Sexual Hypnagogic Hallucinations and Narcolepsy With
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rapid Eye Movement Sleep Deprivation Induces an Increase in Acetylcholinesterase Activity in Discrete Rat Brain Regions
Brazilian Journal of Medical and Biological Research (2001) 34: 103-109 Acetylcholinesterase activity after REM sleep deprivation 103 ISSN 0100-879X Rapid eye movement sleep deprivation induces an increase in acetylcholinesterase activity in discrete rat brain regions M.A.C. Benedito Departamento de Psicobiologia, Universidade Federal de São Paulo, and R. Camarini São Paulo, SP, Brasil Abstract Correspondence Some upper brainstem cholinergic neurons (pedunculopontine and Key words M.A.C. Benedito laterodorsal tegmental nuclei) are involved in the generation of rapid · REM sleep deprivation · Departamento de Psicobiologia eye movement (REM) sleep and project rostrally to the thalamus and Acetylcholinesterase Universidade Federal de São Paulo · caudally to the medulla oblongata. A previous report showed that 96 Brain regions Rua Botucatu, 862 · Thalamus h of REM sleep deprivation in rats induced an increase in the activity 04023-062 São Paulo, SP · Medulla oblongata Brasil of brainstem acetylcholinesterase (Achase), the enzyme which inacti- · Pons vates acetylcholine (Ach) in the synaptic cleft. There was no change in Research supported by FAPESP and the enzymes activity in the whole brain and cerebrum. The compo- Associação Fundo de Incentivo à nents of the cholinergic synaptic endings (for example, Achase) are Psicofarmacologia (AFIP). not uniformly distributed throughout the discrete regions of the brain. R. Camarini was the recipient of In order to detect possible regional changes we measured Achase a FAPESP fellowship. activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex) after 96 h of Received December 6, 1999 REM sleep deprivation. Naive adult male Wistar rats were deprived of Accepted September 25, 2000 REM sleep using the flower-pot technique, while control rats were left in their home cages. -
Parasomnias: a Comprehensive Review
Open Access Review Article DOI: 10.7759/cureus.3807 Parasomnias: A Comprehensive Review Shantanu Singh 1 , Harleen Kaur 2 , Shivank Singh 3 , Imran Khawaja 1 1. Pulmonary Medicine, Marshall University School of Medicine, Huntington, USA 2. Neurology, Univeristy of Missouri, Columbia, USA 3. Internal Medicine, Maoming People's Hospital, Maoming, CHN Corresponding author: Harleen Kaur, [email protected] Abstract Parasomnias are a group of sleep disorders characterized by abnormal, unpleasant motor verbal or behavioral events that occur during sleep or wake to sleep transitions. Parasomnias can occur during non- rapid eye movement (NREM) and rapid eye movement (REM) stages of sleep and are more commonly seen in children than the adult population. Parasomnias can be distressful for the patient and their bed partners and most of the time, these complaints are brought up by their bed partners because of the possible disruption in their quality of sleep. As clinicians, it is crucial to understand the characteristics of various parasomnias and address them with detailed sleep history and essential diagnostic approach for proper evaluation. The review aims to highlight the epidemiology, pathophysiology and clinical features of various types of parasomnias along with the appropriate diagnostic and pharmacological approach. Categories: Internal Medicine, Neurology, Psychiatry Keywords: parasomnia, sleep walking, confusional arousals, sleep terror, nightmares, rem behavior disorder, sleep paralysis, rem parasomnias, nrem parasomnias Introduction And Background Parasomnias are a group of sleep disorders that are characterized by abnormal, unpleasant motor, verbal or behavioral events that occur during sleep or wake to sleep transitions [1]. The term ‘parasomnia’ was first coined by a French researcher Henri Roger in 1932 [2]. -
Cognitive and Neuropsychiatric Profiles in Idiopathic Rapid Eye
