INVERSION EFFECTS on MOUNTAIN LEE WAVES Simon

Total Page:16

File Type:pdf, Size:1020Kb

INVERSION EFFECTS on MOUNTAIN LEE WAVES Simon P1.4 INVERSION EFFECTS ON MOUNTAIN LEE WAVES Simon Vosper ¤, Peter Sheridan Met O±ce, U.K. 1. INTRODUCTION 0 where U is the geostrophic wind speed, g = g¢θ/θ0 and θ0 is a reference potential temperature. The e®ect of a sharp low-level temperature inver- sion on the flow over a mountain has been investi- gated via two-dimensional (2-D) idealised numerical 3. RESULTS model simulations. The main focus of this study is the e®ect of an inversion on the formation of lee Results from simulations over a range of Fi and waves, lee-wave rotors, low-level hydraulic jumps, H=zi show that several distinct flow types occur. In upper-level wave breaking and upwind flow block- general, as the inversion strength increases (Fi de- ing. Severe turbulence associated with the majority creases) the following phenomena occur: of these phenomena represents a hazard to aviators Lee waves on the inversion in mountainous regions. This study is an extension ² of that recently presented by Vosper (2004). { Stationary downstream interfacial waves on the inversion 2. DESCRIPTION OF SIMULATIONS Lee waves with rotors ² The simulations were conducted using the Met O±ce { BLASIUS model. In the idealised problem considered Surface flow reversal and recirculation be- the upwind velocity pro¯le is independent of height neath the lee-wave crest, as shown in (above the boundary layer) and directed normal to an Fig. 2(a) for example. isolated 2-D ridge. The upstream strati¯cation con- Hydraulic jump sists of a neutral layer immediately above the ground ² which is capped by a sharp temperature inversion. { A stationary hydraulic jump occurs above Above the inversion the flow is stably strati¯ed and the downwind foot of the mountain, as the Brunt-VÄaisÄalÄa, frequency is independent of height shown in Fig. 2(b) for example. (N = 0:01 s¡1). A range of inversion strengths (measured by the di®erence in potential tempera- For weak inversions, where Fi is large (typically ture, ¢θ, across the inversion) and inversion heights, greater than unity) none of the above features are zi, were considered. The mountain shape considered present. was an isolated 2-D cosine ridge with height, H, and As shown in Fig. 3(a) the results can be presented width L, ¯xed at 400 m and 10 km, respectively. A in terms of a flow regime diagram. This approach no-slip lower boundary condition was employed and clearly distinguishes between the areas of parameter this gave rise to a boundary layer below the inversion. space where the di®erent flow types occur. For suf- An example upstream pro¯le is presented in Fig. 1. ¯ciently low inversions (high H=zi), the highly non- Two important controlling non-dimensional pa- linear hydraulic jumps dominate at low Fi, while lee rameters are the Froude number, Fi, de¯ned in the waves with rotors occur at slightly higher values of usual way for a two-layer shallow water flow, and the Fi. Note that linear theory predicts the presence of ratio of mountain height to inversion height, H=zi. lee waves on the inversion for some of the temper- The Froude number is de¯ned as ature pro¯les used in this study. Fig. 3(a) shows that, as Fi decreases, linear theory provides a good U Fi = estimate (the solid line in the ¯gure) of when lee pg0zi waves appear. However, since the wavelength of ¤ the lee waves is much shorter than the hill width Corresponding author address: Simon Vosper, Met O±ce, FitzRoy Road, Exeter, Devon, EX1 3PB, U.K.; in these simulations, linear theory signi¯cantly un- email:simon.vosper@meto±ce.com derestimates the wave amplitude. 