<<

Efficacyandsafetyoffortification withironofmaizeflour inAfricanchildren PaulineEAAndang’o Promotor Prof.Dr.ir.FransJ.Kok HoogleraarVoedingenGezondheid,AfdelingHumaneVoeding,WageningenUniversiteit CoPromotoren Dr.ir.HansJ.M.Verhoef PostDoc,LeerstoelgroepCelbiologieenimmunologie,WageningenUniversiteit Dr.ir.SaskiaJ.M.Osendarp Onderzoeker,UnileverandHealthResearchInstitute,UnileverR&D,Vlaardingen Samenstellingpromotiecommissie Prof.Dr.ir.IvonneM.C.M.Rietjens WageningenUniversiteit Prof.RichardF.Hurrell SwissFederalInstituteofTechnology,Switzerland Prof.BernardJ.Brabin LiverpoolSchoolofTropicalMedicine,UnitedKingdom Dr.MartinW.Bloem WorldFoodProgramme,Rome,Italy DitonderzoekisuitgevoerdbinnendeonderzoeksschoolVLAG (Voeding,Levensmiddelentechnologie,AgrobiotechnologieenGezondheid) Efficacyandsafetyoffortification withironofmaizeflour inAfricanchildren PaulineEAAndang’o Proefschrift Terverkrijgingvandegraadvandoctor opgezagvanderectormagnificus vanWageningenUniversiteit, ProfdrM.J.Kropff, inhetopenbaarteverdedigen opvrijdag30november2007 desmorgensom11uurindeAula. EfficacyandsafetyoffortificationwithironofmaizeflourinAfricanchildren ThesisWageningenUniversity,TheNetherlands–withsummaryinDutch ISBN9789085048121 ©PaulineEAAndang’o,2007 InmemoryofCliveWest,whowasinstrumentalintheinceptionofthiswork,butdidnotsee itscompletion.

Abstract Food fortification is an effective strategy for reaching populations with deficiencies. Fortification with iron presents a major challenge because of the presence of phytatesandotherironabsorptioninhibitorsindietsofpoorpeople.Additionofirondoesnot necessarilymeanthatitisabsorbed.Becauseofitslowcostanditsrelativestabilityinfood vehicles,electrolyticironhasbeenthefortificant of choice in many national programmes, despiteitslowbioavailabilitycomparedtofortificantssuchasferroussalts.NaFeEDTAmay beamoreeffectiveironfortificantinhighphytate.Concernsaboutitscostandsafety, however,havedelayeditsapplicationinfortificationprogrammes. This thesis is based on a 5month randomised placebocontrolled trial conducted among school children (n = 516) aged 38 years in Kenya in MayNovember 2005. It aimed to measurethebenefitsoffortificationwithNaFeEDTAorelectrolyticiron,andtoassessthe safetyofusingNaFeEDTAasanironfortificant.Thespecificobjectivesweretoassessa)the efficacyoffortifyingwholemaizeflourwithNaFeEDTA(28mgiron/kgflouror56mg/kg) or electrolytic iron (56 mg/kg); b) the effect of the intervention on cognitive and motor function;c)responsetotheinterventionofindividualswithα +thalassaemiagenotyperelative totheircounterpartswithanormalgenotype;d)andtheeffectofNaFeEDTAonthestatusof ,,copper,magnesiumandmanganese. Fortification with NaFeEDTA at high levels (56 mg iron per kg flour), or low levels (28 mg/kg)reducedtheprevalenceofirondeficiencyanaemiaby89%(95%CI49%to97%)and 48%(20%to77%),respectively.HighdosefortificationwithNaFeEDTAledtolargergains inironstatusthanlowdoselevel,andwasmoreefficaciousinchildrenwithirondeficiencyat baseline.Bycontrast,electrolyticirondidnotimproveironstatus.Therewasnoevidencethat theironinterventionimprovedeithercognitiveormotorfunctionofthesechildren;orthat childrenwiththeα +thalassaemiagenotyperespondeddifferentlytotheironinterventionthan theirpeerswithanormalgenotype.TherewasalsonoevidencethatNaFeEDTAadversely affectedthestatusofthenutritionallyimportantelementsassessed. Thethesisconcludesthat inhighphytateflours,NaFeEDTAismoresuitablethanelectrolytic ironforsupplementationofironinthe. Governmentsshouldactandimplementnational programmestofortifyindustriallyprocessedflour ,wherebyNaFeEDTA shouldbeconsidered thepreferredfortificantinhighphytatefoodvehicles.

CONTENTS Chapter1 Generalintroduction 11 Chapter2 Efficacy of ironfortified whole maize flour on iron status of school childreninKenya:arandomisedcontrolledtrial 33 Chapter3 The effect of iron fortification on cognitive and motor function of schoolagedKenyanchildren 57 Chapter4 The effect of iron fortification using NaFeEDTA on potential iron overloadinKenyanschoolchildrenwithα +thalassaemia 77 Chapter5 Safety of NaFeEDTA as an iron fortificant: effects of fortification using NaFeEDTA on status of zinc and other nutritionally important mineral elementsinKenyanschoolchildren 93 Chapter6 Generaldiscussion 113 Summary 131 Samenvatting 137 Acknowledgements 143 CurriculumVitae 147

Chapter1 ______ GeneralIntroduction

GeneralIntroduction ______ INTRODUCTION Theimpactofimprovingmicronutrientstatusonhealthoutcomesandtheattendantbenefits are now recognised and are gaining increasing attention. In poorer regions of the world undernutrition continues to put individuals at risk of micronutrient . This is mainlyasaconsequenceoffoodshortages,lackof dietarydiversityandfoodstapleswith poormicronutrientbioavailability.Greateraccesstoawidervarietyofmicronutrientrichand fortified foods, and better health have contributed to lowering the risk of micronutrient malnutritioninwealthiercountries.Successfulimprovementsinmicronutrientstatusinthe wealthier regions have served to inform strategies that may effectively improve the micronutrient status of poorer regions. This thesis will focus on iron deficiency, the most common micronutrient deficiency, and involves research findings of a study conducted in schoolage children in Kenya. Although the prevalence of iron deficiency is difficult to quantify,becauseinfectionsarecommonandinfluenceironstatusindicators;irondeficiency isestimatedtobe responsiblefor50%of allanaemia cases 1. Such estimates indicate that SouthEastAsiahasthehighestprevalenceofiron deficiency followed by Africa, Eastern Mediterranean countries and the Western Pacific 1. In this chapter I will discuss factors contributingtopoorironstatus;thebioavailabilityofiron,andmeasurementofironstatus,as apreambletoironfortificationasastrategytoreduceirondeficiency;eventuallyfocusingon theuseofNaFeEDTAasanironfortificant.Factorswillalsobeconsideredthatmayhave influencedtheresultsofourironinterventioninKenya. IRONDEFICIENCYANDBIOAVAILABILITYOFIRON Ironisnecessaryforanumberofbodyfunctionsincludingthesynthesisofhaemoglobinthat isrequiredforoxygentransport;itisalsopresentinmyoglobininmuscleandinmanyiron containing.Whenthedietarysupplyofironexceedsthebody’sironrequirements, excessironisstoredinhepatocytesandmacrophagesofthemononuclearphagocytesystem. Ironrequirementsaremetbydietaryironorfromexistingbodyironstores.Inadequatedietary ironintakeeventuallyresultsindepletedbodyironstores,whichispresumedtoindicateiron deficiency. The resulting shortage of iron for haemoglobin synthesis results in decreased haemoglobinconcentrations,whicheventuallymanifestsasirondeficiencyanaemia. Thusan adequatesupplyofdietaryironisnecessarytomaintain body iron stores and ensure that thereisadequateironfornormalbodyfunctioningandhaemoglobinsynthesis.

12 Chapter1 ______ Whilstfoodshortagecancontributetoirondeficiency,itisgenerallyrecognisedthatthepoor bioavailabilityofdietaryironisthekeyproblemcausing iron deficiency anaemia in many regionsoftheworld.Thetwomaindeterminantsoflowbioavailabilityaretheformofdietary iron and the presence of substances such as phytates and polyphenols that bind iron and reduceitsabsorption.Dietaryironexistsaseitherhaemironornonhaemiron.Haemironis derivedfromanimalfoodsandoccursinhaemoglobinormyoglobin. It usuallyconstitutes only515%ofthedietaryintakeofiron,butisrelativelyefficientlyabsorbed.Nonhaemiron occursinawidevarietyofplantandanimalfoods.Theefficiencyofitsabsorptionislowand markedly influenced by the dietary constituents that can either enhance or inhibit its absorption 2.Inplantbaseddiets,whichpredominateindevelopingcountries,nonhaemiron formsthebulkoftheingestediron.Thesediets,however, aremostlybasedonand legumesthatcontainsubstantialamountsofironabsorptioninhibitors.Poorbioavailabilityof nonhaemironisoneofthemajorcontributingfactorstotheproblemofirondeficiency,and its improvement is the focus of programmes to improve the iron status of deficient populations.Thisthesiswillfocusonnonhaemiron. Iron absorption and Bioavailabilityisafunctionoffooddigestibility,nutrientabsorbabilityandtheabilitytousea nutrientformetabolicfunctions.Theextenttowhichironinthedietcanimproveironstatus, therefore will reflect itsbioavailability. Virtually allplant foodderived iron is in the ferric (Fe 3+ )form,whichmustfirstbereducedtotheferrous(Fe 2+ )formbeforeitcanbeabsorbed by enterocytes, a type of intestinal epithelial cells. The gastrointestinal environment is an importantfactorindetermininghowmuchironwilleventuallybeabsorbed.Insolutionswith a pH greater than 3, ferric iron forms insoluble iron hydroxides and is precipitated from solution,henceisunavailableforabsorption.Thismaybepreventedintwoways:chelationof ferriciron,atlowpHinthestomachbydietaryandintestinalderivedsubstanceswhichkeep ironinsolutionwhenitentersthelessacidicduodenum 3; orby reduction of ferric iron to ferrousiron.InnormalcircumstancesthepHofthestomachislowthereforefavourablefor ferric iron chelation and solubilisation. Factors that reduce the acidity of the stomach can thereforereducethebioavailabilityofnonhaemiron.Someferricironisreducedbydietary constituentsandintestinalsecretionstoferrousironwhichissolubleatneutralpH.However, intheabsenceofeithercontinuousreductionorchelationtoprohibitexposureoftheironto oxygen,ferrousironisrapidlyoxidizedtoferriciron 4,5 .Thestomachandtosomeextentthe duodenal environment may also favour inhibition of iron absorption: other dietary

13 GeneralIntroduction ______ constituentssuchasphytates,whichasalreadymentioned,areabundantinandgrain baseddiets;polyphenols,calciumandsome,mayformcomplexeswithironwhich renderitunavailableforabsorption. Toimprovethebioavailabilityofnonhaemiron,itmust bereducedtoFe 2+ orasufficientamountofligandsmustbepresentinordertomaintainFe 3+ inthesolublephase. Enterocytes take up iron via the metal transporter, divalent metal transporter 1 (DMT1), althoughtheexistenceofotheruptakepathwayscannotbeprecluded 3,6,7 .DMT1transports ironexclusivelyintheFe 2+ form.Thusdietaryferricironmustfirstbereducedtoitsferrous formbeforeitcanbeabsorbed.Thisisaccomplishedbyduodenalcytochromeb(Dcytb),a ferric reductase that is located at thebrushborder of enterocytes and thatpresumably uses ascorbate to facilitate ferrireduction 7. By contrast, supplemental iron, which is usually providedasaferroussalt,isabsorbeddirectly.Onceinsidetheenterocyte,ironhastwofates: itiseitherstoredasferritinwithintheenterocyte,oristransportedacrosstheenterocyteand exported into plasma at the basolateral end of the enterocyte 8; by the transport ferroportin (figure1.1).Ferrousironmoleculesarethenoxidisedtoferricironbyhephaestin, an enterocytebound reductase. This ferric iron is bound to the protein transferrin, and transportedeithertostoragesitesortotheerythronforhaemoglobinproduction. Regulation of iron absorption Whilstincreasingironintakeindeficientindividualsimprovesironstatus,thereareconcerns thatitmayalsoresultinironoverload.Becausenoironexcretorymechanismsexist,thebody musttightlyregulatetheamountofironthateventuallyentersthecirculation,becauseexcess iron resulting in iron overload is toxic 9. Iron absorption is regulated at the basolateral membraneofenterocytesbyhepcidin,apeptidehormoneproducedintheliverthatcirculates inplasma.Hepcidinisanegativeregulatorofplasmaironconcentrationsbyinhibitingthe exportofironbyduodenalenterocytesintoplasma.Itactsbybindingtotheenterocyteiron exporter, ferroportin, and causing its degradation 10 .Inaddition,absorptionofdietaryferric ironispossiblyregulatedattheapicalendofenterocytesbyduodenalcytochromeb:iniron deficiency,itsactivityisstimulatedbyenhancedproteinexpression 11,12 .Enterocyteshavea lifecycleof23days;thereafter,theyaresloughedoffandtheironstillcontainedinthemis lost through the gastrointestinal tract 8. Iron absorption into enterocytes and export from enterocytes into the circulation is tightly regulated and in normal circumstances will effectivelypreventtheriskofironoverload.

14 Chapter1 ______

Fe 3+

Fe 2+

Apicalend DcytB DMT1

Fe 2+ Fe 3+ ferritin

Ferroportin Hephaestin Basolateral end

Fe 2+ Fe 3+ Fe 3+ Transferrin

Figure1.1Ironuptakeintoandexportfromduodenalenterocytes.AdaptedfromAndrews1999and2000 8,13 . Iron must cross two membranes to be transferred across the absorptive epithelium. Each transmembrane transporter is coupled to an that changes the oxidation state of iron. The apical transporter has been identified as DMT1. The basolateral transporter requires hephaestin, a ceruloplasminlike molecule, for the transferofirontotheplasma.Ironwithinenterocytesisstoredasferritin. METHODSOFASSESSINGIRONSTATUS Iron deficiency usually occurs in three stages: the depletion of iron stores; iron deficient erythropoiesis;andirondeficiencyanaemia.Inthissectionbiomarkersaredescribedforeach ofthesestages. Ferritin concentration Theconcentrationofferritininplasmaisdirectlyproportionaltobodyironstoresinhealthy individualswith1g/Lincrementscorrespondingto810mgor120gstorageiron/kgbody weight 14 .Ferritiniscurrentlythemostimportantindicatorforironstatus.Itisdecreasedin iron depletion, and is a sensitive indicator of the level of iron stores. Low concentrations

15 GeneralIntroduction ______ (<12g/L in children < 5 years and <15 g/L in individuals ≥ 5 years 1) always indicate storage iron depletion 15 . In individuals with acute or chronic inflammation, malignancy or liverdisease,however,plasmaferritinconcentrationiselevatedindependentlyofironstatus 14 . Inpopulationswithahighprevalenceofinfection,ironstatuscanbedeterminedbyexcluding individuals with infection or inflammation, or by adjusting for the effects of infection or inflammation. The most commonly used plasma indicator for acute infection is Creactive protein (CRP), whereas plasma concentration of α1acidglycoprotein (AGP) has been proposedasameasureofchronicinfection 15 . Soluble transferrin receptor (sTfR) CellularironuptakeoccursthroughinteractionofFe 3+ transferrinwithaspecificmembrane receptor,transferrinreceptor.Asolubleformoftransferrinreceptorisfoundincirculation;its concentrations are proportional to the total number of membranebound receptors in the erythron. The expression of the cellular membranebound receptors, and thus plasma sTfR concentrations,areincreasedinirondeficiency.sTfRconcentrationisareliableindexofearly tissue iron deficiency 16 and has the advantage of being minimally influenced by inflammation 15,17 .However,malariainducedchangesinerythropoiesisandotherconditions thatcauseanexpansionoftheerythronwillalsoproduceelevatedsTfRconcentrations 17 ,so thatitiscurrentlyimpossibletodetermineironstatusinindividualswiththeseconditions. StudyresultsofsTfRaredifficulttocomparebecausecutofflevelsindicatingirondeficiency dependonthecommercialtestthatisdeployed 18,19 . Haemoglobin Anaemia is defined by haematocrit values or haemoglobin concentrations below normal values(<110g/Linchildren<5yearsand<115g/Linchildren≥5years 1)inareference population.Haemoglobinconcentrationsareinfluencedbyanumberofotherfactorstherefore it is not considered a sensitive indicator of iron deficiency, but is however necessary to determinethepresenceofirondeficiencyanaemia. Plasmaferritinconcentration,whenusedincombinationwithplasmaCRPconcentrationand indicatorsofthepresenceofmalariainfection,isthebestavailableindicatorofironstatusin populations of African children. Plasma sTfR concentration can improve detection of iron deficiencyinchildrenwithinflammationthatisnotduetomalaria.

16 Chapter1 ______ STRATEGIESTOREDUCEIRONDEFICIENCYANAEMIAANDTHE ASSOCIATEDBENEFITS The goal of iron interventions is to reduce the risks associated with iron deficiency. In children these risks include: increased morbidity due to decreased immunity; decreased activity, and decreased cognitive and motor function. Hence benefits in these areas are expectedtooccurwithimprovedironstatus.Thisthesiswilladdresstheeffectofimproved iron status on cognitive function. Changes that occur due to iron deficiency in early childhood,dependingonthetimingofirondeficiency,maybeirreversiblewhilstthosethat occuraftertheweaningperiodmaybereversedbyironrepletion 20,21 .Duringchildhoodthe frontal lobe is still maturing and iron deficiency at this stage may manifest in cognitive deficits.Studiesshowthatschoolagedchildrenwithirondeficiencyanaemiascorelowerin IQtestsandtestsofattentionthantheirironrepletecounterparts 22 .Improvedironstatusis associatedwithimprovementsinmotordevelopmentandtheabilitytoacquirelanguage 23 . Although the exact mechanisms of the relationship between iron and cognitive and motor developmentareasyetunclear,itisplausiblethatagoodironstatusisbeneficial. Improving ironstatusmayimprovecognitiveandmotorfunctionespeciallyinchildren. Nutritionalstrategiestocombatirondeficiencyanaemiaincludefoodbasedapproachessuch as food or dietary diversity, pharmaceutical approaches (supplementation), andfoodfortification. Fooddiversityinvolvesincreasingthequantityandthevarietyofironrichfoodsconsumed 24 . Thismayincludepromotingtheproductionandconsumptionoffoodsrichiniron,andfoods thatcontainsubstancesthatenhanceironabsorption;andtheuseoffoodprocessingmethods suchasfermentation,thatreducethecontentofironabsorptioninhibitors.Dietarydiversity hastheadvantageofsimultaneouslyimprovingtheintakeofmultiple. Supplementation with pharmacological doses of iron can effectively achieve iron repletion withinashortperiod,especiallyingroupsathighriskofirondeficiency.Adherencemaybe poor,andwidespreadsupplementationislogisticallydifficulttoachieve. Inbiofortificationtheironcontentofplantfoodsmaybeincreasedthroughselection,classical breeding,geneticengineeringoracombinationofthesemethods.Breedingmayhoweverbe

17 GeneralIntroduction ______ limitedinachievingironlevelsthataresufficientlyhightosubstantiallyimproveironstatus. Geneticengineeringmaybeamorefeasiblemethodtoraiseironcontentortoenhanceiron bioavailabilitybyreducingphytatelevels 25,26 . Food fortification aims at increasing iron intake through the addition of suitable iron fortificantstocommonlyconsumedprocessedfoods.Ithaspotentiallylargebenefitsbecause it can reach a large proportion of deficient populations and improve iron status relatively rapidly 24 . Another main contributing factor to iron deficiency is infestation with helminths such as hookworm, Trichuris trichura and schistosomal worms. In addition to the food based strategies, therefore, helminth control is necessary for the improvement of iron status. Becauseofthefocusofthisthesis,factorswillbereviewedinthesubsequentsectionsthat must be taken into consideration to fortify foods; particularly issues related to the use of NaFeEDTAasanironfortificant. Food fortification with iron Mostcommonlyrecommendedironfortificantsincludeelementaliron,ferroussulfate,ferrous fumarate,and,morerecently,NaFeEDTA.Elementalironpowdersaremanufacturedbyfive different processes: Hreduction, COreduction, atomization, electrolytic and carbonyl processes 27 .Elementalironpowderswereinitiallytheironfortificantofchoicebecauseof theirstabilityinfoodvehicles,theirlowcost,andbecausetheycausefewsensoryproblems. Althoughthisformofironincreasestheoverallironcontentofthediet,theabsorptionofsuch iron,ishighlydependentonmealcomposition.Ofthe elemental ironpowders, electrolytic ironhasreasonableefficacyinimprovingironstatuswhenusedinsomefoodvehicles;andits stabilityandorganolepticpropertiesfavouritscontinueduse.Itisinsolubleandpoorly solubleindiluteacid. Ferroussulfateandferrousfumaratearehighlybioavailableintheabsenceofironabsorption inhibitors 28 . Ferrous sulfate provides the reference to assess the relative bioavailability of otherironfortificants.Becauseitiswatersoluble,however,itcaninduceoxidativeprocesses under influence of moisture. This can cause rancidity of contained in foods; and organolepticchanges.Theseeffectslimitthetypeoffoodvehiclestowhichferroussulfate canbeadded.Bycontrast,ferrousfumarateispoorlywatersolublebutissolubleinacidic