Journal of Personalized Medicine Article Cognitive and Neuropsychiatric Profiles in Idiopathic Rapid Eye Movement Sleep Behavior Disorder and Parkinson’s Disease Francesca Assogna 1, Claudio Liguori 2,3, Luca Cravello 4, Lucia Macchiusi 1, Claudia Belli 5 , Fabio Placidi 2,3 , Mariangela Pierantozzi 2, Alessandro Stefani 2, Bruno Mercuri 6, Francesca Izzi 3 , Carlo Caltagirone 1, Nicola B. Mercuri 1,2,3, Francesco E. Pontieri 1,7, Gianfranco Spalletta 1,† and Clelia Pellicano 1,*,† 1 Fondazione Santa Lucia, IRCCS, 00179 Rome, Italy; [email protected] (F.A.); [email protected] (L.M.); [email protected] (C.C.); [email protected] (N.B.M.); [email protected] or [email protected] (F.E.P.); [email protected] (G.S.) 2 Dipartimento di Medicina dei Sistemi, Università “Tor Vergata”, 00133 Rome, Italy; [email protected] (C.L.); [email protected] (F.P.); [email protected] (M.P.); [email protected] (A.S.) 3 Centro di Medicina del Sonno, Unità di Neurologia, Università “Tor Vergata”, 00133 Rome, Italy; [email protected] 4 Centro Regionale Alzheimer, ASST Rhodense, 20017 Rho, Italy; [email protected] 5 Dipartimento di Psicologia, Facoltà di Medicina e Psicologia, “Sapienza” Università di Roma, 00185 Rome, Italy; [email protected] 6 UOC Neurologia, Azienda Ospedaliera “San Giovanni Addolorata”, 00184 Rome, Italy; [email protected] 7 Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso, “Sapienza” Università di Roma, 00189 Rome, Italy * Correspondence: [email protected]; Tel./Fax: +39-06-51501185 † These authors contributed equally and share senior authorship. Citation: Assogna, F.; Liguori, C.; Cravello, L.; Macchiusi, L.; Belli, C.; Abstract: Rapid eye movement (REM) sleep behavior disorder (RBD) is a risk factor for developing Placidi, F.; Pierantozzi, M.; Stefani, A.; Parkinson’s disease (PD) and may represent its prodromal state. -
Parasomnias and Antidepressant Therapy: a Review of the Literature
REVIEW ARTICLE published: 12 December 2011 PSYCHIATRY doi: 10.3389/fpsyt.2011.00071 Parasomnias and antidepressant therapy: a review of the literature Lara Kierlin1,2 and Michael R. Littner 1,2* 1 David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA 2 Pulmonary, Critical Care and Sleep Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA Edited by: There exists a varying level of evidence linking the use of antidepressant medication to Ruth Benca, University of the parasomnias, ranging from larger, more comprehensive studies in the area of REM Wisconsin – Madison School of Medicine, USA sleep behavior disorder to primarily case reports in the NREM parasomnias. As such, prac- Reviewed by: tice guidelines are lacking regarding specific direction to the clinician who may be faced Ruth Benca, University of with a patient who has developed a parasomnia that appears to be temporally related to Wisconsin – Madison School of use of an antidepressant. In general, knowledge of the mechanisms of action of the med- Medicine, USA ications, particularly with regard to the impact on sleep architecture, can provide some David Plante, University of Wisconsin, USA guidance. There is a potential for selective serotonin reuptake inhibitors, tricyclic antide- *Correspondence: pressants, and serotonin–norepinephrine reuptake inhibitors to suppress REM, as well Michael R. Littner, 10736 Des Moines as the anticholinergic properties of the individual drugs to further disturb normal sleep Avenue, Porter Ranch, Los Angeles, architecture. CA 91326, USA. e-mail: [email protected] Keywords: parasomnias, REM sleep behavior disorder, non-REM parasomnias, selective serotonin reuptake inhibitors, depression INTRODUCTION and night terrors (Ohayon et al., 1999; Yeh et al., 2009). -
The Flower Pot Method of REM Sleep Deprivation Causes Apoptotic Cell Death in The
bioRxiv preprint doi: https://doi.org/10.1101/375717; this version posted October 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. “The flower pot method of REM sleep deprivation causes apoptotic cell death in the hepatocytes of rat” Atul Pandey1, 2*, Devesh Kumar1, 3, Gopesh Ray1, 4, Santosh Kar1, 4* 1School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India Present addresses: 2 Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel 3 University Hospital Brussels, Brussels, Belgium 4 School of Biotechnology, KIIT University, Bhubaneswar-751024, Odisha, India *Corresponding Authors: [email protected] & [email protected], Ph: +91-9937085111 Short running title: REM sleep deprivation causes liver cell death. Key Words: REM sleep deprivation, Apoptosis, cell-death, Hepatocytes, Sleep recovery, Caspases. bioRxiv preprint doi: https://doi.org/10.1101/375717; this version posted October 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Highlights of the study • We observed significant apoptosis in the hepatocytes of REMSD group of rats. • Our expression analysis confirmed altered expression for genes p53, Bcl2, Bax, and Caspase-3 after REMSD. • Protein level analysis supported our gene expression results for p53, Bcl2, Bax, Caspase 3 and Caspase 9 after REMSD. • Sleep recovery improved the respective genes and protein expression levels towards normalcy, signifying the functional role of REM sleep. -