2.0 (a) u 1.5 v 1.0 z /km 0.5 0.0 -4 -2 0 2 4 6 8 10 -1 Wind speed /ms 2.0 (b) 1.5 1.0 z /km 0.5 0.0 284 288 292 296 300 θ /K Figure 1: Pro¯les of (a) wind and (b) potential tem- perature used to initialize a 2-D simulation. In the example shown, ¢θ = 3:84 K across the inversion height, which occurs at zi = 1 km. The geostrophic wind (U; V ) = (8; 0) ms¡1. Figure 2: Flow ¯eld for flow over a hill of width L = 10 km, with H=zi = 0:5 (zi = 800 m) and (a) Fi = 0:6 (¢θ = 6:53 K) and (b) Fi = 0:4 Simulations were also conducted using a narrower (¢θ = 14:69 K). Colour shaded contours represent ridge, of width L = 2:5 km, which is closer to the res- the streamwise velocity component and line contours onant lee wave wavelength. In this case, it was found show the potential temperature (interval 1 K). that, in addition to accurately predicting the wave- length of the simulated lee wave, linear theory can make a reasonable quantitative prediction of the lee- gorised according to distinctive, mountain influenced wave maximum amplitude. Linear theory also pro- near-surface flow features and values of Fi and H=zi have been diagnosed from radiosonde pro¯les. Thus vides a useful prediction of the bound in Fi H=zi space where surface flow reversal (i.e. lee-w¡ave ro- a flow regime diagram has been constructed for East tors) will occur (see Fig. 3(b)). Falkland (see accompanying paper 2.4 by Sheridan et al.). Despite the large number of complicating fac- Recent observations of near-surface flow across tors involved in categorising the observed flows, the mountains on East Falkland (south Atlantic) indi- regime diagram derived from the observations does cate that the presence of a strong temperature in- bear some resemblance to those shown in Fig. 3. version influences the formation of rotors and strong downslope winds. Having constructed the regime di- agrams for the above 2-D simulations, it is interest- 4. REFERENCES ing to consider whether the approach can be useful in examining the observed 3-D flows. To this end, Vosper, S.B., 2004: Inversion e®ects on mountain the flows observed on East Falkland have been cate- lee waves. Q. J. R. Meteorol. Soc., in press. -1 Z =U/Nzi 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 No lee wave Lee wave 1.2 Hydraulic jump Linear theory critical Lee wave rotor Fi for lee waves 1 ) i 0.8 (g'z √ / U = i 0.6 F 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 H/zi -1 Z =U/Nzi 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 No lee wave Lee wave Linear theory 1.2 Lee wave rotors critical Fi for Hydraulic jump lee waves 1 ) i 0.8 (g'z √ / U = i 0.6 F 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 H/zi Figure 3: Regime diagrams showing the Fi and H=zi dependence of the flow for hill widths, L, of (a) 10 km and (b) 2.5 km. The solid curve represents the linear theory prediction of the maximum Fi for which a steady trapped lee wave is present on the inversion. In (b) the dotted curve bounds the region of param- eter space for which lee-wave rotors occur according to linear theory..
Recommended publications
  • Chapter 2 Aviation Weather Hazards
    NUNAVUT-E 11/12/05 10:34 PM Page 9 LAKP-Nunavut and the Arctic 9 Chapter 2 Aviation Weather Hazards Introduction Throughout its history, aviation has had an intimate relationship with the weather. Time has brought improvements - better aircraft, improved air navigation systems and a systemized program of pilot training. Despite this, weather continues to exact its toll. In the aviation world, ‘weather’ tends to be used to mean not only “what’s happen- ing now?” but also “what’s going to happen during my flight?”. Based on the answer received, the pilot will opt to continue or cancel his flight. In this section we will examine some specific weather elements and how they affect flight. Icing One of simplest assumptions made about clouds is that cloud droplets are in a liquid form at temperatures warmer than 0°C and that they freeze into ice crystals within a few degrees below zero. In reality, however, 0°C marks the temperature below which water droplets become supercooled and are capable of freezing. While some of the droplets actually do freeze spontaneously just below 0°C, others persist in the liquid state at much lower temperatures. Aircraft icing occurs when supercooled water droplets strike an aircraft whose temperature is colder than 0°C. The effects icing can have on an aircraft can be quite serious and include: Lift Decreases Drag Stall Speed Increases Increases Weight Increases Fig. 2-1 - Effects of icing NUNAVUT-E 11/12/05 10:34 PM Page 10 10 CHAPTER TWO • disruption of the smooth laminar flow over the wings causing a decrease in lift and an increase in the stall speed.
