I present the first detailed description of the breeding biology of the White-winged Nightjar (Eleothreptus candicans), based on data collected over three breeding seasons during 1998-2001 at Aguará Ñu, Canindeyú, eastern Paraguay. Male nightjars defended small territories situated on the upper slopes of ridgelines. Each territory contained one or more “display arenas” at which the male performed nuptial display flights. Aggregation indices confirmed that the primary display arenas of males were significantly clustered within the survey area. Within their territories, males apparently selected display arenas on the basis of their structural characteristics: mounds used as arenas were significantly lower and broader than random mounds. Males engaged in display activity from late August to early January. On average, males performed 0.54 ± 0.04 display flights per minute during nocturnal focal watches, but there was considerable intra-male variation in display rate. Following a burst of activity immediately after their arrival at display arenas at dusk, male display rate was best explained by ambient levels of moonlight. Males produced a previously undescribed insect-like “tik tik” call when inactive on their territories.
    [Show full text]
  • Workshop De Compostos Bioativos & Qualidade De Alimentos
    UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS RURAIS DEPARTAMENTO DE TECNOLOGIA E CIÊNCIA DOS ALIMENTOS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E TECNOLOGIA DOS ALIMENTOS Workshop de Compostos Bioativos & Qualidade de Alimentos Anais Santa Maria/RS 2016 UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS RURAIS DEPARTAMENTO DE TECNOLOGIA E CIÊNCIA DOS ALIMENTOS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E TECNOLOGIA DOS ALIMENTOS Workshop de Compostos Bioativos & Qualidade de Alimentos Anais 20 a 21 de outubro de 2016 Santa Maria/RS SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE SANTA MARIA Paulo Afonso Burmann Reitor Irineo Zanella Diretor do Centro de Ciências Rurais Neila Sílvia Pereira dos Santos Richards Chefe do Departamento de Tecnologia e Ciência dos Alimentos Cláudia Kaehler Sautter Coordenadora do Curso Superior de Tecnologia em Alimentos Cristiano Ragagnin de Menezes Coordenador do Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos WORKSHOP DE COMPOSTOS BIOATIVOS & QUALIDADE DE ALIMENTOS 2016 - 1ª Edição - COMISSÃO ORGANIZADORA Tatiana Emanuelli (Presidente ) Cláudia Kaehler Sautter Cristiano Ragagnin de Menezes Helena Teixeira Godoy Leila Queiroz Zepka Marina Venturini Copetti Mário Roberto Maróstica Júnior Renius Mello Roger Wagner Vivian Caetano Bochi Andréia Quatrin Andriéli Borges Santos Caroline Sefrin Speroni Karem Rodrigues Vieira Lauren Fresinghelli Ferreira Luana Haselein Maurer Roberson Pauletto Coordenação editorial : Tatiana Emanuelli Editoração eletrônica : Renius Mello Capa : Renius Mello Organização dos índices remissivos : Renius Mello Veiculação : E-book (eletrônica) ISSN: 2525-9873 Corpo Editorial: Cristiano Ragagnin de Menezes Helena Teixeira Godoy Leila Queiroz Zepka Marina Venturini Copetti Mário Roberto Maróstica Junior Renius Mello Tatiana Emanuelli Vivian Caetano Bochi Os resumos assinados nesta publicação são de inteira responsabilidade dos seus autores.
    [Show full text]
  • Paraná Pine, Araucaria Angustifolia: an Ancient- Looking Conifer for Modern Landscapes1 Gary W
    ENH1248 Paraná Pine, Araucaria angustifolia: An Ancient- Looking Conifer for Modern Landscapes1 Gary W. Knox2 Introduction Paraná pine is a primitive-looking conifer valued for its unusual horizontal branching, interesting triangular-shaped needles, and neat, symmetrical form. The primitive appear- ance of this evergreen tree results from its resemblance to and relationship with an ancient group of Araucaria-related conifers that dominated forests more than 145 million years ago. Not a true pine, this dark green tree has a narrow, pyrami- dal shape when young (Figure 1). Paraná pine is considered fast-growing; a tree planted at Gardens of the Big Bend in Quincy, Florida, reached a height of 30 feet and a width of 14 feet in eight years. Paraná pine reaches a mature size of 60 to 115 feet after 50 to 90 years or more in forests of southern Brazil. As it approaches maturity, the lower branches gradually die and the tree develops a dramatic dome shaped crown that somewhat resembles a candelabra due to upward pointing Figure 1. Paraná pine has a narrow, pyramidal form when young. branch tips. Paraná pine is considered a large, long-lived tree. Fully mature trees may be 140 to 250 years of age, have heights up to 160 feet, and have trunk diameters exceeding Description and Ecology three feet (Figure 2). This evergreen conifer has distinctive sharp-pointed, tough, scale-like needles (Figure 3). The dark green needles are triangular in shape and about 1 to 2.5 inches long. Needles persist for up to 15 years and cover all plant parts on young trees.