Rapid Eye Movement Sleep and Significance of Its Deprivation Studies - a Review
REVIEW ARTICLE Rapid Eye Movement Sleep and Significance of its Deprivation Studies - A Review Seema Gulyani, Ph.D., Sudipta Majumdar, M.Sc., and Birendra N. Mallick, Ph.D. Rapid eye movement (REM) sleep is a unique phenomenon within sleep-wakefulness cycle. It is associated with increased activity in certain group of neurons and decreased activity in certain other group of neurons and dreaming. It is likely to have evolved about 140 million years ago. Although mention of this stage can be traced back to as early as 11 century BC in the Hindu Vedic literature, the Upanishads, it has been defined in its present form in the mid-twentieth century. So far, neurobiology of its genesis, physiology and functional significance are not known satisfactorily and mostly remains hypothetical. Nevertheless, more and more studies have increasingly convinced us to accept that it is an important physiological phenomenon which cannot be ignored as a vestigial pheno- menon. Although there are articles where different aspects of REM sleep have been de- alt with, a review where the knowledge gathered by REM sleep deprivation studies to un- derstand its significance is lacking. There is a need for such a review because a major portion of the knowledge about various aspects of REM sleep, specially its functional sig- nificance, has been acquired mostly from the REM sleep deprivation studies. Hence, in this review the knowledge gathered by REM sleep deprivation studies have been cola- ted along with their importance so that it may be useful and referred to for information as well as while designing future studies. -
Clinician Guide — Narcolepsy in Pediatric Patients
CLINICIAN GUIDE Narcolepsy in Pediatric Patients A Practical Guide for Recognizing Narcolepsy Symptoms in Pediatric Patients 1 Narcolepsy Can Start in Childhood This brochure can help you: Table of Contents RECOGNIZE Narcolepsy in Pediatric Patients................................................... 4 Manifestations of the 5 main narcolepsy symptoms Narcolepsy Symptoms in Pediatric Patients............................. 5 in pediatric patients Recognizing Cataplexy...................................................................... 6 SCREEN Recognizing Hallucinations.............................................................. 8 Pediatric patients who present with excessive daytime sleepiness Recognizing Excessive Daytime Sleepiness.............................. 8 using a validated screening tool Recognizing Sleep Paralysis............................................................ 10 Recognizing Sleep Disruption........................................................ 10 Clinical Interview.............................................................................. 11 Clinical History and Symptom Assessment............................... 11 Questions to Ask During the Clinical Interview........................ 12 Differential Diagnosis...................................................................... 15 Distinguishing Narcolepsy From More Common Conditions... 15 Other Disorders............................................................................................. 18 Screening.......................................................................................... -
The Effects of Caffeine and Rapid Eye Movement (REM) Sleep Deprivation on Free