    [Show full text]
  • Orographic Rainfall
    October f.967 R. P. Sarker 67 3 SOME MODIFICATONS IN A DYNAMICAL MODEL OF OROGRAPHIC RAINFALL R. P. SARKER lnstitufe of Tropical Meteorology, Poona, India ABSTRACT A dynamical model presented earlier by the author for the orographic rainfall over the Western Ghats and based on analytical solutions is modified here in three respects with the aid of numerical methods. Like the earlier approxi- mate model, the modified model also assumes a saturated atmosphere with pseudo-adiabatic lapse rate and is based on linearized equations. The rainfall, as coniputed from the modified model, is in good agreement, both in intensity and in distribution, with the observed rainfall on the windward side of the mountain. Also the modified model suggests that rainfall due to orography may extend out to about 40 km. or so on the lee side from the crest of the mountain and thus explains at least a part of the lee-side rainfall. 1. INTRODUCTION tion for vertical velocity and streamline displacement from the linearized equations with the real distribution of In a previous paper the author [6] proposed a dynamical f (z) as far as possible, subject to the assumption that (a) model of orographic rainfall with particular reference to the ground profile is still a smoothed one, and that (b) the the Western Ghats of India and showed that the model atmosphere is saturated in which both the process and the explains quite satisfactorily the rainfall distribution from environment have the pseudo-adiabatic lapse rate. the coast inland along the orography on the windward side. However, the rainfall distribution as computed from We shall make another important modification.
    [Show full text]
  • Stratospheric Gravity Wave Fluxes and Scales During DEEPWAVE
    JULY 2016 S M I T H E T A L . 2851 Stratospheric Gravity Wave Fluxes and Scales during DEEPWAVE 1 RONALD B. SMITH,* ALISON D. NUGENT,* CHRISTOPHER G. KRUSE,* DAVID C. FRITTS, # @ & JAMES D. DOYLE, STEVEN D. ECKERMANN, MICHAEL J. TAYLOR, ANDREAS DÖRNBRACK,** 11 ## ## ## ## M. UDDSTROM, WILLIAM COOPER, PAVEL ROMASHKIN, JORGEN JENSEN, AND STUART BEATON * Department of Geology and Geophysics, Yale University, New Haven, Connecticut 1 GATS, Boulder, Colorado # Naval Research Laboratory, Monterey, California @ Naval Research Laboratory, Washington, D.C. & Utah State University, Logan, Utah ** German Aerospace Center (DLR), Oberpfaffenhofen, Germany 11 National Institute of Water and Atmospheric Research, Kilbirnie, Wellington, New Zealand ## National Center for Atmospheric Research, Boulder, Colorado (Manuscript received 27 October 2015, in final form 25 February 2016) ABSTRACT During the Deep Propagating Gravity Wave Experiment (DEEPWAVE) project in June and July 2014, the Gulfstream V research aircraft flew 97 legs over the Southern Alps of New Zealand and 150 legs over the Tasman Sea and Southern Ocean, mostly in the low stratosphere at 12.1-km altitude. Improved instrument calibration, redundant sensors, longer flight legs, energy flux estimation, and scale analysis revealed several new gravity wave properties. Over the sea, flight-level wave fluxes mostly fell below the detection threshold. Over terrain, disturbances had characteristic mountain wave attributes of positive vertical energy flux (EFz), negative zonal momentum flux, and upwind horizontal energy flux. In some cases, the fluxes changed rapidly within an 8-h flight, even though environ- mental conditions were nearly unchanged. The largest observed zonal momentum and vertical energy fluxes were 22 MFx 52550 mPa and EFz 5 22 W m , respectively.