    [Show full text]
  • Structure of Mixed Ombrophyllous Forests with Araucaria Angustifolia (Araucariaceae) Under External Stress in Southern Brazil
    Structure of mixed ombrophyllous forests with Araucaria angustifolia (Araucariaceae) under external stress in Southern Brazil Alexander C. Vibrans1, Lúcia Sevegnani1, Alexandre Uhlmann2, Lauri A. Schorn1, Marcos G. Sobral3, André L. de Gasper1, Débora V. Lingner1, Eduardo Brogni1, Guilherme Klemz1, Marcela B. Godoy1 & Marcio Verdi1 1. Universidade Regional de Blumenau, Rua São Paulo, 3250, 89030-000 Blumenau - SC, Brazil; [email protected], [email protected], [email protected] 2. Embrapa Florestas, Estrada da Ribeira, km 111, 83411-000 - Colombo, PR - Brazil; [email protected] 3. Universidade Federal de São João Del-Rei, Praça Frei Orlando, 170, 36307-352, São João Del-Rei - MG, Brazil; [email protected] Received 03-VIII-2010. Corrected 02-II-2011. Accepted 01-III-2011. Abstract: This study is part of the Floristic and Forest Inventory of Santa Catarina, conceived to evaluate forest resources, species composition and structure of forest remnants, providing information to update forest conservation and land use policy in Southern Brazilian State of Santa Catarina (95 000km²). In accordance to the Brazilian National Forest Inventory (IFN-BR), the inventory applies systematic sampling, with 440 clusters containing four crosswise 1 000m² plots (20x50m) each, located on a 10x10km grid overlaid to land use map based on classification of SPOT-4 images from 2005. Within the sample units, all woody individuals of the main stratum (DBH≥10cm) are measured and collected (fertile and sterile), if not undoubtedly identified in field. Regeneration stratum (height>1.50m; DBH<10cm) is registered in 100m² in each sample unit. Floristic sampling includes collection of all fertile trees, shrubs and herbs within the sample unit and in its surroundings.
    [Show full text]
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS BRAZIL January 2007 Forest Resources Development Service Working Paper FBS/11E Forest Management Division FAO, Rome, Italy Forestry Department Overview of forest pests - Brazil DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Brazil. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). ii Overview of forest pests - Brazil TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases..................................................................................................................
    [Show full text]
  • CARACTERIZAÇÃO DE AMBIENTES COM OCORRÊNCIA NATURAL DE Acrocomia Aculeata (Jacq.) Lodd
    HÉRIA DE FREITAS TELES CARACTERIZAÇÃO DE AMBIENTES COM OCORRÊNCIA NATURAL DE Acrocomia aculeata (Jacq.) Lodd. ex Mart. E SUAS POPULAÇÕES NAS REGIÕES CENTRO E SUL DO ESTADO DE GOIÁS Dissertação apresentada ao Programa de Pós-Graduação em Agronomia, da Universidade Federal de Goiás, como requisito parcial à obtenção do título de Mestre em Agronomia, área de concentração: Produção Vegetal. Orientadora: Profª Dra. Larissa Leandro Pires Co-orientador: Prof. Dr. José Garcia de Jesus Goiânia,GO - Brasil 2009 2 HÉRIA DE FREITAS TELES CARACTERIZAÇÃO DE AMBIENTES COM OCORRÊNCIA NATURAL DE Acrocomia aculeata (Jacq.) Lodd. ex Mart. E SUAS POPULAÇÕES NAS REGIÕES CENTRO E SUL DO ESTADO DE GOIÁS Dissertação DEFENDIDA e APROVADA em 27 de fevereiro de 2009, pela Banca Examinadora constituída pelos membros: ____________________________ ____________________________ Prof. Dr. Wilson Mozena Leandro Dr. Adeliano Cargnin EA – UFG Embrapa _________________________________ Profª Drª Larissa Leandro Pires EA - UFG 3 Ao meu pai ,Vilmar À minha mãe, Mariana Ao meu irmão, Winkler e em memória de minha avó Elvira e padrinho Volneis, Dedico 4 AGRADECIMENTOS Grande é a minha lista de agradecimentos, o que me torna uma pessoa de muita sorte. Primeiramente, a Deus, por ser meu refúgio, minha rocha e, nos momentos mais íntimos, meu conselheiro e confidente. À minha família, muito presente e amiga. Meu pai Vilmar, maior incentivador e apoiador de meus estudos; minha mãe, Mariana, carinhosa e dedicada; e meu irmão Winkler, exemplo de amizade e caráter. À minha amiga e orientadora, Profª Larissa, pelo apoio, dedicação, paciência, orientação e, principalmente, pela amizade. Exemplo de companheirismo e estímulo a ser seguido.