18 Chapter1 ______ conditionsprevailinginthestomach.Ithaslowpotentialforadversesensorychanges,making itasuitablefortificantinfoodvehiclessuchasflourtowhichtheuseofferroussulfatecannot beapplied.However,ferroussulfate,ferrousfumarateandelectrolyticironareallsusceptible tobindingbyironabsorptioninhibitors,hencetheirbioavailabilityissubstantiallyreducedin highphytate diets. The bioavailability of these fortificants in highphytate diets can be improvedbyconcurrentuseofironabsorptionenhancerssuchasascorbicacidorNa 2EDTA. Ascorbicacidenhancesironabsorptioninbothwatersolubleandwaterinsolublecompounds 29 in a dosedependent way. However, its applicability is limited because it is expensive, susceptible to losses during storage, especially under hot, humid conditions, and cooking lossesarehigh.Na 2EDTA,ontheotherhand,hastheadvantageofstabilityduringstorage andfoodpreparation 28 .Itenhancesironabsorptionfromwatersolublecompoundssuchas ferrous sulfate but not from waterinsoluble compounds such as ferrous fumarate 2932 . Although highly bioavailable, the use offerrous sulfate and ferrous fumarate is limited to lowphytatedietsordietsrichinironabsorptionenhancers.Ascorbicacid,althoughcapable ofenhancingironabsorptionfromawiderangeofnonhaemironsources,haslimitedvalue asafoodadditivewheresuchenhancingqualitiesaremostrequired. Flour is an attractive food vehicle for fortification because it is widely consumed in large quantitiesbylargepopulationgroupsthroughouttheyear.Thehighcontentofironabsorption inhibitorsinflour,howeverpresentsspecialchallenges.Thusanironfortificantmustbeused thatdoesnotcauseorganolepticchangesandcansupplyirondespitethepresenceofphytates. NaFeEDTAhasbeenshowntohavehighpotentialofbeingsuchafortificant.Itsabilityto improvethebioavailabilityofbothfortificantandintrinsicironhasbeenshowninisotope studies 3336 andfieldtrials 37,38 .Inhighphytatediets,absorptionofironfromNaFeEDTAis 23 times the absorption from ferrous sulfate; in the absence of phytates, its absorption is comparable to that of ferrous sulfate 27 . The application of NaFeEDTA in field trials, however,hasbeenconfinedmainlytocondimentssuchasfishsauce,soysauceandcurry powder.Inthesevehicles,itwasshowntobeefficaciousinimprovingironstatus 37,38 . Its applicationinhighphytateflourinafieldtrialhadnotbeenshownbeforetheworkforthis thesiswasstarted. TheuseofNaFeEDTAasanironfortificanthasthepotentialtogreatly enhance efforts to improve the iron status of populations consuming highphytate cereal baseddiets.

19 GeneralIntroduction ______ Currentlyelectrolyticironisthepreferredironcompoundforlowphytateflourandwasthe formofironlegislatedforfortificationoffloursinSouthAfricaatthetimetheworkforthis thesisstarted;theuseofferrousfumarateisoptional.NaFeEDTAisrecommendedforhigh extraction maize flour. It is also recommended for fortification of wholewheat flour and condimentsincludingfishsauce,,currypowder 28 andsoysauce. SAFETYOFNaFeEDTA Centraltotheuseofanyfoodfortificantistheissueofsafety.Toestablishsafetyofafood additive, assessments of acute toxicity, subacute toxicity and longterm toxicity are conductedinanimals.Acutetoxicitytestsinvolveadministrationofsingleorrepeateddoses ofthesubstance,orallyorbyintraperitonealinjectionover24hoursorless.Thesetestsare usedtodeterminetheLD 50 ,ortheamountofsubstancethatkills50%oftestanimals.Sub acutetoxicitytestsinvolvefeedingthesubstanceinvaryingdosestogroupsofanimalsfora periodofupto10%oftheexpectedlifespan.Dosesareselectedwiththeaimofproducingan effect in at least one group and no effect in at least one other group. Results are used to establishanycumulativeactionofthesubstanceandtofindthemaximumamounttolerated (highest level with no adverse effects) and the minimum toxic level (lowest level at which adverseeffectsareobserved).Longtermtestsinvolvefeedingthesubstanceatvariousdietary levelstogroupsofanimalsforperiodsequivalenttoapproximately60yearsinhumans(2 yearsinratsand80weeksinmice).Thetestsaimtomeasureanoeffectlevelwhichwould beexpectedtobe atleast100timesthatlikely to be consumed by man. Carcinogenicity, effectsonreproduction,lactationandspermatogenesisareestablished;andmetabolicstudies areconductedtoassessthekineticsofabsorption,storageandelimination;tomeasureeffects onotherdietaryconstituents;andtodeterminethenatureandfateofthemetabolicproductsin urine,faecesandotherroutes 39 .Onlyaftersafetyisconcludedinanimalexperiments can humantrialsbeconducted. Adverse effects attributed to EDTA concerned effects of zinc deficiency 40 that can theoretically be induced by high intakes of the chelate. When zinc was administered concurrentlywithhighlevelsofEDTAtheadverseeffectswerenotobserved.Thechelating properties of EDTA and its potential to affect the absorption and or metabolism of other micronutrients became the main focus of EDTA safety for food fortification. Growth

20 Chapter1 ______ depression and anaemia observed in rats fed 1040 mg CaNa 2EDTA/kg diet was readily reversedbytheadditionofiron,copperandothermineralelementstothediet 28,41 . AnAcceptableDailyIntake(ADI)istheendpointofevaluationsforfoodadditives 42 .The

ADI for CaNa 2EDTA was establishedby the Joint FAO/WHO Expert CommitteeonFood Additives(JECFA)in1972,basedonthehighestnoeffectlevel(NOEL)availableatthetime withasafetyfactortotakeintoaccounttheuncertaintiesofextrapolationofanimaldatato humansandforvariationwithinthehumanspecies.TheADIof2.5mg/kgbodyweightper dayreferredtothecompoundCaNa 2EDTA.Thisvalueishoweverconfusingwhenreferring to the EDTA moiety of the compound; especially when using the ADI with reference to NaFeEDTA.Thusthevalue2.5mg/kgbodyweighthasbeenquotedastheADIforEDTAin earlypublications 43,44 andonlyrecentlyhasavalueof1.9mg/kgbodyweightbeenexplicitly statedspecificallyforEDTA 45 . Safety aspects of NaFeEDTA concern both its iron and its EDTA component. Iron from NaFeEDTAhasbeenshowntohaveasimilarleveloftoxicitytothatofferroussulfate46 ,and concentrationsofupto140mgiron/kgfromeitherferroussulfateorNaFeEDTAwerenot foundtoresultinexcessiveloadinginrats 47 .EarlystudiestoassessthetoxicityofEDTA have been reviewed comprehensively 44 . In animal studies, levels higher than used for fortification with NaFeEDTA did not affect growth, reproductive performance, or allergenicity;neitherwasthereevidenceofgenotoxicity 28 .Althoughevidenceofthepotential usefulness of NaFeEDTA as an iron fortificant was available in the early 1970s, concerns about its safety stalled its use in fortification programmes. In the gastrointestinal tract, NaFeEDTAsplitsintoironandEDTA.Onlyasmallfraction(<5%)ofEDTAisabsorbed; thisabsorbedEDTAisrapidlyandcompletelyexcretedintheurineanddoesnotaccumulate in the body. Iron and EDTA are absorbed by separate and independent mechanisms when NaFeEDTAisaddedto ameal 28 .ThusariskassessmentforexcessintakeofNaFeEDTA shouldseparately addresstherisksforexcessintake of iron and EDTA. Although there is growing evidence that NaFeEDTA may not influence the metabolism of other nutrient elements 4854 ,evidenceofitspotentialeffectinyoungchildrenislacking. Inaddressingthesafetyofironinterventionsitisimportanttotakeintoaccountotherfactors thatarerelatedtoironstatusinwaysthatcouldincreaseriskofmorbidityinsomeindividuals.

21 GeneralIntroduction ______ Among these factors are infections and haemoglobin disorders. Because the setting of this thesisiswithinanareawherethetwofactorsareprevalenttheywillalsobeaddressedhere. Iron and infection Inhumans,oneoftherolesofironisinvolvementintheeffectivemountingofanimmune response 55.Thusthehostmusteffectivelysequesterironfrompathogensandsimultaneously provide a supply of iron that is not limiting to its immune system. Iron supplementation thereforecantheoreticallyincreasetheriskofinfectionormorbidity.Earlystudiesshowed conflictingresultsontherelationshipbetweenironsupplementationandinfectionrisk 56 ,but arecentstudyinPemba,whichwaspublishedafterthefieldworkforthisthesishadbeen completed, found that supplementation with iron and folic acid increased the rates of hospitalisation and mortality, presumably due to malaria 57 . Following these findings, the WorldHealthOrganizationrecommendedthatironandfolicacidsupplementationforyoung childreninsettingswithahighprevalenceofmalariaandahighincidenceofotherinfectious diseases should target those who are anaemic and at risk of iron deficiency 58 . In the populationstudiedwithinthisthesis,malariaisaleadingcauseofmorbidityandmortalityand itsreductioniscentraltopublichealthmeasurestoimprovehealth.Whetherornotironwill increasetheriskofmalariamorbiditymaydependontransmissionseason,doseofiron,age, andthepresenceofhaemoglobinopathiesorotherhaemoglobindisorders 56 .Thereiscurrently no evidence that iron fortificationproduces malariamorbidity.Thisishoweveroutsidethe scopeofthisthesis.Therelationshipexaminedinthisthesisisthepotentialofinfectionto influence the effect of iron interventions. Infection may render iron supplementation inefficient:duringtheinflammatoryprocess,ironabsorptionmaybereduced,andmuchofthe ironmaybedirectedtoreticuloendothelialstoresratherthantotheerythronforhaemoglobin synthesis 59 . Because hepcidin causes degradation of ferroportin, the transport protein necessaryforironexportfromenterocytes 10 absorptionmaybeconcurrentlyreducedduring infection due to the action of hepcidin. Hence iron supplementation could be detrimental duringinfectionand,conversely,infectionmayreducetheefficacyofironsupplementation. Genetic haemoglobin disorders Haemoglobinopathiesandotherhaemoglobindisordersarecommoninmalariaendemicareas and have been associated with protection against the effects of severe malaria 6062. These conditions include, among others, sickle cell anaemia, the thalassaemias and glucose6 phosphatedehydrogenasedeficiency.ThemostcommoninsubsaharanAfricaaresicklecell

22 Chapter1 ______ trait and α +thalassaemia. Few individuals with sickle cell anaemia, i.e. those who are homozygous,survivebeyondchildhood,andtheprevalenceisgenerallylow.Sicklecelltrait, theheterozygousgenotype,isasymptomaticbutmaybecharacterisedbymildanaemia.α + thalassaemiamayoccuratfrequenciesofupto70%inAfrica 57 .Itinvolvesasingledeletion inoneofthepairofαglobingenes(α/αα).Homozygoteshavetwosuchdeletions(α/α). Heterozygotesusuallyexhibitnormalhaemoglobinconcentrationswhilstinhomozygotes,a mildmicrocytichypochromicanaemiaoccursthatcaneasilybemistakenforirondeficiency. Individuals with α +thalassaemia are asymptomatic. The effect of sickle cell trait and α + thalassaemia on iron status should be taken into account when assessing iron status. It is important to note, however, that iron deficiency can exist in either condition 56 . In more severe forms of thalassaemia such as thalassaemia major, iron absorption is increased resulting in iron overload. Although iron overload is not expected to occur in α+ thalassaemia,itisnotcertainwhetherindividualswiththisconditionmaybenefitmorefrom ironinterventionsthanindividualswithoutthalassaemia,orwhethertheymayloadmoreiron thanindividualswithoutα +thalassaemia. II.AIMSANDOUTLINEOFTHISTHESIS Selection of study population Thedemandforironisgreatestduringpregnancyandperiodsofrapidgrowthsuchasinfancy andadolescence.Duringchildhoodpoorironstatusismorelikelytobeduetoenvironmental factors such as diet and infection than to normal physiological factors. Additionally, iron requirements at this time are not greatly influenced by sex 63 . Because of the minimal influenceofironstatusbyphysiologicalfactorsduringthisperiod,itmaybethebeststageto obtainevidenceoftheefficacyofironfortificationovershortperiods. Wechosetoconductthestudy amongschoolchildren because they can be easily reached throughschoolsforextendedperiodsoftime.Additionally,thechildrenareold enoughto consume target amounts of porridge but not yet at the stage of puberty with its attendant influencesonironstatus.

23 GeneralIntroduction ______

Objectives and outline of the thesis As noted in the preceding sections, fortification has the potential to reach a substantial proportionofdeficientpopulations;henceitisanefficientstrategytoreduceironabsorption. An adequate supply of bioavailable iron in a suitable food vehicle that is commonly consumedwillimprovetheimpactofironfortificationprogrammes.Itisalsoclearthatoneof themainhindrancestoimprovingironstatusisthepresenceofironabsorptioninhibitorsin cereal and legumebased diets of most deficientpopulations;andthatthebioavailabilityof electrolyticiron,ferroussulfateandferrousfumarateissubstantiallyreducedinthepresence of iron inhibitors. An effective way of improving iron bioavailability in the mentioned circumstances,andthemechanismcentraltothisthesis,isthechelationofiron,maintainingit in a soluble form to promote its bioavailability. This property is a characteristic of the fortificant, NaFeEDTA that doubles as an enhancer of iron absorption. Confirmation is necessary of its efficacy in highphytate food vehicles as well as additional studies on its effectonthestatusofothernutrients.ThisthesisaddressestheuseofNaFeEDTAasaniron fortificant in a highphytate food vehicle, maize flour. The benefit of NaFeEDTA will be assessedintwostudies.First,itisassessedbycomparingitsefficacyinimprovingironstatus to that of electrolytic iron, which is widely used due to its stability in food vehicles. Aditionally,evidenceontheinfluenceofirononspecificcognitivefunctionsisstilllacking. The thesis will therefore further assess the benefits of NaFeEDTA by exploring whether improvementsincognitiveandmotorfunctionoccurred after consumption of ironfortified maize flour with the aim of adding information to this area of knowledge. The safety of NaFeEDTAwillalsobeassessedintwostudies.Becauseitisnotcertainwhetherindividuals with α +thalassaemia may benefit more from iron interventions than individuals without thalassaemiaorwhethertheycouldloadmoreironthanindividualswithoutα +thalassaemia, modificationoftheeffectoftheinterventionbyα+thalassaemiawillbeassessedinthefirst study addressing NaFeEDTA safety. The second study on safety will assess NaFeEDTA effectonthestatusofothermicronutrientsinourstudypopulation. Theimmediateobjectivesofthethesis,therefore,are: 1. ToassesstheefficacyofconsumingwholemaizeflourfortifiedwithNaFeEDTAor electrolyticironontheironstatusofschoolagedchildren 2. To assess the effect of iron fortification of whole maize flour with NaFeEDTA or electrolyticirononcognitivefunctionandfinemotorskills

24 Chapter1 ______ 3. To assess modification of the effect of the intervention by alpha thalassaemia genotype 4. Toassesstheeffectoftheinterventiononthestatusofnutritionallyimportantmineral elements. Becauseoftheminimalinfluenceonironstatusbyphysiologicalfactorsduringchildhood,we chosetoconductourstudyinchildrenaged38yearsonthebasisthatchangesinironstatus arisingfromaninterventionwouldbemorereadilyobservedwithinashortperiod.Abaseline surveyandsubsequentrandomisedtrialwasconductedbetweenMayandNovember2004ina sampleof516childrenaged3to8years,topursuetheobjectives1and3.Theresultsthat addresstheseobjectivesarediscussedinchapters2and4,respectively.Attheendofthefield trial,weconductedastudytoassesscognitiveandmotorfunctioninasubsampleof209 childrenaged6to8years,topursueobjective2. The findings are addressed in chapter 3. Mineral element analysis of plasma from the 516 children in the randomised trial was conductedin2007topursueobjective4andisdiscussedinchapter5ofthisthesis.Themain findingsandconclusionsofthestudieswithinthethesisarediscussedinchapter6. III.SETTING

Study site WeinitiallyplannedtoconductthestudyinschoolslocatedontwoplantationsinThika,60 kmfromNairobi,Kenya.Becauseofthefixedschedulesobservedontheplantations,theyare idealforconductingacontrolledtrialbecauselosstofollowupduetomigrationislikelyto beminimal.Acrosssectionalsurveyrevealed,however,thattheanaemiaprevalencewasless than 5%; hence, it was not suitable for conducting an iron fortification trial because the prevalenceofirondeficiencywasalsolikelytobelow.Subsequentcrosssectionalsurveysof haemoglobinstatusintwoadjacentdistrictsontheKenyancoast,MalindiandKilifi,showed thattheprevalenceofanaemiawashighinthetwoareas.Becausetheprevalenceinthetwo areaswassimilar,wechosetoconductthestudyin Malindi district because the potential participatingschoolswereincloserproximityofeachotherandweremorereadilyaccessible duringtherainyseasonthanschoolsinKilifi.ThestudysitewaslocatedinMarafa( figure 1.2 ).

25 GeneralIntroduction ______ TemperaturesinMalindiarehigh,rangingbetween25˚Cand34˚C.Despiteitsproximitytothe coastalrange,theareaissemiarid,with7001000mmrainfallannually.Malariatransmissionis seasonal, and takes place mostly during or shortly after the two rainy seasons that occur between March and May, and between October and December. The main species causing malaria is Plasmodium falciparum . Marafa is one of three administrative areas in Malindi District and covers 1,617 square kilometers. The local population (approximately 50,000) mostlycomprisestheMijikendagroupoftribeslivingmainlyfromsubsistencefarming.There is minimal horticultural activity in most parts, and although the area supports livestock development, the diet is mainly cerealbased with low consumption of animal products with maizeasthestaplefood.Maizemaybereplacedbydriedduringperiodsoffoodshortage. Studyarea Figure1.2Locationofthestudyarea.

26 Chapter1 ______ References 1. WHO. Iron deficiency anaemia: assessment, prevention and control. A guide for programmemanagers.Geneva,Switzerland:WorldHealthOrganization,2001. 2. HanO,FaillaML,HillAD,MorrisER,SmithJC,Jr.ReductionofFe(III)Isrequired foruptakeofnonhemeironbyCaco2Cells. J.Nutr. 1995; 125: 12911299. 3. Conrad ME, Umbreit JN. Pathways of iron absorption. Blood Cells Mol Dis 2002; 29: 336355. 4. AndersonGJ,FrazerDM,McKieAT,VulpeCD,SmithA.Mechanismsofhaemand nonhaem iron absorption: lessons from inherited disorders of iron metabolism. BioMetals 2005; 18: 339348. 5. WienkKJ,MarxJJ,BeyenAC.Theconceptofironbioavailabilityanditsassessment. EurJNutr 1999; 38: 5175. 6. Conrad ME, Umbreit JN, Moore EG, Rodning CR.Newly identified ironbinding proteininhumanduodenalmucosa. Blood 1992; 79: 244247. 7. WesslingResnick M. Biochemistry of iron uptake. Crit Rev Biochemi Mol Biol 1999; 34: 285314. 8. AndrewsNC.Disordersofironmetabolism. NEnglJMed 1999; 341: 19861995. 9. AndrewsNC,SchmidtPJ.Ironhomeostasis. AnnuRevPhysiol 2007; 69: 6985. 10. Ganz T, Nemeth E. Iron imports. IV. Hepcidin and regulation of body iron metabolism. AmJPhysiolGastrointestLiver Physiol.2006; 290: G199203. 11. LiACY,WarleyA,ThoreeV,etal.ImmunolocalizationofduodenalcytochromeB:a relationshipwithcirculatingmarkersofironstatus. EurJClinInvest 2006; 36: 890 898. 12. ZollerH,TheurlI,KochRO,McKieAT,VogelW,WeissG.DuodenalcytochromeB and hephaestin expression in patients with iron deficiency and hemochromatosis. Gastroenterol 2003; 125: 746754. 13. AndrewsNC.Intestinalironabsorption:current concepts circa 2000. DigLiverDis 2000; 32: 5661. 14. CookJD.Diagnosisandmanagementofirondeficiencyanaemia. BestPractResClin Haematol. 2005; 18: 319332. 15. HansKonradB,JürgenGE.Diagnosisofnutritionalanemia–laboratoryassessment of iron status. In: Kraemer K, Zimmermann MB, eds. Nutritional Anemia. Basel, Switzerland:SightandLifePress,2007:3743.