    [Show full text]
  • THREE-DIMENSIONAL LEE WAVES by T. Marthinsen Institute Of
    THREE-DIMENSIONAL LEE WAVES by T. Marthinsen Institute of mathematics University of Oslo Abstract Linear wave theory is used to find the stationary,trapped lee waves behind an isolated mountain. The lower atmosphere is approxi­ mated by a three-layer model with Brunt-Vaisala frequency and wind velocity constant in each layer. The Fourier-integrals are solved by a uniformly valid asymptotic expansion and also by numerical methods. The wave pattern is found to be strongly dependent on the atmospheric stratification. The way the waves change when the para­ meters describing the atmosphere and the shape of the mountain vary, is studied. Further, the results predicted by the theory are compared with waves observed on satellite photographs. It is found that the observed wave patterns are described well by the linear theory, and there is good agreement between observed and computed wavelengths. - 1 - 1 Introduction Three-dimensional lee waves have received little study compared to the two-dimensional case. They are, however, often observed on satellite photographs, and four such observations were presented and analysed in~ previous paper, Gjevik and Marthinsen (1978),referred to here as I. Some photographs taken by the Skylab crew have been presented by Fujita and Tecson (1977) and by Pitts et.al. (1977). A review of satellite observations of lee waves and vortex shedding has been given by Gjevik (1979). It is clear from the investigations in I that the observed waves presented there are trapped lee waves, i.e. waves with no vertical propagation. A condition for such waves to exist is that the Scorer parameter, which is the ratio between the Brunt-Vaisala frequency and the wind velocity, decreases with height.
    [Show full text]
  • 2.1 ANOTHER LOOK at the SIERRA WAVE PROJECT: 50 YEARS LATER Vanda Grubišic and John Lewis Desert Research Institute, Reno, Neva
    2.1 ANOTHER LOOK AT THE SIERRA WAVE PROJECT: 50 YEARS LATER Vanda Grubiˇsi´c∗ and John Lewis Desert Research Institute, Reno, Nevada 1. INTRODUCTION aerodynamically-minded Germans found a way to contribute to this field—via the development ofthe In early 20th century, the sport ofmanned bal- glider or sailplane. In the pre-WWI period, glid- loon racing merged with meteorology to explore ers were biplanes whose two wings were held to- the circulation around mid-latitude weather systems gether by struts. But in the early 1920s, Wolfgang (Meisinger 1924; Lewis 1995). The information Klemperer designed and built a cantilever mono- gained was meager, but the consequences grave— plane glider that removed the outside rigging and the death oftwo aeronauts, LeRoy Meisinger and used “...the Junkers principle ofa wing with inter- James Neeley. Their balloon was struck by light- nal bracing” (von Karm´an 1967, p. 98). Theodore ening in a nighttime thunderstorm over central Illi- von Karm´an gives a vivid and lively account of nois in 1924 (Lewis and Moore 1995). After this the technical accomplishments ofthese aerodynam- event, the U.S. Weather Bureau halted studies that icists, many ofthem university students, during the involved manned balloons. The justification for the 1920s and 1930s (von Karm´an 1967). use ofthe freeballoon was its natural tendency Since gliders are non-powered craft, a consider- to move as an air parcel and thereby afford a La- able skill and familiarity with local air currents is grangian view ofthe phenomenon. Just afterthe required to fly them. In his reminiscences, Heinz turn ofmid-20th century, another meteorological ex- Lettau also makes mention ofthe influence that periment, equally dangerous, was accomplished in experiences with these motorless craft, in his case the lee ofthe Sierra Nevada.
    [Show full text]
  • Talking Points for “Satellite Interpretation of Orographic Clouds / Effects”
    Talking points for “Satellite Interpretation of Orographic clouds / effects” 1. Title page 2. Objectives 3. Topics 4. Gap wind event over New Mexico. Strong winds affect Albuquerque and introduce moist airmass which may impact convective forecast the next day. 5. Topography of New Mexico. In easterly flow, winds may be funneled through Tijeras gap east of Albuquerque and produce locally strong winds in the city. 6. Surface observations (METARs) from 00:00 – 12:00 UTC (3 hour increments) 12 June 1999. At 00:00 UTC we observe a warm and dry air mass and southwest flow over most of central New Mexico (including Albuquerque). As time goes on, the easterly flow advects westward. Eventually, the easterly flow makes it to Albuquerque where the dewpoint goes from the 20’s to the low 50’s. The gap wind effects are very localized, at the Albuquerque airport winds gusted up to 30 mph, while on the west side of town at Double Eagle airport winds were southeast at 10 mph. 7. Fog Product 02:46 – 10:30 UTC 12 June 1999. This loop shows the origin of the easterly flow which helped produce the gap winds in Albuquerque. Deep convection on the plains of eastern New Mexico produced strong outflow that moved westward. Since this loop is at night, we can utilize the fog product to identify the outflow boundaries readily. The fog product is good at distinguishing low-level outflow boundaries at night. The outflow pushes westward towards Albuquerque, as it reaches the Tijeras gap the gap wind event begins. The fog product can be used in this way (at night) to determine when the conditions favorable for gap winds will begin.