James Madison University JMU Scholarly Commons Masters Theses The Graduate School Spring 2013 The effects of caffeine nda rapid eye movement (REM) sleep deprivation on free operant responding under a VI 30-S schedule of reinforcement Curtis Allen Bradley James Madison University Follow this and additional works at: https://commons.lib.jmu.edu/master201019 Part of the Psychology Commons Recommended Citation Bradley, Curtis Allen, "The effects of caffeine nda rapid eye movement (REM) sleep deprivation on free operant responding under a VI 30-S schedule of reinforcement" (2013). Masters Theses. 158. https://commons.lib.jmu.edu/master201019/158 This Thesis is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in Masters Theses by an authorized administrator of JMU Scholarly Commons. For more information, please contact [email protected]. The effects of caffeine and Rapid Eye Movement (REM) sleep deprivation on free operant responding under a VI 30-s schedule of reinforcement Curtis A. Bradley A thesis submitted to the Graduate Faculty of JAMES MADISON UNIVERSITY In Partial Fulfillment of the Requirements for the degree of Master of Arts Psychological Sciences May 2013 Acknowledgements I would like to thank my environment that was conducive to the behavior of completing a successful thesis. Specifically, there are a few people that comprised my environment that had invaluable contributions. First I would like to recognize my mentor and graduate savior, Dr. Jeff Dyche, because none of this would have been possible without him. I would like to thank him for helping in numerous ways including the development and execution of this thesis project, recruiting great research assistants, offering invaluable advice, and most importantly becoming my mentor under less than ideal circumstances. -
A Case of Rapid Eye Movement Sleep Behavior Disorder During Continuous Positive Airway Pressure Titration in a Patient with Multiple System Atrophy
CASE REPORT pISSN 2384-2423 / eISSN 2384-2431 J Sleep Med 2017;14(2):77-80 https://doi.org/10.13078/jsm.17012 A Case of Rapid Eye Movement Sleep Behavior Disorder during Continuous Positive Airway Pressure Titration in a Patient with Multiple System Atrophy Jung-Hwan Oh, Sook-Keun Song, Ji-Hoon Kang Department of Neurology, Jeju National University School of Medicine, Jeju, Korea Sleep disorders are commonly observed in multiple systemic atrophy (MSA). The rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by loss of normal voluntary muscle atonia during REM sleep. It usually presents during early course, and disappears over the course of disease progression. Sleep-disordered breathing (SDB) is also common sleep disorder in MSA which can be life-threatening, Received November 8, 2017 and continuous positive airway pressure (CPAP) treatment is useful in these patients. A 74-year-old woman Revised December 10, 2017 with MSA presented for nocturnal respiratory disturbance. She had a five-year history of dream enacting Accepted December 18, 2017 behaviors, which had disappeared four months prior. Polysomnography revealed frequent stridor and sleep Address for correspondence hypopnea. During the following full nigh CPAP titration for SDB, dream enacting behavior was observed Ji-Hoon Kang, MD, PhD during REM sleep stage. In MSA patients with SDB, CPAP administration may lead to increase REM sleep Department of Neurology, stage. An increase in REM sleep stage, which previously had been deprived, may have trigger RBD symp- Jeju National University Hospital, 15 Aran 13-gil, Jeju 63241, Korea toms to reappear. The CPAP treatment should be considered with great caution in these patients. -
In REM Sleep Behavior Disorder
Sleep Medicine Reviews 30 (2016) 34e42 Contents lists available at ScienceDirect Sleep Medicine Reviews journal homepage: www.elsevier.com/locate/smrv THEORETICAL REVIEW A new view of “dream enactment” in REM sleep behavior disorder Mark S. Blumberg a, b, c, *, Alan M. Plumeau d a Department of Psychological & Brain Sciences, The University of Iowa, Iowa City, IA 52242, USA b Department of Biology, The University of Iowa, Iowa City, IA 52242, USA c The DeLTA Center, The University of Iowa, Iowa City, IA 52242, USA d Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA 52242, USA article info summary Article history: Patients with REM sleep behavior disorder (RBD) exhibit increased muscle tone and exaggerated Received 12 October 2015 myoclonic twitching during REM sleep. In addition, violent movements of the limbs, and complex be- Received in revised form haviors that can sometimes appear to involve the enactment of dreams, are associated with RBD. These 23 November 2015 behaviors are widely thought to result from a dysfunction involving atonia-producing neural circuitry in Accepted 8 December 2015 the brainstem, thereby unmasking cortically generated dreams. Here we scrutinize the assumptions that Available online 17 December 2015 led to this interpretation of RBD. In particular, we challenge the assumption that motor cortex produces twitches during REM sleep, thus calling into question the related assumption that motor cortex is pri- Keywords: Myoclonic twitching marily responsible for all of the pathological movements of RBD. Moreover, motor cortex is not even Development necessary to produce complex behavior; for example, stimulation of some brainstem structures can Muscle atonia produce defensive and aggressive behaviors in rats and monkeys that are strikingly similar to those REM sleep without atonia reported in human patients with RBD. -