27 GeneralIntroduction ______ 16. SkikneBS,FlowersCH,CookJD.Serumtransferrinreceptor:aquantitativemeasure oftissueirondeficiency. Blood 1990; 75: 18701876. 17. BeguinY.Solubletransferrinreceptorforthe evaluationof erythropoiesisandiron status. ClinChimActa 2003; 329: 922. 18. AllenJ,BackstromKR,CooperJA,etal.Measurementofsolubletransferrinreceptor inserumofhealthyadults. ClinChem 1998; 44: 3539. 19. Ferguson BJ, Skikne BS, Simpson KM, Baynes RD, Cook JD. Serum transferrin receptor distinguishes the anemia of chronic disease from iron deficiency anemia. J LabClinMed 1992; 119: 38590. 20. LozoffB,GeorgieffMK.Irondeficiencyandbraindevelopment. SemPediatrNeurol 2006; 13: 15865. 21. GranthamMcGregorS,AniC.Areviewofstudiesontheeffectofirondeficiencyon cognitivedevelopmentinchildren. JNutr 2001; 131: 649S668. 22. Yehuda S, Rabinovitz S, Mostofsky D. Nutritional deficiencies in learning and cognition. JPediatrGastroenterolNutr 2006; 43Suppl3: S22–S25 23. BeardJL,ConnorJR.Ironstatusandneuralfunctioning. AnnuRevNutr 2003; 23: 41 58. 24. AllenL,deBenoistB,DaryO,HurrellR,eds.Guidelinesonfoodfortificationwith micronutrients. Geneva, Switzerland/Rome, Italy: World Health Organization/Food andAgricultureOrganisationoftheUnitedNations,2006. 25. ZimmermannMB,HurrellRF.Nutritionalirondeficiency. Lancet 2007; 370: 511520. 26. MendozaC,ViteriFE,LonnerdalB, YoungKA,Raboy V, Brown KH. Effect of geneticallymodified,lowphyticacidmaizeonabsorptionofironfromtortillas. AmJ ClinNutr 1998; 68: 11231127. 27. Hurrell RF. Fortification: overcoming technical and practical barriers. J Nutr 2002; 132: 806S812. 28. INACG.IronEDTAforfoodfortification:areport of the International Nutritional Anaemia Consultative Group. Washington DC: The Foundation, INACG Secretariat,1993. 29. Fidler MC, Davidsson L, Zeder C, Walczyk T, Hurrell RF. Iron absorption from ferrousfumarateinadultwomenisinfluencedbyascorbicacidbutnotbyNa2EDTA. BritJNutr 2003; 90: 10815.

28 Chapter1 ______ 30. DavidssonL,DimitriouT,BoyE,WalczykT,HurrellRF.Ironbioavailabilityfrom ironfortified Guatemalan meals based on corn tortillasandblackbean paste. Am J ClinNutr 2002; 75: 535539. 31. FairweatherTait SJ, Wortley GM, Teucher B, Dainty J. Iron absorption from a breakfastcereal:effectsofEDTAcompoundsandascorbicacid. InternJNutr Res 2001; 71: 11722. 32. HurrellRF,ReddyMB,BurriJ,CookJD.AnevaluationofEDTAcompoundsfor ironfortificationofcerealbasedfoods. BritJNutr 2000; 84: 90310. 33. Layrisse M, MartinezTorres C. Fe(III)EDTA complex as iron fortification. Am J ClinNutr 1977; 30: 11661174. 34. MacPhailAP,PatelRC,BothwellTH,LamparelliRD.EDTAandtheabsorptionof ironfromfood. AmJClinNutr 1994; 59: 644648. 35. MartínezTorresC,RomanoE,RenziM,LayrisseM.Fe(III)EDTAcomplexasiron fortification.Furtherstudies. AmJClinNutr 1979; 32: 80916. 36. ViteriFE,GarciaIbanezR,TorunB.SodiumironNaFeEDTAasanironfortification compoundinCentralAmerica.Absorptionstudies. AmJClinNutr 1978; 31: 961971. 37. BallotDE,MacPhailAP,BothwellTH,GilloolyM,MayetFG.Fortificationofcurry powder with NaFe(III)EDTA in an irondeficient population: report of a controlled ironfortificationtrial. AmJClinNutr 1989; 49: 162169. 38. GarbyL,AreekulS.IronsupplementationinThaifishsauce. AnnTropMedParasitol 1974; 68: 46776. 39. Kirkby WW, Salmond GWA, Davies KW. The assessment for safety of food additives. Statistician 1972; 21: 4761. 40. SwenertonH,HurleyLS.Teratogeniceffectsofachelatingagentandtheirprevention byzinc. Science 1971; 173: 624. 41. OserBL,OserM,SpencerHC.SafetyevaluationstudiesofcalciumEDTA. Toxicol AppliedPharmacol 1963; 5: 142162. 42. WHO.Principlesforthesafetyassessmentoffoodadditivesandcontaminantsinfood. InternationalProgrammeonChemicalSafety.EnvironmentalHealthCriteriaNo.70. Geneva,Switzerland:WorldHealthOrganization,1987. 43. BothwellTH,MacPhailAP.ThepotentialroleofNaFeEDTAasanironfortificant. InternJVitaminNutrRes 2004; 74: 42134.

29 GeneralIntroduction ______ 44. HeimbachJ,RiethS,MohamedshahF,etal.SafetyassessmentofironEDTA[sodium iron (Fe3+) ethylenediaminetetraacetic acid]: summary of toxicological, fortification andexposuredata. FoodChemToxicol 2000; 38: 99111. 45. JECFA. International Programme on Chemical Safety. Joint FAO/WHO Expert CommitteeonFoodAdditives.68thJECFAmeetingsummary19th28thJune2007. WHO Technical Report Series. Geneva, Switzerland/Rome, Italy: World Health Organization/FoodandAgricultureOrganizationoftheUnitedNations,2007. 46. Whittaker P, Ali SF, Imam SZ, Dunkel VC. Acute toxicity of carbonyl iron and sodiumironEDTAcomparedwithferroussulfateinyoungrats. RegulToxicolPharm 2002; 36: 280286. 47. AppelMJ,KuperCF,WoutersenRA.Disposition,accumulationandtoxicityofiron fed as iron (II) sulfate or as sodium iron EDTA in rats. Food Chem Toxicol 2001; 39: 261269. 48. DavidssonL,AlmgrenA,HurrellRF.SodiumironEDTA[NaFe(III)EDTA]asafood fortificant does not influence absorption and urinary excretion of manganese in healthyadults. JNutr 1998; 128: 11391143. 49. DavidssonL,AlmgrenA,JuilleratMA,HurrellRF.Manganeseabsorptioninhumans: the effect of phytic acid and ascorbic acid in soy formula. Am J Clin Nutr 1995; 62: 984987. 50. Davidsson L, Cederblad A, Lonnerdal B, Sandstrom B. The effect of individual dietary components on manganese absorption in humans. Am J Clin Nutr 1991; 54: 10651070. 51. Davidsson L, Ziegler E, Zeder C, Walczyk T, Hurrell R. Sodium iron EDTA [NaFe(III)EDTA]asafoodfortificant:erythrocyteincorporationofironandapparent absorption of zinc, copper, calcium, and magnesium from a complementary food basedonwheatandsoyinhealthyinfants. AmJClinNutr 2005; 81: 104109. 52. DavidssonL,KastenmayerP,HurrellR.SodiumironEDTA[NaFe(III)EDTA]asa food fortificant: the effect on the absorption and retention of zinc and calcium in women. AmJClinNutr 1994; 60: 231237. 53. HurrellRF,RibasS,DavidssonL.NaFe3+EDTAasafoodfortificant:influenceon zinc, calcium and copper metabolism in the rat. The British journal of nutrition 1994; 71 (1) :8593.

30 Chapter1 ______ 54. SolomonsNW,JacobRA,PinedaO,ViteriFE.Studiesonthebioavailabilityofzinc in man. Effects of the Guatemalan rural diet and of the ironfortifying agent, NaFeEDTA. JNutr 1979; 109: 15191528. 55. Beard JL. Iron Biology in Immune Function, Muscle Metabolism and Neuronal Functioning. JNutr 2001; 131: 568S580. 56. Oppenheimer SJ. Iron and its relation to immunity and infectious disease. J Nutr 2001; 131: 616S635. 57. Sazawal S, Black RE, Ramsan M, et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: communitybased, randomised,placebocontrolledtrial. Lancet 2006; 367: 13343. 58. WHO.Ironsupplementationofyoungchildreninregionswheremalariatransmission isintenseandinfectiousdiseasehighlyprevalent.Geneva,Switzerland:WorldHealth Organization,2006. 59. BrockJH.Benefitsanddangersofironduringinfection. CurrOpinClinNutrMetab Care 1999; 2: 50710. 60. Wambua S, Mwangi TW, Kortok M, et al. The effect of α+ thalassaemia on the incidenceofmalariaandotherdiseasesinchildrenlivingonthecoastofKenya. PLoS Med 2006; 3. 61. Williams TN. Human red blood cell polymorphisms and malaria. Curr Opin Microbiol2006; 9: 388. 62. WilliamsTN,WambuaS,UyogaS,etal.Bothheterozygous and homozygous α+ thalassemiasprotect against severe and fatal Plasmodiumfalciparum malaria on the coastofKenya. Blood 2005; 106 (1) :368371. 63. HallbergL.Perspectivesonnutritionalirondeficiency. AnnuRevNutr 2001; 21: 121.

31

Chapter2 ______ Efficacyofironfortifiedwholemaizeflouronironstatusof schoolchildreninKenya:arandomisedcontrolledtrial PaulineEAAndang’o,SaskiaJMOsendarp,RosemaryAyah CliveEWest †,DavidLMwaniki,CorineADeWolf RobKraaijenhagen,FransJKok HansVerhoef Lancet2007;369:17991806 †.Deceased

EfficacyofironfortifiedwholemaizeflouronironstatusofschoolchildreninKenya:arandomisedcontrolledtrial ______ Abstract Sodium iron edetic acid (NaFeEDTA) might be a more bioavailable source of iron than electrolyticironwhenaddedtomaizeflour.Weaimedtoassesstheeffect,onchildren’siron status,ofconsumptionofwholemaizeflourfortifiedwithironasNaFeEDTAorelectrolytic iron. 516children,aged38years,fromfourschoolsinMarafa,Kenya,wererandomlyassignedto fourgroups.Allweregiventhesameamountofporridge,fivetimesaweek.Theporridgefor one groupwasmade fromunfortifiedwholemaizeflour;fortheotherthree groupsitwas fortified with either highdose NaFeEDTA (56 mg iron/kg flour), lowdose NaFeEDTA (28mg/kg), or electrolytic iron (56 mg/kg). All children received malaria chemotherapy 14 days before final blood collection to avoid inflammationinduced effects on iron status indicators. Concentrations of haemoglobin, plasma ferritin, and transferrin receptor were analysedinsamplestakenatbaselineandattheendofthe5monthintervention.Theprimary outcomewasirondeficiencyanaemia.Weanalyseddataonanintentiontotreatbasis.This trialisregisteredwithClinicalTrials.gov,NCT00386704. The prevalence of irondeficiency anaemia in children given unfortified flour was 10%. Compared with placebo, the prevalence of irondeficiency anaemiainchildrengivenflour fortifiedwithhighdoseNaFeEDTA,lowdoseNaFeEDTAandelectrolyticironchangedby 89% (97% to 49%), 48% (77% to 20%) and 59% (18% to 209%), respectively. ConsumptionofhighdoseNaFeEDTAimprovedallmeasuredironstatusindicators.Low doseNaFeEDTAdecreasedtheprevalenceofirondeficiencybutdidnotnoticeablychange the prevalence of anaemia. Electrolytic iron did not improve any of these ironstatus indicators.Childrenwhowereirondeficientatbaselinebenefitedmorefromhighdoseand lowdoseNaFeEDTAthanthosewithsufficientironatbaseline. ConsumptionofwholemaizeflourfortifiedwithNaFeEDTAcausedmodest,dosedependent improvementsinchildren’sironstatus.Fortificationwithelectrolyticirondidnotimprove their iron status. Therefore, in highphytate flours, NaFeEDTA is more suitable than electrolyticironforsupplementationofironinthediet.

34 Chapter2 ______ Introduction Fortificationofstaplecerealfloursmaybeacosteffective,sustainablewaytoimproveiron status in developing countries. It can be achieved by addition of a suitable substance (or fortificant), either on a largescale to centrally processed flour, or on a smallscale, in communities.1Internationaleffortstoadvocateflourfortificationarenowbeginningtomove theprocessforward.49countriesroutinelyaddirontoflour(comparedwithtwocountriesin 1990) 2.Thusabout15%ofoutputfromtheworld’sflourmillsisfortifiedwithiron.2In sub Saharan Africa, Nigeria and South Africa have made fortification of flour with iron mandatory,andcountriessuchasCapeVerde,Côted’Ivoire,Guinea,Ghana,andKenyaare planningflourfortificationprograms. 2IneasternAfrica,maizeandwheatfloursaresuitable fortificationvehiclesbecausetheyareconsumedaspartofthetypicaldiet. Elementalironpowdersarethemostwidelyusednutrientvehicleforfortificationofflour.In anauthoritativereview,Hurrellandcolleagues 3concludedthatelectrolyticironistheonly form of elemental iron that can be recommended as an iron fortificant in cereal flours. Fortificationofwheat andmaizeflour withelectrolyticiron ismandatorybylawinSouth Africa(atminimumconcentrationsof4428mg/kgand5040mg/kgforsiftedandunsifted flour). 4However,a lthoughelectrolyticironisinexpensive,itsbioavailabilityisquestionable becauseitcaneasilybindtophytatesincereals.Onlytworandomisedtrialshaveassessed whetherconsumptionofsifted,lowphytateflour,fortifiedwithelectrolyticiron,affectsiron status.5,6 Thefirsttrial 5wasnotconclusive;inthesecondtrial,theironstatusofparticipants improved. 6 In developing countries, however, the typical diet includes whole grain flour which has a muchhighercontentofphytatethanlowextractionwhiteflour.Insuchcases,NaFeEDTA maybeabetterfortificantthanelectrolyticironforsupplementationofiron,becauseEDTA chelatesiron,andmightpreventitfrombindingtophytates.Isotopestudiessuggestthatiron absorptionfromNaFeEDTAmightbetwotothreetimeshigherthanfromelectrolyticiron.7 Thissubstancemightnotonlyimproveabsorptionofaddediron,butalsoofnonhaemironin food. 8 When given in fortified condiments, NaFeEDTA improved iron status. 912 It is well absorbed when added to corn masa flour, 13 which contains inhibitors of iron absorption. ThereforeNaFeEDTAispotentiallysuitableforironfortificationinhighphytatefoods.We aimedtoassesstheeffectofconsumptionofwholemaizeflourfortifiedwithhighandlow

35 EfficacyofironfortifiedwholemaizeflouronironstatusofschoolchildreninKenya:arandomisedcontrolledtrial ______ dosesofNaFeEDTA,andwithelectrolyticiron,onchildren.Weexpectedthattheefficacyof ironfortificationmightbeaffectedbychildren’sironstatusatbaseline. Subjectsandmethods Participants OurstudywasbasedatfourschoolsinMarafa,inthehinterlandofMalindidistrict,inthe semiaridcoastallowlandsofKenya.WedidallthefieldworkbetweenMayandNovember, 2004,toreducenoncomplianceduetoholidaysinAprilandAugust,andfromDecemberto earlyJanuary.Becauseofthisconstraintourtrialperiodcoincidedwiththetworainyseasons (MarchMayandOctoberDecember),inwhichmalariatransmissionishighest.Mostmalaria episodesaredueto Plasmodiumfalciparum. 14 LocalfamiliesaremostlypoorsubsistencefarmersfromMijikendatribalgroups.Theirdietis monotonous, and predominantly based on maize, with a low content of animal products. Childrensometimesreceiveonedailymealthroughgovernmentfundedfeedingprogrammes thatareoperatedbyschoolsinperiodsofdrought. Recruitment and screening Weselectedchildrenwhowereenrolledinnurseryandthefirstyearofprimaryschool.Four weeks before the intervention we began to give children a target daily amount of cooked unfortifiedflourtoassesstheacceptabilityofthefortificationvehicleandcompliancewith consumptionofthetargetquantity.Threeweeksbeforethetrialwescreened528childrenfor eligibility.Ourcriteriaforinclusionwereage38yearsandconsumptionofatleast50%of thetargetamountofcookedunfortifiedflourduringthemonthlongruninperiod.Children with chronic disease, overt severe malnutrition, mental disability, or haemoglobin concentrations <70 g/L were excluded. All children were examined by a clinical officer. Thosewhohadfeverorothersignsofmalaria,and who tested positive for malaria were givensulfadoxinepyrimethaminebeforethestartoftheintervention.Childrenwhobecame illduringtheinterventionperiodweretreatedorreferred according to guidelines from the KenyanMinistryofHealth.Ethicalapprovalwasgrantedbytheethicalreviewcommitteeof KenyaMedicalResearchInstitute(KEMRI).Weobtainedsignedinformedconsentfromthe parentsofallenrolledchildren.

36 Chapter2 ______ We took samples of venous blood at baseline into containers with Naheparin (Becton Dickinson; Temse, Belgium), and transferred blood into bottles with EDTA for haematological analysis and to detect P falciparum malaria antigenemia by dipstick test. Heparinisedbloodwasseparatedinthefieldwithinonehourofcollection;plasmawaskept andtransportedinacoolboxfor26hours,andsubsequently storedin liquidnitrogen( 196ºC) and below 70ºC. We also preserved blood sediment in buffer (AS1; Qiagen, Valencia,CA,USA)atambienttemperaturesforsubsequentαthalassaemiagenotyping.We measuredchildrens’heighttothenearest1mmandweighttothenearest0.1kg(Leicester stadiometer and Tanita BWB800 scale, respectively; Chasmors, London, UK). The scales werecalibrateddailywithstandardweights. Procedures The fortification vehicle consisted of uji , a porridge of maize flour cooked in water, and sweetenedwithsugar.Thetargetdailyintakewas700mL uji (containing100gflour)for children aged 35 years, and 1,000 mL uji (containing 150 g flour) for children aged 68 years.Thistargetamountwasprovideddailytoeachchildintwoequallydividedportions. Weestimatedthatadditionofironatalowdoseof28mg/kgflourandahighdoseof56 mg/kgflourwouldprovide20%and40%,respectively, of the daily iron requirements for childrenaged35 years;and18%and36%,respectively, of the requirements for children aged 68 years. In this calculation, we assumed that 5% of the fortificant iron would be absorbed. Bothfortifiedandunfortifiedwholemaizeflourfor uji wereproducedandcodedatUnilever Kenya,Nairobi.FlourwasfortifiedwithNaFeEDTA(AkzoNobel,Netherlands)at56mgor 28 mg iron per kg flour, or electrolytic iron (Food Chemicals Codex Vgrade; Industrial MetalPowders,Pune,India)at56mg/kgflour.Theelectrolyticironfortificantwasidentical tothatspecifiedformandatoryadditiontoflourinSouthAfrica.Flourfortifiedwithironwas alsosupplementedwithanutritionalpremix(Roche,nowDSMNutritionalProducts,Basel, Switzerland)containingvitaminA(2,500g/kg),thiamin(35mg/kg),(40mg/kg) and (450 mg/kg). We measured the mean particle diameter of electrolytic iron particles along three orthogonal axes by laser beam diffraction (Rhodos, Sympatec, ClausthalZellerfeld,Germany);themedianparticlesizewas34m(10th90thpercentiles:

37 EfficacyofironfortifiedwholemaizeflouronironstatusofschoolchildreninKenya:arandomisedcontrolledtrial ______ 1462 m). The morphology of the electrolytic iron particles was examined by scanning electronmicroscopeisshownin figure2.1.

Figure2.1 Morphology of electrolytic iron used in this study, as determinedby scanning electron microscope. Panelsontherightaredetailsfrompanelsontheleft,takenwithgreatermagnification. Each flour type was labelled with colourcoded packaging. This code was withheld from participants and investigators until all data had been collected and statistical analyses had begun.Flourtypescouldnotbevisuallydistinguished,eveninthecookedproduct.Eligible childrenwererandomlyallocatedtooneoffourtreatmentgroups,whichwerecolourcoded to correspond to the flour packaging. The allocation code was generated by simple randomisation,usingatableofrandomnumbersbyoneofus(HV)whowasnotinvolvedin thescreeningandenrolment.