    [Show full text]
  • Abstract Book
    International Association for Vegetation Science 61st Annual Symposium Natural Ecosystems as Benchmarks for Vegetation Science Bozeman, Montana, USA 22-27 July, 2018 ABSTRACTS Edited by Peter R. Minchin & David W. Roberts International Association for Vegetation Science 61st Annual Symposium “Natural Ecosystems as Benchmarks for Vegetation Science” Bozeman, Montana, USA, 22-27 July, 2018. Local Organizing Committee David W. Roberts, Montana State University (co-chair), [email protected]. Peter R. Minchin, Southern Illinois University Edwardsville (co- chair), [email protected]. Kent Houston, US Forest Service (retired) Stephen V. Cooper IV, Montana Natural Heritage (retired) Scientific Committee Alessandra Fidelis, Brazil Meelis Pärtel, Estonia Alessandro Chiarucci Milan Chytrý, Czech Republic Dave Roberts, USA Miquel de Cáceres, Spain Florian Jansen, Germany Monika Janišová, Slovak Republic James Moore, USA Pavel Krestov, Russia Jari Oksanen, Finland Peter Minchin, USA Javier Loidi, Spain Riccardo Guarino, Italy John Du Vall Hay, Brazil Scott Collins, USA Laco Mucina, Australia Scott Franklin, USA Loretta Battaglia, USA Susan Wiser, New Zealand Mark Fulton, USA Valério Pillar, Brazil Martin Diekmann, Germany © 2018, International Association for Vegetation Science (IAVS) Contents Plenary abstracts .......................................................................1 IAVS Honorary Member Award abstract ................................5 Oral and poster presentation abstracts ......................................6 Index by presenting author ...................................................272 IAVS 2018 Symposium, Bozeman - ABSTRACTS Opening Plenary, Monday 23 July, 9:00 AM, Ballroom A Natural ecosystems as an evolving focus of North American vegetation science Robert K. Peet Biology Department, University of North Carolina at Chapel Hill, USA Vegetation Science in North America has from the beginning had a strong focus on understanding natural ecosystems. In the early days ecologists like H.C.
    [Show full text]
  • Universidade De Brasília Instituto De Ciências Biológicas Departamento De Ecologia Programa De Pós-Graduação Em Ecologia
    UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE ECOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA FENOLOGIA E SUCESSO REPRODUTIVO DE SEIS ESPÉCIES DE PALMEIRAS NATIVAS DO CERRADO SENSU STRICTO. MORGANA MARIA ARCANJO BRUNO DISSERTAÇÃO APRESENTADA AO DEPARTAMENTO DE ECOLOGIA DA UNIVERSIDADE DE BRASÍLIA, COMO REQUISITO À OBTENÇÃO DO GRAU DE MESTRE EM ECOLOGIA BRASÍLIA, 2009 UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE ECOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA FENOLOGIA E SUCESSO REPRODUTIVO DE SEIS ESPÉCIES DE PALMEIRAS NATIVAS DO CERRADO SENSU STRICTO. MORGANA MARIA ARCANJO BRUNO DISSERTAÇÃO APRESENTADA AO DEPARTAMENTO DE ECOLOGIA DA UNIVERSIDADE DE BRASÍLIA, COMO REQUISITO À OBTENÇÃO DO GRAU DE MESTRE EM ECOLOGIA BRASÍLIA, 2009 Traça a reta e a curva, a quebrada e a sinuosa Tudo é preciso. De tudo viverás. Cuida com exatidão da perpendicular e das paralelas perfeitas. Com apurado rigor. Sem esquadro, sem nível, sem fio de prumo, traçarás perspectivas, projetarás estruturas. Número, ritmo, distância, dimensão. Tens os teus olhos, o teu pulso, a tua memória. Construirás os labirintos impermanentes Que sucessivamente habitarás. Todos os dias estarás refazendo o teu desenho. Não te fatigues logo. Tens trabalho para toda a vida. e nem para o teu sepulcro terás a medida certa. Somos sempre um pouco menos do que pensávamos. Raramente, um pouco mais. DESENHO, Cecília Meireles . AGRADECIMENTOS À minha família, pelo amor incondicional. Ao Prof. John Hay, pela orientação sábia, o exemplo como profissional, pela confiança depositada e, sobretudo por sua humanidade. À CAPES - Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior, por subsidiar esse estudo através da concessão da bolsa de estudo.
    [Show full text]