Perspectives from the Narcolepsy Institute
PERSPECTIVES FROM THE NARCOLEPSY INSTITUTE Spring/Summer 2017 ANESTHESIA AND NARCOLEPSY Volume 23 | Number 1 We have received requests for information on the effect of anesthesia on the symptoms of narcolepsy. Below, for our patients’ benefit, is a revised version of this topic previously covered in Perspectives. Precautions to be observed before undergoing anesthesia People who have narcolepsy and are scheduled for an operation requiring general anesthesia must inform the anesthesiologist of their sleep disorder. Select a doctor who is knowledgeable about narcolepsy and the interaction of medications for narcolepsy and anesthetic agents. Let your doctor know about all the prescription medications, over-the-counter medications IN THIS ISSUE and supplements you are taking. Anesthesia and narcolepsy 1 Most of the medications for narcolepsy are metabolized by the liver, specifically by cytochrome P450-206; enzyme induction may occur. Also, the effects of atropine and Research Note: 3 ephedrine are enhanced by tricyclic antidepressants often prescribed for narcolepsy. Sodium Immunoglobulin therapy in thiopental will prolong the sedation during anesthesia, while ketamine may produce acute children with narcolepsy hypertension and cardiac dysrhythmias (Joseph 1990). Montelucast helps a 4-year-old boy 4 Should one discontinue the with obstructive sleep apnea medications for narcolepsy before anesthesia? Narcolepsy patients’ perspectives 5 on their disorder Because of the possibility of cardiovas- cular effects, some professionals suggest Did you know…“Social jet lag” 5 withdrawal of medications for narcolepsy linked to increased risk of before surgery. This may increase the heart disease symptoms of narcolepsy, but does not seem to cause any long-term effects. In Compliance with continuing 5 view of the exacerbation of symptoms positive airway pressure therapy of narcolepsy during withdrawal, other professionals advise against discontin- The Meaning of Happiness 6 uation of drugs and prefer to adjust the dosage for anesthetics. -
Effectiveness of Pramipexole, a Dopamine Agonist, on Rapid Eye Movement Sleep Behavior Disorder
Tohoku J. Exp. Med., 2012, 226, 177-181 Effectiveness of Pramipexole on RBD 177 Effectiveness of Pramipexole, a Dopamine Agonist, on Rapid Eye Movement Sleep Behavior Disorder Taeko Sasai,1,2,3 Yuichi Inoue1,2 and Masato Matsuura3 1Japan Somnology Center, Neuropsychiatric Research Institute, Tokyo, Japan 2Department of Somnology, Tokyo Medical University, Tokyo, Japan 3 Department of Life Sciences and Bio-informatics, Division of Biomedical Laboratory Sciences, Graduate School of Health Sciences, Tokyo Medical and Dental University, Tokyo, Japan Rapid eye movement (REM) sleep behavior disorder (RBD) is parasomnia characterized by REM sleep without atonia (RWA) and elaborate motor activity in association with dream mentation. Periodic leg movement during sleep (PLMS) is observed in a large share of patients with RBD, suggesting a common pathology: dopaminergic dysfunction. This study was undertaken to evaluate the effectiveness and mechanism of action of pramipexole, a dopamine agonist, on RBD symptoms. Fifteen patients (57-75 years old) with RBD with a PLMS index of more than 15 events/h shown by nocturnal polysomnography were enrolled. Sleep variables, the score of severity for RBD symptoms, REM density, and PLM index were compared before and after one month or more of consecutive pramipexole treatment. Correlation analysis was conducted between the rate of change in RBD symptoms and the rate of reduction of REM density. Fourteen patients with RBD (80.0%) achieved symptomatic improvement of RBD with pramipexole treatment, which reduced REM density and PLM index during non-REM sleep despite the unchanged amount of RWA. The rate of change in RBD symptoms correlated positively with the rate of REM density reduction.