38 Chapter2 ______

Eligibleforassessment Notscreenedn=56 n=585 n=44 Refused n=2 Migrated n=2 Nobaselinesample taken Screenedatbaseline n=1 Diedbeforescreening Excludedn=12 n=528 n=7 Other* n=7 Haemoglobin concentration<70g/L n=2 Migrated n=2 Noncompliant Randomised n=1 Chronicabsentee n=516

HighdoseNaFeEDTA LowdoseNaFeEDTA Electrolyticiron Placebo n=121 n=140 n=127 n=128

n=2Withdrawn n=1Migrated n=1Migrated n=3Withdrawn n=1Absent † n=1Hospitalised n=1Absent † n=1Absent †

Completed n=135 Completed n=119 Completed n=123 Imputed ‡ n=5 Completed n=128 Imputed ‡ n=2 Imputed ‡ n=4 Excluded § n=1 Analysed n=128 Analysed n=121 Analysed n=127 Analysed n=139 Figure2.2Studyprofile *Onechildrefusedtoattendschool,threechildrenwereabsentatscreening,onechild’sparentwasabsentat screening, two children were absent during the school vacation; † absent at time of collection of final blood specimen; ‡ groupmeanormedianvalues; § abnormalironstatusindicatorsassociatedwithsicklecellanaemia.

39 EfficacyofironfortifiedwholemaizeflouronironstatusofschoolchildreninKenya:arandomisedcontrolledtrial ______ Placebo 128 60±14 52/48 1140±107 340[200,538] 320[190,530] 25[21,31] 05[00,30] 9[70] 60[469] 12[94] 8[63] 65[508] Electrolytic iron 127 58±14 50/50 1109±113 260[160,440] 240[150,415] 26[22,33] 00[00,20] 6[47] 75[591] 21[165] 15[118] 62[488] Lowdose NaFeEDTA 140 59±15 50/50 1108±109 282[160,408] 270[150,390] 27[22,33] 10[00,30] 13[93] 84[604] 27[193] 19[136] 65[464] pants,byinterventiongroup Highdose NaFeEDTA 121 59±14 46/54 1099±116 300[205,450] 280[195,440] 27[22,34] 10[00,30] 8[66] 71[587] 18[149] 12[99] 62[512] *,† ¶ * ║ § * ,n[%] ‡ * concentration,mg/L mg/L n Age,years SexM/F,%/% Haemoglobinconcentration,g/L Plasmaferritinconcentration,g/L Allchildren Childrenwithoutinflammation Plasmasolubletransferrinreceptor PlasmaCreactiveproteinconcentration, Inflammation Anaemia,n[%] Irondeficiency,n[%] Irondeficiencyanaemia,n[%] Malariaantigenemia,n[%] Table2.1Baselinecharacteristicsofstudypartici

40 Chapter2 ______ forchildren Placebo 0[00] 2[20] 13[100] 15[117] 21[164] 6[47] 37[289] 66[516] 19[148] 14±12 07±06 14±09 Electrolytic iron 2[20] 2[20] 11[90] 14[110] 26[205] 6[47] 29[228] 71[559] 21[165] 11±13 07±08 13±09 plasmaCreactiveproteinconcentration>10mg/L; ‡ plasmaferritinconcentration<12g/Land<15g/L ║ Lowdose NaFeEDTA 1[10] 0[00] 16[110] 17[121] 31[221] 10[72] 42[300] 66[471] 22[157] 15±13 08±07 15±10 5years,respectively; ≥ n=113,126,121and119,respectively; † Highdose NaFeEDTA 3[25] 0[00] 14[120] 16[132] 21[174] 3[25] 42[347] 57[471] 19[157] 14±14 08±07 15±10 childrenaged<5yearsand concurrentanaemiaandirondeficiency ¶ medianandinterquartilerange; * haemoglobinconcentration<110g/Land<115g/Lfor (Table2.1continued) Helminthinfestation,n[%] Ascaris Trichuris Hookworm Anyinfection Positivesicklingtestresult,n[%] αthalassaemiagenotype,n[%] Datanotavailable Normal Heterozygous Homozygous Heightforage,zscore Weightforheight,zscore Weightforage,zscore Mean±SDunlessindicatedotherwise; § aged<5yearsand≥5years,respectively;

41 EfficacyofironfortifiedwholemaizeflouronironstatusofschoolchildreninKenya:arandomisedcontrolledtrial ______ Theinterventionstartedforallchildrenonthesameday,immediatelyaftertheonemonth runin period. Children consumed uji in graduated mugs, at school, 5 days a week for 5 months.Teachersandfieldstaffsupervisedpreparationoftheporridge,andensuredthatthere wasnocrossoverbetweengroupsandthatchildrendidnotshare uji .Thetotalamountof uji consumedbyindividualswasrecordedaftereverymeal. Wemeasuredhaemoglobinconcentrationinbloodsamplesinahaematologyanalyzer(KX 21,SysmexCorporation,Japan).Atbaseline,weusedasicklingtest,withtheslidemethod and sodium metabisulphite as a reducing agent. We tested for current or recent malaria infection with a rapid, qualitative assay (Parachek Pf; Orchid Biomedical Systems, Goa, India) that detects P. falciparum specific histidinerich protein2. We chose this test in preferencetoconventionalmicroscopicexaminationofbloodfilmsbecauseithasareported sensitivityandspecificityof>90%. 1517 PlasmaconcentrationsofCreactiveprotein,ferritin andsolubletransferrinreceptorweremeasuredintheNetherlands(MeanderMedicalCentre, Amersfoort) on a Behring nephelometer (BNProspec, DadeBehring, Marburg, Germany), with Behring kits and calibration and assay procedures. We used Creactive protein as a markerof currentinflammation,sinceinfectioninduced inflammation can increase ferritin concentrations independently of iron status. 18 Genotyping for αthalassaemia was done by PCR. 19 Allchildrenreceivedmalariachemotherapy14daysbeforefinalbloodcollectionto avoidinflammationinducedeffectsonironstatusindicators. The primary outcome was irondeficiency anaemia. Secondary outcomes were iron deficiency;anaemia;anddifferenceinhaemoglobinconcentrationandplasmaconcentrations of ferritin and soluble transferrin receptor in the two treatment groups. We used WHO Guidelines 20 todefineanaemiaashaemoglobinconcentrationlessthan110g/Lor115g/Lfor children younger or older than 5 years, respectively; iron deficiency as plasma ferritin concentration of less than 12 g/L or 15g/L for children younger or older than years respectively; irondeficiency anaemia as concurrent anaemia and iron deficiency; and inflammationas10mg/LormoreofCreactiveproteininplasma. Statistical analysis WeanalysedanthropometricZscoresforallchildrenwithEpiInfo2005software(version 332),andanalysedotherdatausingSPSSsoftware(version120).Thetotalamountof uji

42 Chapter2 ______ consumedpergroupwascalculatedasaproportionoftheamountassignedtoeverygroup duringtheinterventionperiod. Analysis was by intentiontotreat, except that we retrospectively excluded one child with abnormal iron status and sickle cell anaemia. Data were assessed for normality by visual examinationofdistributionplots,andwerenormalisedasappropriatebylogtransformation. We obtained geometric means and corresponding CIs for absolute concentrations by calculationofexponentsforlogtransformeddata. Missing data were imputed blindly, before we started primary analysis, as the mean or medianvaluesfromchildrenwithoutmissingvaluesinthesamegroup.Becausenumbersof missingvalueswerelow,resultsfromthissimpleapproacharecomparablewithbetterbut morecomplicatedmethodsofimputation.21 Themethodassumesthatchildrenwhosedataare imputedarerepresentativefortheirgroupandnotsystematicallydifferentfromchildrenfor whomafullsetofdatawasobtained.22 We estimated treatment effects as group differences at the end of intervention relative to placebo. We used multiple linear regression to adjust for baseline concentrations of haemoglobin, ferritin, soluble transferrin receptor and Creactive protein, and malaria antigenaemia.Wedecided apriori thatadjustedestimateswouldbemorerelevantthancrude estimatesbecauseevenminordifferencesinprognosticfactorsatbaselinecouldstillleadto confounding. For binary outcomes, we estimated prevalence ratios and corresponding CIs using Cox regressionanalysiswithconstanttimeatrisk. 23,24 Thismethodisgenerallyusedforsurvival analysis;weusedittoproducevalidpointestimatesofprevalenceratioswhenadjustingfor baseline factors. However, we are aware that it can produce inflated estimates of SEs and CIs. 25 We converted prevalence ratios obtained by Cox regression, and effect estimates obtained from logtransformed data, to percentage differences relative to placebo. We analysedsubgroupstoassesswhetherthemagnitudeofthetreatmenteffectwasaffectedby irondeficiencyorirondeficiencyanaemiaatbaseline,malariaantigenaemiaatbaseline,α thalassaemia genotype, or the result of the sickling test. This trial is registered with ClinicalTrials.gov,numberNCT00386074.

43 EfficacyofironfortifiedwholemaizeflouronironstatusofschoolchildreninKenya:arandomisedcontrolledtrial ______ 128 Placebo 48[375] Reference Reference Reference Reference Reference Reference Reference Reference 115.7±9.7 wdose)and 25[21,31] 230[160,360] %] 127 12] iron 65[512] 1122±99 29to03] 4%to5 36[6to98] 3%to11%] 5%to20%] 26[21,32] 0[130,320] 12[23to63] 16%to12%] Electrolytic 0%[ 35[57to 13[ 23 4%[ 6%[ 3%[ 139 58[417] Lowdose 1147±88 03to28] 29to15] NaFeEDTA 2[33to44] 24[20,28] 11[24to63] 14%to2%] 16%to8%] 13[ 280[200,390] 07[ 23%[7%to41%] 8%[ 36%[21%to53%] 12%[ helectrolyticiron(56mg/kg),and28mg/kgNaFeEDTA(lo 1] 121 58to Highdose 38[314] 1172±85 07to38] NaFeEDTA 23[19,27] 17%to5%] 16[45to28] 36[ 19%to11%] 40[23to56] 40[23to56] 16[ 350[245,470] 54%[33%to78%] 67%[49%to89%] 11%[ 15%[ ‡ * § ¶ § ‡ tion: ? † † † ‡ .2 Effectonironstatusofconsumingflourfortifiedwit Crude Adjusted Effectofintervention: Crude Adjusted Crude Adjusted Crude Adjusted Effectofinterven Effectofintervention: concentration,mg/L Effectofintervention: Haemoglobinconcentration,g/L 56mg/kgNaFeEDTA(highdose). Plasmasolubletransferrinreceptor Anaemia,n[%] Table2 n Plasmaferritinconcentration,g/L

44 Chapter2 ______ hconstant byintentionto ogtransformed ariaantigenaemia Placebo 27[211] Reference Reference 13[102] Reference Reference Electrolytic iron 33[260] 23[26to105] 1[40to69] 27[213] 109[8to306] 59[18to209] ersionofprevalenceratiosfromCoxregressionwit ly usoutcomes)relativetoplacebo.Allanalysesare tainedbyexponentiationofeffectestimatesfroml ransferrinreceptorandCreactiveprotein,andmal Lowdose NaFeEDTA 14[100] 52[75to9] 70[85to40] 12[86] 15[61to86] 48[77to20] childrenaged<5yearsand≥5years,respectively forchildrenaged<5yearsand≥5years,respective Highdose NaFeEDTA effectsaremeasuredasgroupdifferences(continuo dasapercentagerelativetotheplacebogroup,ob ation,plasmaconcentrationsofferritin,solublet 88[96to61] 3[25] 91[97to49] 84[96to28] 2[17] 89[97to49] ascomparedwithplacebo[95%CI],obtainedbyconv †† ¶ ¶ † † SD ± Effectofintervention: Crude Adjusted Effectofintervention: Crude Adjusted Plasmaferritinconcentration<12g/Land<15g/L Concurrentanaemiaandirondeficiency Median,interquartilerange Mean Adjustedforbaselinefactors:haemoglobinconcentr Valuesindicatedifferencebetweengroups,expresse Haemoglobinconcentration<110g/Land<115g/Lfor Valuesindicatepercentagedifferenceinprevalence (Table2.2continued) Irondeficiency,n[%]** Irondeficiencyanaemia,n[%] Mean[95%CI]unlessindicatedotherwise.Treatment treat. * † ‡ § data ║ timeatrisk(seeSubjectsandmethods) ** †† ¶

45 EfficacyofironfortifiedwholemaizeflouronironstatusofschoolchildreninKenya:arandomisedcontrolledtrial ______ Results 505completedthestudy( figure2.2 ).Valuesforironstatusindicatorswereimputedforone childwhosebaselineplasmasamplewaslostandfor11childrenwhoeitherdiscontinuedthe interventionorwereabsentattheendofintervention.Wedidnotknowtheαthalassaemia genotypefor25children,becausetwobloodsampleswerespilledduringtransportation,five sampleswerelost,sevenwerenotclearlylabelled,and11sampleswerenotobtainedbecause childrenwereabsentatthefinalsurvey. Table 2.1 shows the baseline characteristics of children in the four groups. Haemoglobin concentrationswerehighestintheplacebogroup.Almosthalfthechildren(49%)hadcurrent orrecentmalariainfection.290(56%),78(15%),and54(11%)childrenhadanaemia,iron deficiencyandirondeficiencyanaemia,respectively.Theprevalenceofchildrenwhowere heterozygousandhomozygousforαthalassaemiawas260(49%)and81(16%),respectively. 19%ofallstudyparticipantshadapositiveresult for the sickling test. Of the three worm infectionsassessed,hookwormwasthemostoftendetected. Atbaseline,bothmalariaantigenaemiaandahomozygousgenotypeforαthalassaemiawere associatedwithlowhaemoglobinconcentrations(meandifference52g/L,95%CI34to 70 g/L) and (88 g/L, 60 to 116 g/L), respectively. A heterozygous genotype for α thalassaemiawasnotassociatedwithnoticeablylowconcentrationsofhaemoglobin(datanot shown). Groups assigned to receive uji fortified with highdose NaFeEDTA, lowNaFeEDTA, electrolyticironandunfortifiedflourconsumed92%,89%,90%and93%,respectively,of thetotalamountgiventothemduringtheinterventionperiod.Attheendoftheintervention few children had inflammation, which was of low degree:themedianconcentrationofC reactiveproteininallgroupswas00mg/Lwithinterquartilerangesof0010mg/Linthe twoNaFeEDTAgroups,0020mg/Lintheelectrolyticirongroupand0008mg/Linthe placebogroup. Theprevalenceofirondeficiencyanaemiainchildrenwhoconsumedflourfortifiedwithhigh doseNaFeEDTAwasalmost90%lowerthanincontrols( table2.2).Theprevalenceofiron deficiencyanaemiainchildrengivenlowdoseNaFeEDTAwasabouthalfthatinthosegiven placebo,althoughthe95%CIwascompatiblewitha20%increaseinirondeficiencyanaemia.

46 Chapter2 ______ Irondeficiencyanaemiadidnotchangeinthegroupassignedflourfortifiedwithelectrolytic iron. 6 4

2 0 2

Effectonhaemoglobinconcentration,g/L 4 100 80 60

40

20 0 Differencerelativetoplacebo,% 20 Highdose Lowdose Electrolytic NaFeEDTA NaFeEDTA iron Figure2.3 Effect on concentrations of haemoglobin (top panel), plasma ferritin (bottom panel; black marker) and plasma solubletransferrinreceptor(bottompanel;greymarker)ofconsumingflourfortifiedwithNaFeEDTA(56mg/kg and28mg/kg),andelectrolyticiron(56mg/kg).Linebarsindicate95%CIs.

47 EfficacyofironfortifiedwholemaizeflouronironstatusofschoolchildreninKenya:arandomisedcontrolledtrial ______ Consumption of flour fortified with highdose and lowdose NaFeEDTA caused modest improvements in haemoglobin concentration compared with placebo ( figure 2.3). In both groupsgivenNaFeEDTA,plasmaconcentrationsofferritinincreasedandsolubletransferrin receptordecreased(figure2.3).Bycontrast,fortificationwithelectrolyticirondidnotaffect anyofthesethreeironstatusindicators(figure2.3).Prevalenceofanaemiawasreducedonly for the group given highNaFeEDTA ( figure 2.4). The prevalence of iron deficiency was 91%lowerinthehighdoseNaFeEDTAgroupand70%lowerinthelowdoseNaFeEDTA group,butdidnotchangeforchildrengivenelectrolyticiron.Prevalenceofirondeficiency anaemiawasreducedby89%inthehighdoseNaFeEDTAgroupandby48%inthelow doseNaFeEDTAgroup,butwasmoreprevalentinchildrengivenelectrolyticironthanthose givenplacebo. 2.00 1.50 1.00

0.50 Prevalenceratiorelativetoplacebo 0.00 Figure2.4 Effect on anaemia, iron deficiency and iron deficiency anaemia of consuming flour fortified with high and lowdose NaFeEDTA(56mg/kgand28mg/kg;blacktriangularandsquaremarkers,respectively),andelectrolyticiron(56mg/kg; greymarker).Upperconfidencelimitforirondeficiencyanaemia:31%. Children with iron deficiency or irondeficiency anaemia at baseline benefited more from fortification with NaFeEDTA than children without such deficiencies ( figure 2.5). In children with irondeficiency anaemia at baseline, consumption of highdose NaFeEDTA, lowdoseNaFeEDTAandelectrolyticironchangedhaemoglobinconcentrationby117g/L,

48 Chapter2 ______ 85g/Land0.4g/L,respectively,whereasforotherchildrenhaemoglobinchangedby34 g/L,0.5g/Land1.2g/L(differencesineffectestimates,95%CI;8.4g/L,2.3g/Lto14.4g/L; 8.0 g/L, 2.5 g/L to 13.6 g/L; 0.7 g/L, 5.1 g/L to 6.6 g/L). We noted similar effect modification for plasma ferritin and soluble transferrin receptor. Neither αthalassaemia genotype,sicklingtestresultnormalariaantigenaemiaatbaselineseemedtoaltertheeffect of fortified flour consumption. We did not record any adverse events associated with NaFeEDTAconsumption. Results of an additional perprotocol completecase analysis did not differ from those obtainedwithimputedvaluesasreportedhere(datanotshown). Discussion Consumption of whole maize flour fortified with highdose NaFeEDTA reduced iron deficiencyanaemia,irondeficiency,andanaemiainKenyanchildren.Ourfindingsshowthat lowdose NaFeEDTA conferred protection against iron deficiency but not against iron deficiency anaemia or anaemia. Electrolytic iron did not confer protection against any of these disorders. Consumption of both high and lowdose NaFeEDTA improved the iron statusofchildren,asindicatedbytheirincreasedconcentrationsofhaemoglobinandplasma ferritin,anddecreasedconcentrationsofsolubletransferrinreceptor.Treatmenteffectswere most pronounced in children who had iron deficiency and irondeficiency anaemia at baseline. Haematologicalmeasurementsattheendofinterventionwerevalidindicatorsofironstatus because all children received malaria chemotherapy 2 weeks before assessment to avoid inflammationinducedeffectsonironstatusindicators.Wealsoregardedoureffectestimates as accurate indicators of the true values, since we achieved good precision, small loss to followup(2%),goodcomplianceandlowlikelihoodofcrossoveroftreatments. Thelowerthanexpectedprevalenceofirondeficiencyinourstudypopulationdidnotbias our results. Because only a small proportion of anaemic children in our study were iron deficient, protection against ID and IDA were more pronounced than protection against anaemia. Malaria and αthalassaemia at baseline were also associated with reduced

49 EfficacyofironfortifiedwholemaizeflouronironstatusofschoolchildreninKenya:arandomisedcontrolledtrial ______ haemoglobinconcentrations,althoughthesefactors,incombinationwithirondeficiency,still donotfullyaccountforthehighprevalenceofanaemia. Iron status at baseline modified the effect of NaFeEDTA. In children with irondeficiency anaemia,theeffectofhighdoseNaFeEDTAonhaemoglobinconcentrationwasmorethan three times greater than the effect in ironreplete children. Our findings accord with stable isotope studies that suggest that iron absorption becomes more effective as iron stores become depleted. 26 By contrast, even in the subgroup analysis, the treatment effect of electrolyticirononironstatuswasnegligible. Malariacouldhaveaffectedourfindingsinthreeways.First,weregardedbaselineinfection as a potential confounder of treatment effects. Evidence for such confounding was absent, however, because adjustment for malaria antigenaemia did not change effect estimates. Second, baseline infection could have modified the magnitude of the treatment effect. Althoughwehadnoevidenceforsucheffectmodification,ourstudydesigndidnotallowus to exclude this possibility. Third, malaria episodes during the intervention could have mediated treatment effects iron interventions can increase susceptibility to malaria, 27 and converselymalariamightreduce absorptionofironbecauseofinflammation 28,29 Ifmalaria reduces iron absorption, then iron interventions would improve iron status more in populationswithoutmalaria,andbelesseffectiveinpopulationswithhighendemicmalaria. Weconcludedthatfortificationofwholemaizeflourwithelectrolyticirondoesnotimprove iron status, at least in the concentration and form used in this study. But this does not necessarily contradict the finding that electrolytic iron can improve iron status when consumedwithlowextractionwheatflour.6Extractionreducesthephytatecontentofflour,30 whichmightincreasebioavailabilityofiron.Discrepanciesinstudyresultsmayfurthermore beexplainedbydifferencesinthemorphology,butnotthesizeofironparticles.Weused ironparticleswithamediandiameterof34m(10th90thpercentile:1462m);thoseused byZimmermannandcoworkers6wereofasimilarsize(28m[1056m];Zimmermann, Swiss Federal Institute for Technology and Wageningen University; personal communication). Although iron particles used in our study had similar morphological characteristicstothoseusedbyZimmermannandcoworkers(figure2.1),wecannotexclude thepossibilitythatthesurfaceareatoweightratiowasdifferent.