    [Show full text]
  • A Report on Glider-Pilot Activities to Document Leewave-Events In
    A Report on Glider Pilot Activities to document Lee wave-Events in Northern Germany and their Aims Jörg Dummann An der Alten Warte 20, D-34127 Kassel [email protected] Presented at the XXIX OSTIV Congress, Lüsse-Berlin, Germany, 6 August – 13 August 2008 Abstract A brief outline of the orographical, meteorological and infrastructural circumstances of wave flying in the re- gion of the lower mountains of northern Germany is given and completed by a short historical overview. Aims and methods of a glider pilot initiative for gathering information on atmospheric waves are presented. Some ef- fects are mentioned that intrinsically affect the resulting observations by using gliders for the exploration of the phenomenon. Statistical summaries of the gathered data are given as well as descriptions of some significant observations. Finally, a summary of possible future activities of the glider pilot initiative is provided. Introduction popular aeronautic sport. Glider pilots come from all walks of The orography of northern Germany is characterized by life; their qualifications and motivations reflect this variety. extended plains. This landscape shows negligible differences Aiming at a historical backdrop, some reports on out- in heights, smoothly formed by the glaciers and rivers of the standing aeronautical achievements resulting from the de- Quaternary. Southwards, lower mountains dominate the scene. scribed environment up to now can be given. For example, in The valleys and heights developed as layers of trias, which the 1960’s some pilots reached altitudes around 5000m MSL form the surface of the northern lee wave region, were folded in resonant waves of the Hasselberg-Süntel-Deister system, during later geological periods.
    [Show full text]
  • Data Mining for Atmospheric Gravity Waves (Lee Waves)
    Data Mining for Atmospheric Gravity Waves (Lee Waves) Alfred Ultsch1, Joachim Curtius2 and Christof Maul3 [email protected] 1Data Bionics Philipps-University Marburg, Marburg, Germany 2Institute of Atmospheric and Environmental Sciences Goethe-University Frankfurt, Frankfurt am Main, Germany 3Institute of Physical and Theoretical Chemistry Technische Universitat¨ Braunschweig, Braunschweig, Germany Abstract Gravity waves can emerge as a result of the perturbation of atmospheric circulatory systems. They encompass periodic, yet geographically stationary, changes in temperature, pressure and vertical wind component. Occur- rence of such waves is frequent if strong winds hit high mountains. Secondary effect of such waves may also be encountered as clear air turbulence (CAT) in commercial flights. Atmospheric gravity waves strongly influence weather phenomena and on a larger time scale climatic processes. They are responsible for the vertical transport and mixing of air from the stratosphere up to the mesosphere. First results from research flights in the Pyrenees during the spring 2015 measuring campaign are reported. Several flights with a sensor equipped unpowered glider in altitudes between 2000 and 7000m were undertaken. Data Mining and Knowledge Discovery methods were applied. The results point to interesting patterns (states) in the structure and formation of lee waves and lead to the understanding of such flights as Wave Track Flight scenarios. Nomenclature of the Andes [1]. While much is known in principle about lee waves (see [2]) there are several open issues. 2 g Acceleration of gravity, 9.81 m/s One of the most important points for the usability of lee waves h Altitude for efficient long distance gliding is the leeward distance of the FL Flight Level first upward lift from the wave generating obstacle.