50 Chapter2 ______ 25 20 15 10 5 0 Effectonhaemoglobinconcentration,g/L. 5 350 300 250 200 150 100 50

Effectonferritinconcentration,%. 0

50

10 0 10 20

30 40 50

60

Effectontransferrinreceptorconcentration,g/L. Highdose Lowdose Electrolytic NaFeEDTA NaFeEDTA iron Figure2.5 Effect of whole maize flour fortification with high and lowdose NaFeEDTA (56 mg/kg and 28 mg/kg) and electrolyticiron(56mg/kg),inchildrenwhowereironsufficientatbaseline(greymarkers)orhadirondeficiency anaemiaatbaseline(blackmarkers);linebarsindicate95%CIs.

51 EfficacyofironfortifiedwholemaizeflouronironstatusofschoolchildreninKenya:arandomisedcontrolledtrial ______ Withcontinuousironinterventions,ironstoresincreaserapidlyandafter23yearsreachfinal plateau values that depend on the absorbable iron that is supplied. 31 Thus we think that continued intervention beyond 5 months would eventually have led to an even greater discrepancybetweenthetreatmenteffectsassociatedwithNaFeEDTAandelectrolyticiron. Themostrelevantpotentialadverseeffectofprotractedadministrationoflargequantitiesof anEDTAcomplexiszincdeficiency,32 asreportedinstudieswithdailyintakesexceeding1g 33 EDTA/kg body weight as Na 2EDTA. However, fortification of food with NaFeEDTA seems to have no detrimental effect on the metabolism of zinc, copper, calcium, or magnesium,andmightevenenhancezincstatusbyimproving zinc absorption. 32,34,35 The safetyofNaFeEDTAatthedosesusedinourtrialwillneedtobeconfirmed.

52 Chapter2 ______ References 1. PhilarR,JohnsonQ.Smallscalemillfortificationmanual(eds.RanumP,WesleyAS). Ottawa,Canada:TheMicronutrientInitiative,2005. 2. MI/Unicef.Vitaminandmineraldeficiencies:aglobalprogressreport.Ottawa,Canada: TheMicronutrientInitiative[undated]. www.micronutrient.org/resources/publications/VMD/VMd%20GPR%20English.pdf ; Accessed16January2007. 3. HurrellR,BothwellT,CookJD,etal.Theusefulnessofelementalironforcerealflour fortication:aSUSTAINTaskForcereport.NutrRev2002;60:391–406. 4. DepartmentofHealthSA.Foodstuffs,cosmeticsanddisinfectantsAct,1972(ActNo.54 of1972).Regulationsrelatingtothefortification of certain foodstuffs. Government of SouthAfrica,DepartmentofHealth,2003. www.doh.gov.za/docs/regulations/foodstuff/fortification.html ;accessed25January2007 5. Nestel P, Nalubola R, Sivakaneshan R, Wickramasinghe A, Atukorala S, WickramanayakeT.Theuseofironfortifiedwheatflourtoreduceanaemiaamongthe estatepopulationinSriLanka. IntJVitNutrRes 2004; 74: 35–51. 6. Zimmermann M, Winichagoon P, Gowachirapant S. Comparison of the efficacy of wheatbasedsnacksfortifiedwithferroussulfate,electrolyticiron,orhydrogenreduced elementaliron:randomized,doubleblind,controlledtrialinThaiwomen.AmJClinNutr 2005; 82: 1276–82. 7. HurrellRF. Howtoensureadequateironabsorptionfromironfortified food. NutrRev 2002; 60: 7–15. 8. HurrellRF,ReddyM,BurriJ,CookJD.Anevaluation of EDTA compounds for iron fortificationofcerealbasedfoods. BrJNutr 2000; 84: 903–10. 9. Lamparelli R, MacPhail A, Bothwell T, et al. Curry powder as a vehicle for iron fortification:effectsonironabsorption. AmJClinNutr 1987; 46: 335–40. 10. GarbyL,AreekulS.IronsupplementationinThaifishsauce. AnnTropMedParasitol 1974; 68: 467–76. 11. BallotD,MacPhailA,BothwellT,GilloolyM,MayetF.Fortificationofcurrypowder with NaFe(III)EDTA in an irondeficient population: report of a controlled iron fortificationtrial. AmJClinNutr 1989; 49: 162–69. 12. Huo J, Sun J, Miao H, et al. Therapeutic effects of NaFeEDTAfortified soy sauce in anaemicchildreninChina. AsiaPacJClinNutr 2002; 11: 123–27.

53 EfficacyofironfortifiedwholemaizeflouronironstatusofschoolchildreninKenya:arandomisedcontrolledtrial ______ 13. DavidssonL,DimitriouT,BoyE,WalczykT,HurrellRF.Ironbioavailabilityfromiron fortifiedGuatemalanmealsbasedoncorntortillasandblackbeanpaste. AmJClinNutr 2002; 75: 535–39. 14. MbogoC,SnowR,KabiruE,etal.Lowlevel Plasmodiumfalciparum transmissionand the incidence of severe malaria infections on the Kenyan coast. Am J Trop Med Hyg 1993; 49: 245–53. 15. Mboera LE, Fanello CI, Malima RC, et al. Comparison of the ParacheckPf test with microscopy, for the confirmation of Plasmodium falciparum malaria in Tanzania. Ann TropMedParasitol 2006; 100: 115–22. 16. VandenBroekI,HillO,GordilloF,etal.Evaluationofthreerapidtestsfordiagnosisof p.Falciparum and p.Vivax malariainColombia. AmJTropMedHyg 2006; 75: 1209– 15. 17. GuthmannJP,RuizA,PriottoG,KiguliJ,BonteL,LegrosD.Validity,reliabilityand easeofuseinthefieldoffiverapidtestsforthe diagnosis of Plasmodium falciparum malariainUganda. TransRoySocTropMedHyg 2002; 96: 254–57. 18. Wieringa FT,DijkhuizenMA,WestCE,NorthropClewesCA,Muhilal.Estimationof theeffectoftheacutephaseresponseonindicatorsofmicronutrientstatusinIndonesian infants. JNutr 2002; 132: 3061–66. 19. LiuYT,OldJM,MilesK,FisherCA,WeatherallDJ,CleggJB.Rapid detectionofα thalassaemia deletions and αglobin gene triplication by multiplex polymerase chain reactions. BrJHaematol 2000; 108: 295–99. 20. WHO.Irondeficiencyanemiaassessment,preventionandcontrol:aguideforprogramme managers.Geneva:WorldHealthOrganisation,2001. 21. VanderHeijdenGJ,DondersAR,StijnenT,MoonsKG.Imputationofmissingvaluesis superior to complete case analysis and the missingindicator method in multivariable diagnosticresearch:Aclinicalexample. JClinEpidemiol 2006; 59: 1102–09. 22. UnnebrinkK,WindelerJW.Intentiontotreat:methodsfordealingwithmissingvalues inclinicaltrialsofprogressivelydeterioratingdiseases. StatMed 2001; 20: 3931–46. 23. LeeJ,ChiaK.Estimationofprevalencerateratiosforcrosssectionaldata:anexamplein occupationalepidemiology[letter]. BrJIndMed 1993; 50: 861–62. 24. LeeJ.Oddsratioorrelativeriskforcrosssectionaldata? IntJEpidemiol 1995; 24: 464– 65.

54 Chapter2 ______ 25. BarrosAJ,HirakataVN.Alternativesforlogisticregressionincrosssectionalstudies:an empiricalcomparisonofmodelsthatdirectlyestimatetheprevalenceratio. BMCMedRes Methodol 2003; 3: 21. 26. HallbergL.Perspectivesonironabsorption. AnnRevNutr 2001; 21: 121. 27. SazawalS,BlackRE,RamsanM,etal.Effectsofroutineprophylacticsupplementation withironandfolicacidonadmissiontohospitalandmortalityinpreschoolchildrenina high malaria transmission setting: communitybased, randomised, placebocontrolled trial. Lancet 2006; 367: 133–43. 28. Ganz TT. The role of hepcidin in iron sequestration during infections and in the pathogenesisofanemiaofchronicdisease. IsrMedAssocJ 2002; 4: 1043–45. 29. NemethE,GanzT.Regulationofironmetabolismbyhepcidin. AnnRevNutr 2006; 26: 323–42. 30. FeilB.Phyticacid. JNewSeeds 2001; 3: 1–35. 31. Hallberg L, Hulthen L, Garby L. Iron stores and haemoglobin iron deficits in menstruating women. Calculations based on variations in iron requirements and bioavailabilityofdietaryiron. EurJClinNutr 2000; 54: 650–57. 32. INACG. Iron EDTA for food fortification: a report of the International Nutritional Anemia Consultative Group. Washington DC: The Nutrition Foundation, INACG Secretariat,1993. 33. SwenertonH,HurleyLS.Teratogeniceffectsofachelatingagentandtheirpreventionby zinc.Science,NewSeries1971;173:624. 34.Davidsson L, Kastenmayer P, Hurrell RF. Sodium iron EDTA [NaFe(III)EDTA] as a foodfortificant:theeffectontheabsorptionandretentionofzincandcalciuminwomen. AmJClinNutr1994;60:2317. 35.Davidsson L, Ziegler E, Zeder C, Walczyk T, Hurrell R. Sodium iron EDTA [NaFe(III)EDTA] as a food fortificant: erythrocyte incorporation of iron and apparent absorptionofzinc,copper,calcium,andmagnesiumfromacomplementaryfoodbased onwheatandsoyinhealthyinfants.AmJClinNutr2005;81:10409.

55

Chapter3 ______ Theeffectofironfortificationoncognitiveandmotorfunctionof schoolagedKenyanchildren Andang’oPaulineEA,HoldingPA,VerhoefH KokFJ,AyahR,MwanikiDL CliveEWest †,OsendarpSJM Submittedforpublication † Deceased

TheeffectofironfortificationoncognitiveandmotorfunctionofschoolagedKenyanchildren ______ Abstract Cognitivefunctioninschoolagedchildrenisreportedlycompromisedbyirondeficiencyand maybecorrectedbylargedosesofsupplementaliron.Itispossiblethatlowerdosesgiven throughfortificationarebeneficial. Theobjectiveofthisstudywastoassesstheeffectofdailyconsumptionfora5monthperiod ofironfortifiedfoodoncognitiveandmotorfunctionoutcomesinKenyanschoolchildren. ChildrenconsumedwholemaizefloureitherunfortifiedorfortifiedwithironasNaFeEDTA at 56 (highdose) or 28 (lowdose) mg/kg flour or electrolytic iron at 56 mg/kg flour. Outcomes were assessed in 146 anaemic and 63 nonanaemic children aged 68 years and comprisedspatial workingmemory,attention;andfine motor control and coordination as indicated by selfordered pointing test, visual search and bead threading, respectively. Multiplelinearregressionwasusedtoassesstestscoresrelativetothecontrol,adjustedfor potentialconfoundersmeasuredatbaseline. No treatment effect on any of the test scores was evident. Consumption of highdose NaFeEDTA, resulted in the following effects (95% CIs): selfordered pointing test, total errors: 0.50 (3.8, 2.8); visual search, efficiency: 18.9 (34.2, 0.2); bead threading, total beads:1.49(3.47,0.50).ConsumptionoflowdoseNaFeEDTAorelectrolyticironsimilarly showednotreatmenteffectontestscores. Wefoundnoevidencethatironfortification,inthetypeanddosagelevelsusedinourtrial, improved attention, working memory or fine motor dexterity and control regardless of anaemiastatusatbaseline.

58 Chapter3 ______ Introduction Iron deficiency is widespread in developing countries, and has been associated with poor cognitive function. 1,2 Thissuggeststhatasubstantialproportionofchildren may not reach theirfullpotential.Theevidenceindicatesthatironinterventionsaremostlikelytoimprove outcomes in individuals with iron deficiency anaemia. 1 Mechanisms responsible for developmental delays or deficits are possibly a direct effect from anaemia causing a low oxygen delivery to the brain, 3,4 or specific effects of iron deficiency resulting in altered neurotransmitterfunctionandmyelination. 57 Tasksinvolvingmemory,attention,problemsolvingandmotorcontrolarecontrolledbyareas ofthebrainthataresensitivetoiron. 5,6,8,9 .Mostoftheevidenceofimprovementsincognitive andmotorfunctionisbasedontherapeuticdosesofiron.Dailysupplementationdosesaslow as 15 mg, were shown to improve skills related to information processing in preschool children. 10 Fortificationinterventions,whichusuallyinvolvemuchlowerdoses,areamore costeffectiveapproachtoimprovetheironstatusoflargeproportionsofpopulations.Reports from South Africa that fortification improved cognition in older children 11 and improved motor function in infants 12 are promising. These findings need to be replicated in studies specifically designed to assess functions affected by iron deprivation. Tests that assess specific aspects of cognitive and motor development may be more sensitive than tests of global functionandthusprovidebetterinformationontheeffectsofironinterventionson developmentalfunctions. 2,10 Weaimedtoassesscognitiveandmotorfunctioninanaemicandnonanaemicchildrenwho participated in a fivemonth ironfortification intervention trial to assess the efficacy of NaFeEDTAandelectrolyticironwhenusedasfortificantsinwholemaizeflour.Inthatstudy the iron status of children who received iron as NaFeEDTA improved whereas that of children who received electrolytic iron did not improve 13 . We expected, therefore, that childrenwhoreceivedironasNaFeEDTAwouldhavebettertestscoresthantheirpeerswho receivedelectrolyticironorunfortifiedflour.

59 TheeffectofironfortificationoncognitiveandmotorfunctionofschoolagedKenyanchildren ______ SubjectsandMethods

Subjects and study design WeassessedcognitiveandmotorfunctionfromNovembertoDecember2004attheendofa trial with ironfortified whole maize flour. Methods and results of this study have been described elsewhere. 13 The study was conducted among children aged 38 years attending fourschoolsinMarafa,anadministrativelydefinedareainthehinterlandofMalindidistrict inthecoastallowlandsofKenya.Marafahasthehighestprevalence(22%)ofunderweight children(weightforagezscore<2SDbelowreferenceweightofchildrenofasimilarage) inMalindidistrict. 14 ThelocalpopulationmostlycomprisespoorfamiliesfromtheMijikenda group of tribes, living mainly from subsistence farming. Ethical approval was granted by KenyaMedicalResearchInstituteEthicalReviewcommittee. Eligibility criteria Children participating in our trial were eligible for assessment of cognitive and motor functionifaged≥6yearsatthetimeofassessment;andconsentforparticipationwasgiven by parents or guardians. The age limit was set because the psychometric tests used were designed for children aged 6 years and above in this population (Holding, unpublished results).Takingintoaccountthataneffectoftreatmentoncognitiveandmotorfunctiontest scoreswaslikelytobesmallinthegiventimeperiod, and that effects in other trials were more pronounced in children who were anaemic, presumably due to iron deficiency, 1 we selected children based on their anaemia status at baseline. Thus a total of 154 anaemic childrenwereeligible.Arandomsampleofchildren(n=64)withoutanaemiawasadditionally selectedtodetermineifthetestsresultsdependedontheanemiastatusatbaseline. Agewasdeterminedfromofficialrecordssuchasbirthcertificates,birthnotificationorclinic cards. When none of these documents was available, a calendar of events was used to determineageortoverifyageasreportedbyarelative.Trainedresearchassistantsmeasured heighttothenearest1mmandweighttothenearest0.1kg(LeicesterstadiometerandTanita scale,modelBWB800,respectively;ChasmorsLtd,London,UK).Thescaleswerecalibrated dailyusingstandardweights

60 Chapter3 ______ For5monthspriortotheassessment,thechildrenconsumedporridgepreparedfromwhole maizeflourthatwasunfortified(control)orfortifiedwithNaFeEDTAat56mgiron/kgflour or 28 mg/kg, or with electrolytic iron at 56 mg/kg flour. Ironfortified flour was fortified additionallywithvitaminA(2500g/kg),vitaminB1 (3.5mg/kg), vitamin B 2 (4.0 mg/kg) andniacin(45.0mg/kg).Twoweeksbeforetheendofintervention,childrenweretreatedfor malariatoeliminatepossibleeffectsofmalariaonironstatusindicators. Laboratory analyses Haemoglobin concentration was measured in a haematology analyzer (KX21, Sysmex Corporation, Japan). Plasma concentrations of Creactive protein, ferritin and soluble transferrin receptor (sTfR) were measured in The Netherlands (Meander Medical Centre, Amersfoort) on a nephelometer (model BNProspec, DadeBehring, Marburg, Germany), using Behring kits and calibration and assay procedures according to the manufacturer’s instructions. Plasma concentration of Creactive protein was determined as a marker of currentinflammation,totakeintoaccountthatinfectioninducedinflammationisknownto increaseferritinconcentrationsindependentofironstatus 15 .Genotypingforα +thalassemia wasdonebyPCR. 16 Currentorrecentinfectionwith Plasmodiumfalciparum wasassessedby dipsticktest(Paracheck;OrchidBiomedical,Goa,India).Thistesthasareportedsensitivity andspecificityofmorethan90%ascomparedtoconventionalmicroscopicalexaminationof bloodfilms. 1719 Cognitive and motor function tests SelfOrderedPointingTest: Inthistest,participantsarepresentedwithabookletof36pages dividedintofoursections–6pageswith6pictureseach,8pageswith8pictureseach,10 pageswith10pictureseach,and12pageswith12pictureseach.Theoveralllayoutofeach page remains constant, with each picture appearing only once on each page, although the positionofthepicturesvaryrandomlyoneachpage.Ineachsectionachildisinstructedto touchapictureoneachpage,totoucheachpicturenotmorethanonce,andtonottouchthe same position more than twice. Three consecutive trials of each section are administered. Pictures included were prepared locally and tested in a pilot exercise involving children attendinglocalprimaryandnurseryschoolsinneighbouringKilifiDistrict.Testscoreswere computed as the total number of errors across all trials. This test is a measure of spatial workingmemory. 20 Itassessesthecapacitytoorganisevisuallypresentedinformation,retain

61 TheeffectofironfortificationoncognitiveandmotorfunctionofschoolagedKenyanchildren ______ the information, initiate a sequence of responses, retain the responses and monitor the consequences of each response. The assessment was found to be associated with the developmentoffrontallobefunctionbothinadultsandinchildren. 21,22 Thetestwashighly reliable (r = .73) in a study population of Kenyan children similar to ours (Holding, unpublishedresults). Visualsearch: ThistaskwasadaptedfromoneappliedtoschoolchildreninJamaica 21 .In that population, the mean number of errors was 0.3%, and the testretest reliability was measuredasr=.82.InKenyanchildrenthetestretestreliabilitywas.84 23 .Thetaskrequires thechildtoidentifyatargetpictureembeddedin rows of a selection of different pictures. Silhouettedrawingsareused,takenfromtheWordOrdertask, 23 ,whichhavebeenscreened forfamiliarityandclarity.Performancewasmeasuredbyboththeaccuracyandspeedwith whichthesepicturesaremarkedwithapencil.Avisualsearchefficiencyscorewascalculated usingtheformula:[(1/time)/( √errors+1)]*100.Thetargetskillsofthistaskinclude:speedof informationprocessing,spatialprocessing,sustainedattention,selectiveattention,planning, andimpulsivity. Beadthreading: ThedesignisadaptedfromHendersonandSugden 24 andhasbeenusedin variousformsacrossmanyculturalgroups. 2528 Thetaskrequiresthechildtopickuponebead atatimeandtothreaditontoastringorshoelace.Threetrialsare given,eachlasting30 seconds,inwhichthechildisrequiredtothreadasmanyass/hecaninthetimeavailable.The threadisclearedbetweeneachtrial.Thescorewascalculatedperchildasthetotalnumberof beadsthatwerethreadedinthreetrials.Thistaskmeasuresbimanualdexterity,finemotor control,andmotorcoordination. Thetestswereadministeredbyassessorswhoweretrainedtoteachchildrenattheprimary educationlevel.Allassessorswerefluentinboththelocallanguage( Kigiriama )andEnglish, and underwent one week of training in test administration. In a pilot test, the assessors administeredthetestsundersupervisiontochildrennotparticipatinginthestudy. Becausehungermayaffecttestscores, 29 participantsconsumedamugofporridgejustbefore thetestswereconducted.Testswereadministeredtoindividualchildreninquietclassrooms, with no visible visual distractions. The assessment environment was similar in all rooms

62 Chapter3 ______ where testing was conducted. For each test, assessors provided detailed instructions to childrenin Kigiriama .Testsessionsonaveragetook30minutesperchild.Allchildrentook thetestsinthesameorder:selforderedpointingtest,visualsearchandfinallybeadthreading. Assessors awarded scores as specified for each test at the time of test administration and talliedeachchild’sscoreafterthetestsessionwascompleted.Testswereconductedovera periodof8days,witheachassessoradministeringteststo5childrenperday. Data analysis Wedefinedanaemiaashaemoglobinconcentration<110g/Land<115g/Lforchildrenaged <5yearsand ≥5years,respectively; 30 irondeficiency:plasmaferritinconcentration<12g/L or < 15g/L for children ≤5 aged years or >5 years, respectively; 30 and iron deficiency anaemia:concurrentanaemiaandirondeficiency;inflammation:concentrationsofplasmaC reactiveprotein>10mg/L.Zscoresforstunting,wasting and underweight were calculated usingEpiInfo2005version332(CDC,Atlanta,GA,http://www.cdc.gov/epiinfo),anddata wasanalysedusingSPSS(v120forWindows,SPSSInc.,Chicago,IL). Datadistributionswerevisuallyassessed.Mostvariableswerenormallydistributedwiththe exceptionofthevisualsearchefficiencyscoreandferritinconcentration.Groupimbalancesin baselinecharacteristicswerealsoassessed,separatelyforchildrenwithandwithoutanaemia at baseline. We additionally assessed associations of test scores with baseline factors in pooleddataofanaemicandnonanaemicchildren.Basedonthesecomparisons,weadjusted forsex,age,heightforagezscore,malariainfection,andinflammationinthefinalanalyses. Linearregressionanalysiswasusedtocomparegroupsthatreceivedfortifiedandunfortified porridge regarding scores for each of the tests. The results of normally distributed test variablesareexpressedasdifferenceinmeantestscoresrelativetothecontrol.Scoresthat werenotnormallydistributedwerelogtransformedbeforeanalysis,andresultsexponentiated toexpresstheminoriginalunits.Suchresultsareexpressedaspercentdifferencerelativeto thecontrol.

63 TheeffectofironfortificationoncognitiveandmotorfunctionofschoolagedKenyanchildren ______ Control 6.7±0.8 62.0%(21) 34 106.4±6.8 30.0(16.8;48.8) 21.0%(7) 65.0%(22) 6.0%(2) 15.0%(5) 17.1±1.8 109.1±5.4 2.0±0.8 0.7±0.6 1.8±0.6 Electrolytic iron 6.8±0.7 46.0%(18) 39 105.0±8.6 20.0(14.0;32.0) 26.0%(10) 69.0%(27) 5.0%(2) 13.0%(5) 18.2±2.5 112.3±6.9 1.4±1.1 0.7±0.7 1.4±0.9 Lowdose NaFeEDTA 7.2±0.9 50.0%(17) 34 106.6±5.8 29.0(16.5;37.0) 21.0%(7) 65.0%(22) 9.0%(3) 18.0%(6) 17.9±2.4 111.8±6.0 1.9±1.1 0.8±0.8 1.8±0.9 anaemiastatusatbaseline Highdose NaFeEDTA 6.9±0.8 39.0%(15) 39 102.6±8.9 26.0(14.0;45.0) 26.0%(10) 67.0%(26) 15.0%(6) 13.0%(5) 17.6±2.6 111.1±7.1 1.6±1.4 0.9±0.8 1.6±1.1 1 Table3.1Baselinecharacteristicsofchildren,by Childrenwithanaemiaatbaseline n Age,years Male,%(n) Haemoglobinconcentration,g/L Plasmaferritinconcentration, g/L Irondeficiency,%(n) Malaria,%(n) Inflammation%(n) Hookworm,%(n) Weight,kg Height,cm Heightforagezscore Weightforheightzscore Weightforagezscore

64 Chapter3 ______ Control 6.7±0.8 18 44.0%(8) 124.5±6.5 30.5(19.0;62.5) 11.0%(2) 39.0%(7) 6.0%(1) 0.0%(0) 18.0±2.4 112.4±6.6 1.4±1.3 0.8±0.6 1.4±0.9 Electrolytic iron 6.9±0.8 18 50.0%(9) 123.9±6.1 34.5(25.5;50.8) 17.0%(3) 50.0%(9) 0.0%(0) 6.0%(1) 18.8±2.4 115.4±4.6 1.0±1.0 0.9±0.8 1.3±1.0

Lowdose NaFeEDTA 7.0±0.9 13 54.0%(7) 121.5±5.6 27.0(19.0;46.5) 8.0%(1) 31.0%(4) 8.0%(1) 8.0%(1) 19.1±2.0 114.2±4.6 1.6±1.1 0.5±0.6 1.4±0.9 percentiles),orprevalence%(n) th ;75 th

Highdose NaFeEDTA 6.6±1.2 14 57.0%(8) 120.0±5.1 27.5(14.8;43.3) 21.0%(3) 21.0%(3) 0.0%(0) 21.0%(3) 17.5±2.0 112.4±6.0 1.4±1.7 1.1±0.6 1.7±0.9

median(25 1

1 (Table3.1continued) Childrenwithnoanaemiaatbaseline n Age,years Male,%(n) Haemoglobinconcentration,g/L Plasmaferritinconcentration, g/L Irondeficiency,%(n) Malaria,%(n) Inflammation%(n) Hookworm,%(n) Weight,kg Height,cm Heightforagezscore Weightforheightzscore Weightforagezscore Resultsaregivenasmean±SD,

65 TheeffectofironfortificationoncognitiveandmotorfunctionofschoolagedKenyanchildren ______ (totalbeads) enotype;testscore Beadthreading 1.90(7.41;3.60) 0.09(0.12;0.29) 2.01(0.52;3.49) 0.61(2.36,1.15) 0.39(0.57;1.35) 2.94(5.30;0.59) 0.58(1.99;3.14) (efficiency) Visualsearch 0.09(0.22;0.41) 0.00(0.01;0.01) 0.05(0.04;0.14) 0.12(0.22,0.03) 0.01(0.04;0.07) 0.04(0.11;0.18) 0.01(0.15;0.14) Childrenwithoutanaemiaatbaseline baselineinflammation,malariaandαthalassaemiag pointingtest Selfordered 2 (totalerrors) coresofchildrenwithoutmalaria) 0.55(8.49;7.39) 0.33(0.62;0.04) 0.81(3.07;1.45) 1.37(1.14,3.89) 0.52(1.90;0.86) 0.94(2.62;4.49) 1.25(2.43;4.94) (totalbeads) Beadthreading 0.15(2.40;2.70) 0.08(0.03;0.18) 2.6(1.7;3.4) 0.5(1.6,0.6) 0.70(0.02;1.4) 1.1(2.7;0.5) 1.4(0.2;3.1) baselineinflammationandmalaria,or 1 res,byanaemiastatusatbaseline childrenwithmalaria(differenceinscoresfroms 4 (efficiency) Childrenwithanaemiaatbaseline Visualsearch scores) 0.09(0.04;0.21) 0.20(.50;1.21) 0.10(0.05;0.14) 0.00(0.06,0.05) 0.10(0.05;0.11) 0.01(0.09;0.06) 0.02(0.10;0.06) trol(95%CI);adjustedfor pointingtest Selfordered (totalerrors) 2.11(1.63;5.85) 0.01(0.15;0.17) 1.33(2.72;0.06) 0.09(1.53,1.71) 1.45(2.40;0.50) 1.32(0.97;3.62) 1.7(0.7;4.1) 2 1 4 3 males(differenceoftestscoresfromfemalestest 3 Table3.2Baselinefactorsassociatedwithtestsco Ferritinconcentration (logtransformed) Haemoglobin concentration,g/L Age,years Weightforheightz score Heightforagez score Sex Malaria Resultsareindicatedasdifferencerelativetocon of

66 Chapter3 ______ Results Testswereadministeredto209of218childrenwhowereeligibleforthestudy.Eightchildren whowereanaemicatbaselinewereabsentatthetestingdate;onechild,whowasnotanaemic atbaseline,hadfeveronthetestingdateandthereforedidnotparticipate. At baseline, treatment groups differed in their haemoglobin concentration, plasma ferritin concentrationandprevalenceofirondeficiency,bothinchildrenwithandwithoutanaemiaat baseline ( table 3.1). Children who received electrolytic iron had higher weightforage z scores and heightforage zscores than their counterparts in the other treatment groups. In children with anaemia at baseline, increments in age, and heightforage zscores were associated with better scores for all tests ( table 3.2). In their peers without anaemia at baseline, associations with test scores were observedwithageandheight.Inbothanaemic andnonanaemicchildren,girlsthreadedmorebeadsthanboys.Noassociationswerefound betweenironstatusindicatorsandtestscoresinchildrenwithorchildrenwithoutanaemiaat baseline when these two subgroups were considered separately (table 3.2). Selfordered pointingtestscoreswereassociatedwithbaselinehaemoglobininthecontrolgroup(datanot shown). Mean scores for selfordered pointing tests and bead threading did not differ among the groups, neither was there evidence of an effect of irontreatmentonanyofthetestscores (table3.3,figure3.1 ).However,generaltrendsinselforderedpointingtestscoresindicated more errors in children with anaemia at baseline than in their peers without anaemia at baseline.Therewerenoevidenttrendsindicatinganyrelationshipbetweentreatmentandbead threadingscoresinchildrenwithorwithoutanaemiaatbaseline.Visualsearchefficiencywas betterinthecontrolgroup,evenafteradjustmentofpotentialconfounders,bothinchildren withandwithoutanaemiaatbaseline.

67 TheeffectofironfortificationoncognitiveandmotorfunctionofschoolagedKenyanchildren ______ Control 21.5±8.0 34 Reference Reference 0.2(0.2;0.4) Reference Reference 27.3±4.0 Reference Reference Electrolyticiron 20.7±7.0 0.81(4.08;2.46) 39 0.52(2.72;3.74) 0.3(0.2;0.4) 5.9(17.4;36.1) 9.6(26.7;11.2) 27.6±5.0 0.32(1.89;2.52) 0.76(2.72;1.20) LowNaFeEDTA 19.7±7.0 34 1.82(5.20;1.56) 0.47(3.82;2.87) 0.2(0.2;0.3) 6.0(27.6;21.6) 21.8(36.9;2.9) 29.2±5.0 1.85(0.43;4.13) 0.15(1.88;2.18) es,byanaemiastatusatbaseline HighNaFeEDTA 19.8±7.0 39 1.71(4.97;1.56) 0.50(3.78;2.78) 0.2(0.2;0.4) 6.9(27.6;19.4) 18.9(34.2;0.2) 26.9±5.0 0.40(2.61;1.81) 1.49(3.47;0.50) 1,3 1 1 3 2 Table3.3Effectofironinterventionsontestscor Childrenwithanaemiaatbaseline n Selforderedpointingtest Score Interventioneffect Crude Adjusted Visualsearch Score Interventioneffect Crude Adjusted Beadthreading Score Interventioneffect Crude Adjusted

68 Chapter3 ______ 17.1±6.1 18 Reference Reference 0.3(0.2,0.5) Reference Reference 27.6±4.4 Reference Reference entrationandplasmaferritinconcentration 19.6±7.1 18 2.44(2.15;7.04) 2.69(2.01;7.39) 0.3(0.2;0.5) 14.7(44.7;31.8) 19.3(49.6;29.1) 27.9±4.1 0.28(3.04;3.60) 0.44(3.60;2.72) 22.9±6.9 5.81(0.80;10.83) 13 6.19(0.96;11.4) 0.2(0.2;0.5) 4.1(40.4;54.2) 9.2(46.3;53.1) 27.1±3.6 0.53(4.16;3.09) 0.79(4.30;2.72) percentiles) th percentdifference(95%CI)relativetothecontrol ,75 3 th gezscore,malaria,inflammation,haemoglobinconc (95%CI)or medianscore(25 2 14 19.4±7.5 2.25(2.66;7.16) 1.94(3.31;7.19) 0.3(0.2;0.4) 7.3(41.8;47.6) 10.1(46.9;52.4) 27.9±7.3 0.25(3.30;3.80) 0.71(2.82;4.24) 1,3 1 1 3 2 Adjustedforsexandage,andbaselineheightfora (table3.3continued) Childrenwithnoanaemiaatbaseline n Selforderedpointingtest Score Interventioneffect Crude Adjusted Visualsearch Score Interventioneffect Crude Adjusted Beadthreading Score Interventioneffect Crude Adjusted Scoresareindicatedasmeanscore±SDor Effectsareindicatedasmeandifferenceinscores 1

69 TheeffectofironfortificationoncognitiveandmotorfunctionofschoolagedKenyanchildren ______ Discussion Wefoundnoevidencethatdailyintakefor fivemonths of ironfortification foods had an effect on attention, working memory or fine motor control as assessed by visual search efficiency,selforderedpointingtestandbeadthreading,respectively. Our findings are surprising because there is evidence from other contexts that iron interventionsledtoimprovementsinattentionandmemoryinthisagegroup, 10,3133 .Inour study,theironstatusofchildrenwhoreceivedNaFeEDTAathighandlowdosesimproved 13 . Hencewewouldhaveexpectedtoseesomedifferencesingrouptestscoresassociatedwith irontreatment. Weselectedteststhattargetspecificconstructsthatarepostulatedtobeassociatedwithiron status 5,6,8,9 .Furthermorethetestswereculturallyappropriateforthispopulationandforthe age group included, and the performance of the testers was carefully assessed before the study.Thetestshavealsobeenshowntohaveahightestretestreliabilityinthispopulation, are sensitive to the constructs tested 23 and have been applied in other studies in similar populationsofAfricanchildren 28 ,(PennyHolding,unpublishedresults).Studyparticipants wereselectedfromchildrenwhoparticipatedinadoubleblindcontrolledtrialtoassessthe efficacyofironfortification.Weadjustedforgroupimbalancesthatarosefromtheselection ofthissubgroup.Becausetestsassessingdevelopmentaloutcomesareknowntobeaffected by a variety of factors 34,35 , we additionally adjusted for baseline imbalances in potential confounders. The lack of evident effect in our study may have been caused by several factors. First, becausewedidnotmeasuretestscoresatbaseline,wecannotruleoutresidualconfounding duetogroupdifferencesincognitiveormotorperformancethatmayhaveexistedatbaseline. Second,thedoseofironinourstudywaslowandthedurationofourstudymayhavebeen inadequatetoobserveeffectsondevelopmentaloutcomes.Whilstsupplementationtrialshave usedhigherdosesofiron,afortificationtrialinasimilaragegroupthatreportedaneffectof irontreatmentonmemoryhadalongerdurationthanours 11 .

70 Chapter3 ______ Selforderedpointingtest Noanaemia Anaemic

30

25 20 15 10 SOPTtotalerrors 5 0 Visualsearch 0.5 0.4 0.3 0.2 0.1 Efficiencyscore 0 Beadthreading 40 30 20 10

Totalbeadsthreaded 0

High Low Electrolytic NaFeEDTA NaFeEDTA iron Control Figure3.1 Adjusted test scores of children who were anaemic or nonanaemic at baseline indicated as scores of female childrenaged7years(averageage)withaveragebaselineconcentrationsofhaemoglobinandferritinandwith averageheightforageandwithoutmalaria.

71 TheeffectofironfortificationoncognitiveandmotorfunctionofschoolagedKenyanchildren ______ Third, we selected anaemic children in this study because we expected a substantial proportionofsuchchildrentobeirondeficient.Improvementsincognitionaremoreevident inindividualswithirondeficiencyanaemia 1.Becauseanaemiainourstudywaslargelydue to malaria, however, and the prevalence of iron deficiency anaemia was smaller than expected,wemaynothavebeenabletodetecteffects.Bycontrast,inIndia,irontreatment usingsupplementsimprovedinchildrenwithlowhaemoglobinatbaseline; 31 althoughferritin concentrationswerenotmeasured,anaemiainthatstudymayhavebeenlargelyduetoiron deficiency. Fourth,theabsenceofevidenceinourtrialmaybebecauseirondeficiencycoexistedwith othernutritionaldeficienciesthatwerenotredressedbyourintervention,andthatarelimiting for cognitive and motor development. We found that stunting and wasting were highly prevalent at baseline, and that these anthropometric indices were strongly associated with highertestscoresaftertheintervention.Othershaveobservedthatnutritionallydisadvantaged children are likely to have poorer developmental trajectories than children with better nutritionalstatus 36,37 .Whereastheremaybeimprovementsincognitiveormotorfunctionas aresultofnutritionalinterventionsthatincreaseenergyandironintakeinsuchchildren,they may continue to lag behind their better nourished counterparts 37,38 . Most studies have assessed the effects of iron treatment on cognitive or motor outcomes in anaemic but otherwiseeitherlessstuntedorhealthierchildrenthanthoseinourstudysample 10,32,33 .The presenceofstuntingcouldalsoimplyenergydeficitsorothernutritionaldeficienciesthatmay additionallyaffectdevelopmentaloutcomes. WefoundnoevidencethatironfortificationofwholemaizeflourwitheitherNaFeEDTAor electrolyticiron,atthefortificationlevelsusedinourstudy,improvedindicatorsofattention, spatialworkingmemoryorfinemotordexterityandcontrolovera5monthperiod.Evidence remainsscarcethatironprovidesbenefitsbeyondimprovedhaematologicalindicatorsofiron status 7andshouldbeobtainedinsuitablydesignedrandomisedcontrolledtrials.

72 Chapter3 ______ References 1. GranthamMcGregorS,AniC.Areviewofstudiesontheeffectofirondeficiencyoncognitive developmentinchildren. JNutr 2001; 131 (2) :649S668. 2. SachdevH,GeraT,NestelP.Effectofironsupplementationonmentalandmotordevelopment in children: systematic review of randomised controlled trials. Public Health Nutr 2005; 8(2) :11732. 3. GordonN.Irondeficiencyandtheintellect. BrainDev 2003; 25 (1) :38. 4. StoltzfusRJ,KvalsvigJD,ChwayaHM,etal.Effectsofironsupplementationandanthelmintic treatmentonmotorandlanguagedevelopmentofpreschoolchildreninZanzibar:doubleblind, placebocontrolledstudy. BMJ 2001; 323 (7326) :138993. 5. BeardJ.Irondeficiencyaltersbraindevelopmentandfunctioning. JNutr 2003; 133 (5) :1468S 1472. 6. BeardJL.Ironbiologyinimmunefunction,musclemetabolismandneuronalfunctioning. J Nutr 2001; 131 (2) :568S580. 7. VerhoefH,WestC,BleichrodtN,DekkerP,BornM,eds.Effectsofmicronutrientsduring pregnancy and early infancy on mental and psychomotor development. Nestlé Nutrition WorkshopSeriesPediatricProgram.Basel:NestecLtd.Vevey/S.KargerAG,2003. 8. Lozoff B, Georgieff MK. Iron deficiency and brain development. Sem Pediatr Neurol 2006; 13 (3) :15865. 9. LozoffB,JimenezE,HagenJ,MollenE,WolfAW.Poorerbehavioralanddevelopmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics 2000; 105 (4) :e51. 10. MetllinosKatsarasE,ValassiAdamE,DeweyK,LonnerdalB,StamoulakatouA,PollittE. Effect of iron supplementation on cognition of Greek preschoolers. Eur J Clin Nutr 2004; 58: 153242. 11. VanStuijvenbergME,KvalsvigJD,FaberM,KrugerM,KenoyerDG,BenadeAJS.Effectof iron,iodine,andßcarotene–fortifiedbiscuitsonthemicronutrientstatusofprimaryschool children:arandomizedcontrolledtrial. AmJClinNutr 1999; 69 (3) :497503. 12. FaberM,KvalsvigJD,LombardCJ,BenadeAJS.Effectofafortifiedmaizemealporridgeon anemia, micronutrient status, and motor development of infants. Am J Clin Nutr 2005; 82 (5) :10321039.