    [Show full text]
  • Impact of Weather on Aviation
    International Journal of Emerging Science and Engineering (IJESE) ISSN: 2319–6378, Volume-4 Issue-8, February 2017 Impact of Weather on Aviation Suad Mohammad Ali Abdullah Abul Abstract: This paper presents the effects of climate change and One system uses temperature and rates of temperature weather conditions on the air transport sector. And also changes. Another uses the changes in the content of the examined turbulent weather conditions and their relationship to gases in the atmosphere, and yet a third deals with the aircraft operations as well as the influence of dry and wet seasons on weather parameters of rainfall, thunderstorm and fog functions of these various layers. [2] these layers provide. In at the Port Harcourt International Airport. The aim was to this system, the atmosphere is divided into two distinct identify which weather parameter affects aircraft operations layers, the lowest of which is the ozonosphere. This layer which entails flight delay, cancellation and diversion. lies approximately between 15 and 50 kilometers (10–30 Keywords: Introduction Atmosphere-Climate-Weather- mi) above the surface. The ozonosphere is another name for Winds- Visibility- Ceiling-Steam Fog-Ice Fog- Thunderstorms- the ozone layer mentioned previously. Again, ozone Snow-Icing and conclusion effectively filters the UV energy from the sun and gives off heat energy instead. As we have noted, although ozone is a I. INTRODUCTION toxic pollutant at Earth’s surface, aloft, it serves a vital function for Earth’s life systems. From about 60–400 This chapter explains basic weather theory and offers kilometers (40–250 mi) above the surface lies the layer pilots backgro Weather is an important factor that influences known as the ionosphere.
    [Show full text]
  • Aem Series, 03. Aviation Hazards
    AeM SERIES No. 3 Aviation Hazards Commission for Aeronautical Meteorology WEATHER CLIMATE WATER CLIMATE WEATHER AeM SERIES No. 3 Aviation Hazards Commission for Aeronautical Meteorology WEATHER CLIMATE WATER CLIMATE WEATHER © World Meteorological Organization, 2018 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised. The findings, interpretations and conclusions expressed in WMO publications with named authors are those of the authors alone and do not necessarily reflect those of WMO or its Members. This publication has been issued without formal editing. TABLE OF CONTENTS Page 1. INTRODUCTION..........................................................................................................................
    [Show full text]
  • Weather Forecasting for Soaring Flight
    Weather Forecasting for Soaring Flight Prepared by Organisation Scientifique et Technique Internationale du Vol aVoile (OSTIV) WMO-No. 1038 2009 edition World Meteorological Organization Weather. Climate _ Water WMO-No. 1038 © World Meteorological Organization, 2009 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, repro­ duce or translate this publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 his, avenue de la Paix Tel.: +41 (0) 22 7308403 P.O. Box 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] ISBN 978-92-63-11038-1 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Opinions expressed in WMO publications are those of the authors and do not necessarily reflect those of WMO. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised. CONTENTS Page FOREWORD....................................................................................................................................... v INTRODUCTION vii CHAPTER 1. ATMOSPHERIC PROCESSES ENABLING SOARING FLIGHT...................................... 1-1 1.1 Overview.................................................................................................................................
    [Show full text]
  • Orographic Effects on Precipitating Clouds
    OROGRAPHIC EFFECTS ON PRECIPITATING CLOUDS Robert A. Houze Jr.1 Received 25 May 2011; revised 7 September 2011; accepted 8 September 2011; published 6 January 2012. [1] Precipitation over and near mountains is not caused by may rise easily over terrain, and a maximum of precipitating topography but, rather, occurs when storms of a type that cloud occurs over the first rise of terrain, and rainfall is max- can occur anywhere (deep convection, fronts, tropical imum on ridges and minimum in valleys. If the low‐level air cyclones) form near or move over complex terrain. Deep ahead of the system is stable, blocking or damming occurs. convective systems occurring near mountains are affected Shear between a blocked layer and unblocked moist air by channeling of airflow near mountains, capping of moist above favors turbulent overturning, which can accelerate boundary layers by flow subsiding from higher terrain, and precipitation fallout. In tropical cyclones, the tangential triggering to break the cap when low‐level flow encounters winds encountering a mountain range produce a gravity hills near the bases of major mountain ranges. Mesoscale wave response and greatly enhanced upslope flow. Depend- convective systems are triggered by nocturnal downslope ing on the height of the mountain, the maximum rain may flows and by diurnally triggered disturbances propagating occur on either the windward or leeward side. When the away from mountain ranges. The stratiform regions of capped boundary layer of the eye of a tropical cyclone mesoscale convective systems are enhanced by upslope flow passes over a mountain, the cap may be broken with intense when they move over mountains.
    [Show full text]