73 TheeffectofironfortificationoncognitiveandmotorfunctionofschoolagedKenyanchildren ______ 13. Andang'oPEA,OsendarpSJM,AyahR,etal.Efficacyofironfortifiedwholemaizeflouron iron status of schoolchildren in Kenya: a randomised controlled trial. Lancet 2007; 369 (9575) :17991806. 14. HealthMo.AnnualHealthReport,MalindiDistrict,Kenya,2003. 15. Wieringa FT, Dijkhuizen MA, West CE, NorthropClewes CA, Muhilal. Estimation of the effectoftheacutephaseresponseonindicatorsofmicronutrientstatusinIndonesianinfants. J Nutr 2002; 132 (10) :30613066. 16. Liu L,OldJ,MilesK,FisherC,WeatherallD,CleggJ.Rapiddetectionofαthalassaemia deletions and αglobin gene triplication by multiplex polymerase chain reactions. Brit J Haematol 2000; 108 (2) :295299. 17. GuthmannJP,RuizA,PriottoG,KiguliJ,BonteL,LegrosD.Validity,reliabilityandeaseof use in the field of five rapid tests for the diagnosis of Plasmodium falciparum malaria in Uganda. TransRSocTropMedHyg 2002; 96 (3) :2547. 18. Mboera LEG, Fanello CI, Malima RC, et al. Comparison of the ParacheckPf test with microscopy,fortheconfirmationof Plasmodiumfalciparum malariainTanzania. AnnTrop MedParasitol 2006; 100 (2) :11522. 19. VanDenBroekI,HillO,GordilloF,etal.EvaluationofthreerapidtestsfordiagnosisofP. FalciparumandP.VivaxmalariainColombia. AmJTropMedHyg 2006; 75 (6) :12091215. 20. CraggL,NationK.Selforderedpointingasatestofworkingmemoryintypicallydeveloping children. Memory 2007; 15 (5) :52635. 21. BaddeleyA,GardnerJ,GranthamMcGregorS.Crossculturalcognition:developingtestsfor developingcountries. ApplCognPsychol 1995; 9(Special) :S173195. 22. SpreenO,StraussE.Acompendiumofneuropsychologicaltests:administration,norms,and commentary.NewYork:OxfordUniversityPress,1991. 23. Holding P, Taylor H, Kazungu S, et al. Assessing cognitive outcomes in a rural African population: development of a neuropsychological battery in Kilifi, Kenya. J Intern NeuropsycholSoc 2004; 10: 246260. 24. HendersonS,SugdenD.Movementassessmentbatteryforchildren.London:HarcourtBrace, 1992. 25. Connolly K, Pharoah PD, Hetzel B. Fetal iodine deficiency and motor performance during childhood. Lancet 1979; 314 (8153) :11491151.

74 Chapter3 ______ 26. SaktiH,NokesC,HertantoW,etal.Evidenceforanassociationbetweenhookworminfection andcognitivefunctioninIndonesianschoolchildren. TropMedInterHealth 1999; 4(5) :322 334. 27. Zimmermann MB, Connolly K, Bozo M, Bridson J, Rohner F, Grimci L. Iodine supplementation improves cognition in iodinedeficient schoolchildren in Albania: a randomized,controlled,doubleblindstudy. AmJClinNutr 2006; 83 (1) :108114. 28. Carter JA, Ross AJ, Neville BGR, et al. Developmental impairments following severe falciparummalariainchildren. TropMedInterHealth 2005; 10 (1) :310. 29. SimeonDT,GranthamMcGregorS.Effectsofmissingbreakfastonthecognitivefunctionsof schoolchildrenofdifferingnutritionalstatus. AmJClinNutr 1989; 49 (4) :646653. 30. WHO. Iron deficiency anemia assessment, prevention and control: a guide for programme managers.Geneva:WorldHealthOrganization,2001. 31. SeshadriS,GopaldasT.Impactofironsupplementationoncognitivefunctionsinpreschooland schoolagedchildren:theIndianexperience. AmJClinNutr 1989; 50 (3) :675S684. 32. SoemantriAG,PollittE,KimI.Irondeficiencyanemiaandeducationalachievement. AmJClin Nutr 1985; 42 (6) :12211228. 33. SoewondoS,HusainiM,PollittE.Effectsofirondeficiencyonattentionandlearningprocesses inpreschoolchildren:Bandung,Indonesia. AmJClinNutr 1989; 50 (3) :667674. 34. LozoffB,WolfAW,JimenezE.Irondeficiencyanemiaandinfantdevelopment:Effectsof extendedoralirontherapy. JPediatr 1996; 129 (3) :3829. 35. Wachs TD, CreedKanashiro H, Cueto S, Jacoby E. Maternal Education and Intelligence PredictOffspringDietandNutritionalStatus. JNutr 2005; 135 (9) :21792186. 36. GranthamMcGregorSM,CumperG.Jamaicanstudiesinnutritionandchilddevelopment,and theirimplicationsfornationaldevelopment. ProcNutrSoc 1992; 51 (1) :719. 37. PollittE,JahariA,HusainiM,KarigerP,SacoPollittC.Developmentaltrajectoriesofpoorly nourishedtoddlersthatreceivedamicronutrientsupplementwithandwithoutenergy. JNutr 2002; 132 (9) :26172625. 38. GranthamMcGregorS,CheungYB,CuetoS,GlewweP,RichterL,StruppB.Developmental potentialinthefirst5yearsforchildrenindevelopingcountries. Lancet 2007; 369 (9555) :6070.

75

Chapter4 ______ TheeffectofironfortificationusingNaFeEDTAonpotentialiron overloadinKenyanschoolchildrenwithα +thalassaemia Andang’oPaulineEA,OsendarpSJM,MbugiE KokFJ,MwanikiDL,AyahR,KraaijenhagenR CliveEWest † VerhoefH Submittedforpublication †Deceased

EffectofironfortificationusingNaFeEDTAonpotentialironoverloadinKenyanchildrenwithα +thalassaemia ______ Abstract Suggestionsthatironabsorptionmaybeincreasedinindividualswithα +thalassaemiahave raisedconcernsthatironinterventionsinsuchindividualscanproduceironoverload. Thisstudyaimstoassesstowhatextentα +thalassaemiagenotypedeterminesthemagnitude oftheeffectonironstatusofdailyconsumptionfor5monthsofmaizeflourfortifiedwith iron. 490 children aged 38 years were randomly assigned to consume maize porridge that was unfortified or fortified with either highdose NaFeEDTA (56 mg iron/kg flour), lowdose NaFeEDTA (28 mg/kg) or electrolytic iron (56 mg/kg). Primary outcomes were plasma concentrations of ferritin and transferrin receptor (TfR). Plasma ferritin concentrations, adjustedfortheeffectofinflammationandmalaria,wereconsideredtoindicatepossibleiron overloadwhen>90g.Modificationbyα +thalassaemiagenotypeofinterventioneffectswas assessedbystratifiedandmultipleregressionanalyses. Theprevalenceofnormal,heterozygoteandhomozygotegenotypeswere31%,53%and16% respectively.Only5children(1%)hadadjustedferritinconcentrations>90g/L.Therewas no evidence that α +thalassaemia influenced the magnitude of the fortification effect on plasmaconcentrationsofferritinorTfR.Therewasnoevidenceofinteractionbetweenα+ thalassaemiagenotypeandtreatment.InteractionestimateinthehighNaFeEDTArelativeto normalcontrols(%difference,95%CI)was0.19(0.08,0.46)and–0.02(0.04,0.35)g/Lin heterozygotesandhomozygotes,respectively. Daily consumption for 5 months of maize flour fortified with NaFeEDTA improved iron status. We found no evidence that it resulted in iron overload, or that α +thalassaemia genotypeinfluencedtheresponsetoironfortification.

78 Chapter4 ______ Introduction Haemoglobindisorderssuchasthethalassaemiasarecommoninthetropics.α +thalassaemia is particularly common in subSaharan Africa; 1,2 the Middle East, the Indian subcontinent, parts of Southeast Asia, Melanesia and in African Americans. 3 In heterozygous α + thalassaemia,oneofthelinkedpairofαglobingenesinthehaploidgenomeisdeleted(α /αα),whilstinthehomozygousstate,therearetwodeletedgenes(α/α). 3 In αthalassaemia major, one of the more severe forms of thalassaemia, ineffective erythropoiesis is accompanied by increased iron absorption, which may result in iron overload. 34 Twostudieshaveshownthattransferrinreceptorconcentrationsareraisedinα + thalassaemia,indicatingsomedegreeofineffectiveerythropoiesis. 56 Inoneofthesestudies, therewasadditionalevidenceofhigherferritinconcentrationsinthalassaemicscomparedto individuals with normalgenotype. 6Theauthorssuggestedthattheraisedconcentrations of ferritinandtransferrinreceptormayindicateincreasedironabsorptioninindividualswithα + thalassaemia.Thusindividualswithα +thalassaemiamaybenefitmorefromtheinterventions. On the other hand, increased iron absorption over a prolonged period might lead to iron overload.Itisnotclear,however,whethersustainedironintakesatlevelsusedinfortification programs (3060 mg iron/kg flour depending on type of iron and the nature of the food vehicle 7)canbeharmful,especiallyinindividualswhoarelikelytoabsorbmoreironthan normalindividuals. We conducted a randomised controlled iron fortification trial with NaFeEDTA in children withahighprevalenceofα +thalassaemia. 8BecauseNaFeEDTAishighlybioavailable,inthe presentstudyweaimedtoassesstowhatextentα +thalassaemiamodifiedtheeffectofthe intervention,andtowhatextentitledtoriskofironoverload. Subjectsandmethods Subjects and study design ThecurrentstudywasconductedinMalindidistrict,neartheKenyancoast.Aselsewherein subSaharan Africa, α +thalassaemia is predominantly due to a 3.7kb deletion (α3.7 ). Childrenaged38 yearsweredrawnfrom4schoolsinMarafalocation ofMalindidistrict, andindividuallyrandomisedtodailyconsumptionofporridge( uji )madefromwholemaize

79 EffectofironfortificationusingNaFeEDTAonpotentialironoverloadinKenyanchildrenwithα +thalassaemia ______ flour,whichhadbeeneitherunfortified,orfortifiedwithNaFeEDTAat56mgironor28mg ironperkgflour.Athirdgroupreceivedflourfortifiedwithelectrolyticiron(56mg/kgflour), but results are not reported because, contrary to, NaFeEDTA we found no effect on iron status. Consumption of uji was supervised, with a target daily intake of 700 mL uji (containing100gflour)forchildrenaged3–5yearsand1000mL uji (containing150gflour) forchildrenaged6–8years.Theinterventionlasted5months.Allchildrenweretreatedfor malaria 2 weeks before the end of the intervention to eliminate infectioninduced inflammationonplasmaferritinconcentrationthatareunrelatedtoironstores.Detailsofthe studydesignareprovidedelsewhere. 8 Laboratory analyses Haemoglobinwasanalysedinahaematologyanalyzer(KX21,SysmexCorporation,Japan). Plasma concentrations of Creactiveprotein, ferritin and soluble transferrin receptor (sTfR) weremeasuredinTheNetherlands(MeanderMedicalCentre,Amersfoort)onanephelometer (modelBNProspec,DadeBehring,Marburg,Germany),usingBehringkitsandcalibration andassayprocedures accordingtothemanufacturer’sinstructions.Plasmaconcentrationof Creactiveproteinwasdeterminedasamarkerofcurrentinflammation,totakeintoaccount thatinfectioninducedinflammationisknowntoincreaseferritinconcentrationsindependent of iron status. 9 Genotyping for α +thalassaemia was done by PCR. 10 Current or recent infection with Plasmodium falciparum was assessed by dipstick test (Paracheck; Orchid Biomedical,Goa,India).Thistesthasareportedsensitivityandspecificityofmorethan90% relativetomicroscopy. 1112 Data analysis We included 490 children of 516 in the analysis, and excluded 25 children for whom genotype could not be determined because of missing samples, mislabelling, or technical problemswiththePCRtests.Wealsoexcludedonechildbecauseofabnormalironstatus indicatorsandareportedhistoryofattendingaspecialclinicforsicklecellanaemia. Ironoverloadcauseshighplasmaconcentrationsofferritin;concentrationswithinthenormal range provide good evidence against iron overload. 13 Plasma ferritin concentrations of 90 g/L are the upper value of the normal range 14 observed in apparently healthy American childrenaged48years. 15 Thusweconsideredplasmaferritinconcentrations>90g/Lasan indicationforpossibleironoverload.Anaemia was defined as haemoglobin concentrations

80 Chapter4 ______

<110 g/L in children <5 years and <115 g/L in children ≥5 years. 16 Normal ferritin concentrationsweredefinedas<12g/Linchildren<5yearsand<15g/Linchildren≥5 years. 16 InflammationwasdefinedasCreactiveproteinconcentrations>10mg/L. Data was analysed using SPSS (version 120 for Windows, SPSS Inc., Chicago, IL). We inspectedthedistributionofplasmaferritinconcentrationatbaselineandattheendofthe intervention to detect possible iron overload as defined above. Because malaria and inflammation affect plasma ferritin concentrations independent of iron status we assessed baselineferritinusingtwomethods:restrictingtheassessmenttochildrenwhodidnothave malaria infection or inflammation; or using ferritin concentrations that were corrected for malaria and inflammation. To obtain such adjusted ferritin concentrations we used linear regression to determine the effect of malaria and inflammation on log ferritin. The effect estimatesobtainedwereusedtocorrectlogferritinconcentrationsofindividualchildren.The corrected logferritin concentrations were exponentiated to obtain adjusted ferritin concentrations.Becausemalariabutnotinflammationhasbeenreportedtobeassociatedwith sTfR; 1719 we also adjusted sTfR concentrations for malaria, using similar methods as describedaboveforferritinconcentrations. We used multiple linear regression analysis to assess the associations between α + thalassaemia and iron status, both before and after the intervention. In the latter case, we adjustedforimbalancesatbaselineinironstatusindicators,inflammationandmalaria.We usedstratifiedanddirectmultivariateanalysistoassesstheinfluenceofα +thalassaemiaon themagnitudeoftheeffectoftheinterventiononironstatus.Inbothanalyses,weadjustedfor baselinedifferencesinplasmaconcentrationsofferritinandsTfR;inflammationandmalaria. Becauseanyadverseeffectswouldmostlikelybeidentifiedinthegroupthatreceivedhigh NaFeEDTA, we only report the results for this intervention. For all regression analyses, outcome variables that were not normally distributed (concentrations of ferritin and sTfR) were logtransformed and regression coefficients exponentiated to obtain geometric mean concentrations.Suchresultsarereportedaspercentdifferenceinconcentrationrelativetothat inchildrenwithnormalgenotype.

81 EffectofironfortificationusingNaFeEDTAonpotentialironoverloadinKenyanchildrenwithα +thalassaemia ______ ) / ( Homozygous 40.0%(32) 57.5%(46) 80 10.0%(8) 32.5(5.0,144.0) 26.0(5.0,126.0) 26.0(4.0,117.0) 32.1(27.4,37.5) 7.5%(6) 6.3%(2) 3.8%(3) 2.8(2.7,3.0) 2.6(2.5,2.8) ) / ( Heterozygous thalassaemiagenotype + 50.0%(130) 48.8%(127) 260 5.0%(13) 26.5(4.0,289.0) 24.0(4.0,81.0) 23.0(3.2,181.2) 26.7(24.4,29.2) 3.5%(9) 0.0%(0) 0.8%(2) 2.8(2.7,2.9) 2.6(2.5,2.7) α α α α thalassaemiagenotype + ) α α α α / Normal ( 51.3%(77) 46.7%(70) 150 7.3%(11) 30.5(3.0,441.0) 25.0(3.0,91.0) 24.6(3.0,87.5) 29.2(25.8,33.0) 4.7%(7) 1.3%(1) 0.0%(0) 2.6(2.5,2.8) 2.5(2.3,2.6) (n) tion tion flammationatbaseline,by 3 geometricmean(95%CI) 3 or (n) 1 2 3 Creactiveproteinconcentration>10mg/L; Plasma Median(minimumvalue,maximumvalue) Table4.1Indicatorsofironstatus,malariaandin Allchildren,n Childrenwithoutmalariaandwithoutinflammation Malaria(n) Inflammation Ferritinconcentration,g/L Allchildren Restrictedtochildrenwithoutmalariaorinflamma Adjustedformalariaandinflammation Allchildren Ferritinconcentration>90g/L(n) Allchildren Restrictedtochildrenwithoutmalariaorinflamma Adjustedformalariaandinflammation Solubletransferrinreceptorconcentration,mg/L Allchildren Adjustedformalaria 1 2

82 Chapter4 ______ Reference Reference Control (unfortifiedflour) hildren with an normal 9.3(25.6,10.4) 7.0(19.4,42.0) 3.4(2.4,9.6) 3.5(4.6,12.3) 1 fferritinandsolubletransferrin nstatus(concentrationsofferritin Reference Reference Lowdose NaFeEDTA 1 Endofintervention 5.6(21.3,13.2) 2.6(20.6,32.5) 5.0(1.6,12.1) 13.6(3.9,24.1) Reference Reference Highdose NaFeEDTA 6.9(9.8,26.7) 2.1(22.2,34.0) 2.7(4.8,10.8) 7.0(3.7,18.9) attheendofinterventions eometric mean concentrations (95% CI) relative to c 8.6) ors(malaria,inflammation,plasmaconcentrationso 1.818.1) Reference Reference Baseline, allchildren thalassaemiagenotypeandplasmaindicatorsofiro + 5.2(17.3, 11.9(6.9,34.6) 4.6(2.3,12.0) 7.7( Effect estimates are expressed as % difference in g Estimateadjustedforpreselectedbaselineindicat genotype,obtainedbymultiplelinearregression receptor) Table4.2Associationsbetweenα Ferritin% Normalgenotype Heterozygotes Homozygotes Solubletransferrinreceptor% Normalgenotype Heterozygotes Homozygotes 1 2 andsolubletransferrinreceptor),atbaselineand

83 EffectofironfortificationusingNaFeEDTAonpotentialironoverloadinKenyanchildrenwithα +thalassaemia ______

Results Atbaseline,ironstatuswasslightlybetterinthecontrolgroupthaninthegroupsthatreceived NaFeEDTA our report published elsewehere 8. About half the children were infected with malaria,andonlyasmallproportionofchildrenhadraisedCreactiveproteinconcentrations (table4.1).PlasmaconcentrationsofferritinandsTfRweresimilaracrossgenotypes(table 4.1). When the analysis was restricted to those without malaria or inflammation, only 3 children(1.3%)hadferritinconcentrationsabove90g/L.Bycomparison,whenusingferritin concentrationsthathadbeenadjustedformalariaandinflammation,only5children(1.0%) were detected with ferritin concentrations >90 g/L. The highest ferritin concentrations observed were 126 g/L (restricted analysis) and 181 g/L (adjusted for malaria and inflammation). These cases concerned children with homozygous and heterozygous genotypes,respectively.Attheendoftheintervention,thehighestferritinvalueobservedwas 108 g/L (a child with heterozygous genotype; figure 4.1). Results of analyses to assess whetherferritinandsTfRconcentrationsdependedonalphathalassaemiagenotypeatbaseline orattheendoftheinterventionarepresentedintable4.2.Therewasnoevidencethatα + thalassaemia genotype was associated with plasma ferritin concentration, or that it was associated with plasma sTfR concentration. However, plasma sTfR concentrations were slightlybutconsistentlyhigherinchildrenwithα+thalassaemiathantheirpeerswithnormal genotype. Response to the iron intervention Figure4.2showstheeffectofhighdoseNaFeEDTAonferritinconcentration,stratifiedby α+thalassaemia genotype. Ferritin concentration at the end of the intervention was similar across α +thalassaemia genotypes. In children with normal, heterozygous or homozygous genotypes,highdoseNaFeEDTAledtoincreasesinferritinconcentrationby54%(95%CI: 28% to 86%), 84% (24% to 121%) and 43% (1% to 101%), respectively. There was no evidenceofdifferencesintheeffectoftheinterventionbetweengenotypes,inthestratified analysis.Alsowhenassessedbydirectmultivariateanalysis,therewasnoevidencethatα + thalassaemia genotype modified the effect of highdose NaFeEDTA. Percent difference of effectsofhighdoseNaFeEDTAinheterozygotesandhomozygotes,relativetochildrenwith anormalgenotypewere0.19(0.08,0.46)and0.02(0.04,0.35)g/L,respectively.

84 Chapter4 ______

180 A B 160

140

120

100

80

60

40

20 Plasmaferritinconcentrationatbaseline,g/L 0

180 C D ion,g/L 160

140

120

100

80

60

40

20

0 Plasmaferritinconcentrationattheendofintervent

Normal Heterozygote Homozygote Normal Heterozygote Homozygote

Figure4.1 Distribution of ferritin concentration in children atbaseline(upperpanels)andattheendoftheintervention (lowerpanels).PanelA:Restrictedtochildrenwithnomalariaorinflammation;B:ferritinadjustedformalaria and inflammation; C: restricted to children without malaria or inflammation in the group that received high NaFeEDTA;D:allchildreninthegroupthatreceivedhighNaFeEDTA.

85 EffectofironfortificationusingNaFeEDTAonpotentialironoverloadinKenyanchildrenwithα +thalassaemia ______ Discussion We found no evidence that α +thalassaemia genotype was associated with elevated ferritin concentrations,eitherbeforeoraftertheironintervention.Inaddition,wefoundnoevidence thatchildrenwithα +thalassaemiarespondedtotheironinterventiondifferentlyfromchildren withnormalgenotype. Plasmaferritinconcentrationsindicatethelevelofbodyironstores,butitsinterpretationis difficult in the presence of inflammation. Plasma sTfR concentrations have been used to validly indicate the level of the iron deficit, even in the presence of inflammatory conditions 20 . Plasma sTfR concentrations are also influenced, however, by the level of erythropoiesis. Malaria may increase erythropoiesis because it necessarily leads to haemolysis, which stimulates the production of erythropoietin. On the other hand, malaria mayleadtoadecreasederythropoiesisthroughimmunesuppression 21 .Thusthereisnoway toaccuratelydetermineironstatusinindividualswithmalaria. We used three approaches to deal with this problem. First, when assessing iron status by ferritin concentrations status at baseline, we restricted the analysis to children without inflammationandwithoutmalaria.Becausethismethodleadstoareducedsamplesize,ithas thedisadvantagethattheprecisionofeffectestimatesisreduced.Inaddition,itmaycause biasinestimatingtheironstatusofpopulationsifironstatusistrulyassociatedwithinfection or malaria. Second, when analysing baseline data, we adjusted ferritin concentrations of individualchildrenfortheeffectsofbothmalariaandinflammation.Thismethodcanresultin residualerrorbecauseitassumes,incorrectly,thattheeffectsofmalariaandinflammationin individualchildrenareestimablefromthegroup.Inourstudypopulation,however,theresults ofthetwomethodswerecomparable,althoughtheabsolutenumberofchildrenidentifiedas having high ferritin concentrations >90g/L was slightly higher when using the adjustment method.Third,wetreatedchildrenformalariatwoweeksbeforecollectingbloodsamplesat theendoftheintervention.Asaconsequence,theprevalenceofinflammationandmalaria wasverylow,sothatferritinconcentrationsmeasuredattheendoftheinterventionvalidly reflectedironstatus.

86 Chapter4 ______

Control HighNaFeEDTA 50

40 30

20 10

Ferritinconcentration,g/L 0 Normal Heterozygous Homozygous Figure4.2 Ferritinconcentrations(geometricmean)inchildrenwhoreceivedhighNaFeEDTAstratifiedbyα +thalassaemia genotype and adjusted for baseline malaria, mean haemoglobin, and median concentrations of ferritin and C reactiveprotein.Thefigurerepresentsendofinterventionferritinconcentrationsforchildrenwithnomalariaat baseline,withbaselinemeanormedianironstatusindicatorconcentrations. Our findings do not support the hypothesis that our iron intervention led to an increased responseinferritinconcentrationbychildrenwithα +thalassaemiacomparedtochildrenwith normal genotype. We found no strong evidence of an association between ferritin concentrations and α +thalassaemia genotype, even if ferritin concentrations at baseline appeared to be slightly higher in homozygotes than in children with normal genotype. Although a few children had ferritin concentrations above 90g/L, there also was no clear indication that these high ferritin concentrations were associated with α +thalassaemia genotypeatbaselineor withα +thalassaemiagenotypeandirontreatmentattheendofthe intervention. Inpopulationssuchastheonewestudiedthesafety of iron interventions may depend on severalfactorsthatwerenotaddressedinthecurrentstudy.First,inseverelymalnourished children,transferrinlevelsarelowandintakeofextraironmayresultinraisedlevelsofnon transferrinboundiron.Raisedferritinconcentrationsandthepresenceofchelatableironin plasma,inmalnourishedchildren,werereportedinearlystudies. 2224 Inamorerecentstudy, raisedconcentrationsofferritinandnontransferrinboundironandhightransferrinsaturation in malnourished children was reported. 25 Because nontransferrin bound iron is possibly a

87 EffectofironfortificationusingNaFeEDTAonpotentialironoverloadinKenyanchildrenwithα +thalassaemia ______ sourceofnutritionforpathogens,ironinterventionsmayincreasetheriskofmalariaandother systemicinfections 26 inseverelymalnourishedchildren.Inagreementwithearlierstudiesthat have found epidemiological evidence for such a link, current guidelines from the World HealthOrganizationspecifythatironshouldnotbegiveninitiallytoseverelymalnourished childrenuntiltheyhaveagoodappetiteandstartgainingweight 27 .Similarguidelinesmaybe extendedtotheuseofironfortifiedfoodinemergencyconditions. Second,supplementationwithferroussulfateandfolicacidinmalariaendemicareashasbeen shown to increase the risk of hospitalization and death. 28 WHO recommends that iron supplementationinmalariaendemicareasshouldtargetindividualswhoareanaemicandat riskofirondeficiency. 29 Thisrecommendationspecificallyexcludesironfortificationbecause theabsorptionandmetabolismoffortificantironmaybedifferent.Supplementationironis usuallyprovidedasferroussalts,whichmayproducenontransferrinboundironbecausethe supplyofironbyduodenalenterocytestoplasmamaytransientlyexceedtheavailabilityof transferrin 30 .Bycontrast,fortificantironisingestedinlowerdosesthansupplementationiron so that the production of nontransferrin bound iron from fortification is less than from supplementation.Inaddition,contrarytosupplementaliron,NaFeEDTAprovidesironinits ferricform,whichmustbereducedintheintestinallumenontheenterocytemembraneby duodenalcytochromeBbeforeitcanbetakenupbytheenterocyte.Becausetheexpressionof thisferricreductaseisreducedinironsufficiency,thismayprovideanadditionalmechanism topreventironoverloadfromferriciron. FurthersafetyassessmentsofNaFeEDTAshould establish its effect on the pool of nontransferrin bound iron. However, because our intervention period was 5 months only, we cannot preclude the theoretical possibility that intakeoffoodswithfortificantironasNaFeEDTAmayleadtoironoverload.Thisshouldbe monitoredinfortificationprogrammes. WefoundnoevidencethatironfortificationwithNaFeEDTA at 28 or 56mg iron/kg flour resultedinanincreasedriskofironoverload.

88 Chapter4 ______ References 1. WambuaS,MwangiTW,KortokM,UyogaSM,MachariaAW,MwacharoJK,etal. The effect of alpha+thalassaemia on the incidence of malaria and other diseases in childrenlivingonthecoastofKenya. PLoSMed 2006;3(5). 2. MockenhauptFP,BienzleU,MayJ,FalusiAG,AdemowoOG,OlumesePE,etal. Plasmodium falciparum infection: influence on hemoglobin levels in alpha thalassemiaandmicrocytosis. JInfectDis 1999;180(3):9258. 3. WeatherallDJ,CleggJB. Thethalassaemiasyndromes .Fourthed.Oxford:Blackwell Science,2001. 4. PippardMJ,WarnerGT,CallenderST,WeatherallDJ.Ironabsorptionandloadingin [beta]thalassaemiaintermedia. Lancet 1979;314(8147):819821. 5. KrügnerF,ZaccariottoTR,RosimE,CostaFF,GrottoHZW,SonatiMF.Reticulocyte evaluationinalpha +thalassemia. AmJHematol 2006;81(1):6870. 6. Rees,Williams,Maitland,Clegg,Weatherall.Alphathalassaemiaisassociatedwith increasedsolubletransferrinreceptorlevels. BritJHaematol 1998;103(2):365369. 7. AllenL,deBenoistB,DaryO,HurrellR,eds.Guidelinesonfoodfortificationwith micronutrients. Geneva, Switzerland/Rome, Italy: World Health Organization/Food andAgricultureOrganisationoftheUnitedNations,2006. 8. Andang'oPEA,OsendarpSJM,AyahR,WestCE,MwanikiDL,DeWolfCA,etal. EfficacyofironfortifiedwholemaizeflouronironstatusofschoolchildreninKenya: arandomisedcontrolledtrial. Lancet 2007;369(9575):17991806. 9. WieringaFT,DijkhuizenMA,WestCE,NorthropClewesCA,Muhilal.Estimationof the Effect of the Acute Phase Response on Indicators of Micronutrient Status in IndonesianInfants. JNutr 2002;132(10):30613066. 10. LiuYT,OldJM,MilesK,FisherCA,WeatherallDJ,CleggJB.Rapiddetectionofα thalassaemiadeletionsandαglobingenetriplicationbymultiplexpolymerasechain reactions. BritJHaematol 2000;108(2):295299. 11. Mboera LEG, Fanello CI, Malima RC, Talbert A, Fogliati P, Bobbio F, et al. Comparison of the ParacheckPf test with microscopy, for the confirmation of Plasmodium falciparum malaria in Tanzania. Ann Trop Med Parasitol 2006;100(2):11522.

89 EffectofironfortificationusingNaFeEDTAonpotentialironoverloadinKenyanchildrenwithα +thalassaemia ______

12. GuthmannJP,RuizA,PriottoG,KiguliJ,BonteL,LegrosD.Validity,reliabilityand easeofuseinthefieldoffiverapidtestsforthediagnosisofPlasmodiumfalciparum malariainUganda. TransRSocTropMedHyg 2002;96(3):2547. 13. NurseGT.Iron,thethalassaemias,andmalaria. Lancet 1979;314(8149):938940. 14. CDC.HematologicalandironrelatedanalytesReferencedataforpersonsaged1year and over: United States, 198894: US Department of Health and Human Services. Centres for Disease Control and Prevention. National Center for Health Statistics, 2005. 15. Deinard AS, Schwartz S, Yip R. Developmental changes in serum ferritin and erythrocyte protoporphyrin in normal (nonanemic) children. Am J Clin Nutr 1983;38(1):7176. 16. WHO. Iron deficiency anaemia: assessment, prevention and control. A guide for programmemanagers.Geneva,Switzerland:WorldHealthOrganization,2001. 17. MenendezC,QuintoLL,KahigwaE,AlvarezL,Fernandez R, Gimenez N, et al. Effect of malaria on soluble transferrin receptor levels in Tanzanian infants. Am J TropMedHyg 2001;65(2):138142. 18. Mockenhaupt FP, May J, Stark K, Falusi AG, Meyer CG, Bienzle U. Serum transferrin receptor levels are increased in asymptomatic and mild Plasmodium falciparuminfection. Haematologica 1999;84(10):86973. 19. Verhoef H, West CE, Ndeto P, Burema J, Beguin Y, Kok FJ. Serum transferrin receptor concentration indicates increased erythropoiesis in Kenyan children with asymptomaticmalaria. AmJClinNutr 2001;74(6):767775. 20. Feelders RA, KuiperKramer EP, van Eijk HG. Structure, function and clinical significanceoftransferrinreceptors. ClinChemLabMed 1999;37(1):110. 21. VerhoefH,WestCE, KraaijenhagenR,NzyukoSM, King R, Mbandi MM, et al. MalarialanemialeadstoadequatelyincreasederythropoiesisinasymptomaticKenyan children. Blood 2002;100(10):34893494. 22. GoldenMHN.Oedematousmalnutrition. BrMedBull 1998;54(2):433444. 23. SrikantiaSG.Ferritininnutritionaloedema. Lancet 1958;271(7022):667668. 24. Srikantia SG, Gopalan C. Role of ferritin in nutritional edema. J Appl Physiol 1959;14(5):829833. 25. VelásquezRodríguezCM,ParraSosaB,MoralesMiraG,AgudeloOchoaG,Cardona HenaoO,BernalParraC,etal.["Free"iron,transferrinandferritinlevelsinserum andtheirrelationwithseveremalnutrition]. AnPediatr(Barc) 2007;66(1):1723.

90 Chapter4 ______

26. Oppenheimer SJ. Iron and its relation to immunity and infectious disease. J Nutr 2001;131(2):616S635. 27. WHO.IMCIManagementofthechildwithaseriousinfectionorseveremalnutrition: guidelines for care at the first referral level in developing countries. Geneva, Switzerland:WorldHealthOrganization,2002. 28. SazawalS,BlackRE,RamsanM,ChwayaHM,StoltzfusRJ,DuttaA,etal.Effectsof routineprophylacticsupplementationwithironandfolicacidonadmissiontohospital andmortalityinpreschoolchildreninahighmalariatransmissionsetting:community based,randomised,placebocontrolledtrial. Lancet ;367(9505):13343. 29. WHO.Ironsupplementationofyoungchildreninregionswheremalariatransmission isintenseandinfectiousdiseasehighlyprevalent. 30. HutchinsonC,AlAshgarW,LiuDY,HiderRC,PowellJJ,GeisslerCA.Oralferrous sulfateleadstoamarkedincreaseinprooxidantnontransferrinboundiron. EurJClin Invest 2004;34(11):782784.

91

Chapter5 ______ SafetyofNaFeEDTAasanironfortificant:effectsoffortification usingNaFeEDTAonstatusofzincandothernutritionally importantmineralelementsinKenyanschoolchildren PaulineEAAndang’o,HansVerhoef,FransJKok DavidLMwaniki,RosemaryAyah,CliveEWest † SaskiaJMOsendarp Submittedforpublication †Deceased

EffectsoffortificationusingNaFeEDTAonstatusofzincandothermineralelements ______ Abstract NaFeEDTAisapromisingironfortificantinpopulationsconsuminghighphytatediets.There have been concerns about its safety, however, particularly about its potential deleterious effectsontheabsorptionandstatusofzincandothermineralelements. We assessed the effect of NaFeEDTA on plasma levels of nutritionally important mineral elements(zinc,copper,calcium,magnesiumandmanganese). In a 5month iron fortification trial among children aged 38 years, we measured plasma concentrations of mineral elements in samples collected at baseline and at the end of intervention.Thechildrenwererandomizedtoconsumeporridgefromwholemaizeflourthat was either unfortified (control) or fortified with 28 iron/kg flour or 56 mg iron/kg from NaFeEDTAor56mgelectrolyticiron/kgflour.Effectsweremeasuredbymultipleregression analysis as group differences in means or percent difference, relative to control, of post interventionmineralelementconcentrations. Atbaseline,42%ofthechildrenhadzincdeficiency,whilst66%and19%hadlowcalcium and magnesium concentrations, respectively. At the end of the intervention, the plasma concentrationsofthesemineralelementshaddecreasedinallgroups.Therewasnoevidence, however,thatNaFeEDTAaffectedtheseconcentrations. We found no evidence that daily consumption of flour fortified with NaFeEDTA for a 5 monthperiodatmeanlevelsofEDTAintakeof2.35 mg/kg body weight affected plasma concentrationsofthemineralelementsinvestigated.

94 Chapter5 ______ Introduction The potential of NaFeEDTA as an iron fortificant has been successfully demonstrated in severalabsorptionstudiesandfieldtrialswithcondiments 15anditisnowrecommendedfor thefortificationofhighphytateflours 6.Werecentlyconfirmeditsefficacyinastudythat supportsthisrecommendation 7.Theenhancedironbioavailabilityfromlowbioavailability diets by NaFeEDTA is attributed to its EDTA moiety, a strong chelator that is capable of bindingmostmetalelements( figure5.1).TightbindingofirontoEDTAisfavoredatlowpH suchasencounteredinthestomach.ThusironboundtoEDTAisunavailabletootherligands suchasphytatethatwouldotherwisebindtoitandenhanceitsexcretioninstool.Athigher pH,asfoundintheduodenum,theirondissociatesfromEDTA,thuspromotingitsabsorption 8.MostoftheEDTAisexcretedinthestool.AsmallproportionofEDTA(5%)isabsorbed, butisrapidlyexcretedinurine 9.IronandEDTAareabsorbedbyseparateandindependent mechanismswhenNaFeEDTAisaddedtoameal 10 .Thusariskassessmentforexcessintake ofNaFeEDTAshouldseparatelyaddresstherisksforexcessintakeofironandEDTA. AcceptanceofNaFeEDTAasafortificanthasbeendelayedbecauseofconcernsthatEDTA potentiallyaffectsthemetabolismofothermineralelements.Safetyconcernsabouttheuseof EDTA involve two issues: its direct toxicity and its potential interaction with other metal elements.Thereisnoevidenceofpossibletoxicityatproposedfortificationlevelssupplying upto510mgironfromNaFeEDTAaday 8.Ofconcern,however,areitspotentialeffectson theabsorptionandexcretionofnutritionallyimportantmineralelementssuchaszinc,copper, and,probablytolesserdegree,calciumandmagnesium 8;andontheabsorptionofpotentially toxicelementssuchaslead,cadmium,mercury,aluminiumandmanganese.Oncedissociated fromiron,EDTAiscapableofformingcomplexeswithothercationswhosebindingtoEDTA isoptimalathigherpH;potentiallyincreasingtheirexcretionandreducingtheirabsorption. On the other hand it has the potential of solubilizing and increasing the absorption of potentially harmful elements. Alternatively, absorbed EDTA may potentially bind and enhance urinary excretion of absorbed elements 3. Evidence so far from both animal and human studies do not support potential adverse effects from NaFeEDTA consumption 1 3,5,10,11 . There is need, however, to establish the safety ofprolonged intakes ofNaFeEDTA regardingitseffectonmineralelementstatus,especiallyinchildren.

95 EffectsoffortificationusingNaFeEDTAonstatusofzincandothermineralelements ______

InafieldtrialtoassesstheefficacyofNaFeEDTAonironstatusofchildren,weprovidedthis fortificantatfortificationlevelssupplying28mg/kgflour and56mg/kgflour, and56mg electrolyticiron/kg,forfivemonths.Inthecurrentstudyweassessedtheeffectofconsuming NaFeEDTA at these levels on the status of five nutritionally important minerals: zinc, calcium,copper,magnesiumandmanganese. SubjectsandMethods Study sample and interventions Data for the current study were obtained from children who participated in an iron interventiontrialconductednearMalindi,ontheKenyancoast.Detailsofthestudydesignare providedelsewhere 7.Inbrief,theparticipantswerechildrenagedbetween38yearsfrom4 schools in Marafa location of Malindi district. A total of 516 children were individually randomisedtoreceivewholemaizeflourporridge( uji )thatwaseitherunfortifiedorfortified withNaFeEDTAat56mgiron/kgflouror28mg/kg,orwith56mgelectrolyticiron/kgflour. Thetargetdailyintakewas700mL uji (containing100gflour)forchildrenaged3–5years and1000mL uji (containing150gflour)forchildrenaged6–8years.Thistargetamountwas providedundersupervisiondailytoeverychildintwoequallydividedportions. Weestimated thatadditionofironatalowdoseof28mg/kgflourandahighdoseof56mg/kgflourwould provide 20% and 40%, respectively, of the daily iron requirements for children aged 3–5 yearsand18%and36%,respectively,oftherequirementsforchildrenaged6–8years.Inthis calculation,weassumedthat5%oftheaddedironwouldbeabsorbed. Theinterventionlasted 5months.Allchildrenweretreatedformalaria2weeksbeforetheendoftheintervention to avoidinflammationinducedeffectsonindicatorsofmineralelementstatus. Blood collection Nonfastingvenousbloodwas collectedintocontainers for mineral element analysis, with Naheparin(BectonDickinson;Temse,Belgium).Aliquotsofwholeblood,transferredinto EDTA bottles, were used for haematological analysis and to detect falciparum malaria antigenemiabydipsticktest.Heparinisedbloodwasseparatedinthefieldwithinonehourof collection;plasmawaskeptandtransportedinacoolbox(48ºC)for26hourswhilstinthe

96 Chapter5 ______ fieldandsubsequentlystoredinliquidnitrogen(196ºC)andbelow70ºC.At5monthsafter thestartoftheinterventionwerepeatedbaselinemeasurements. Laboratory analyses Haemoglobin concentrations were measured in a haematology analyzer (KX21, Sysmex Corporation,Japan).PlasmaconcentrationsofCreactiveprotein(CRP),ferritinandsoluble transferrin receptor (sTfR) were measured in The Netherlands (Meander Medical Centre, Amersfoort) on a Behring nephelometer (model BNProspec, DadeBehring, Marburg, Germany), using Behring kits and calibration and assay procedures according to the manufacturer’sinstructions.Creactiveproteinconcentrationwasdeterminedasamarkerof currentinflammation,totakeintoaccountthatinfectioninducedinflammationisknownto increaseferritinconcentrationsindependentofironstatus 12 .Plasmasampleswerediluted20 timesinmilliQ 13 andsubsequentlyanalyzedfortheirconcentrationsofzinc,copper,calcium, magnesium and manganese by ICPAES (Vista Axial, Varian, Australia) at NIZO Food Research (Ede, The Netherlands). This method has the advantage over Atomic Absorption Spectrometry (AAS) of simultaneously analyzing several elements in one run, in a small volumeofspecimen.Plasmasamplescollectedatbaselineandattheendoftheintervention were analyzed in the same run. To determine variability in outcomes, measurements were replicatedfivetimes.Withmeanvaluessetat100%,measurementsvariedbetween98%and 103%forcalcium,97%and102%forcopper, 99%to102% for magnesium, and 97% to 102%forzincrespectively. Infection by Plasmodium falciparum malaria was assessed by conventional microscopical examinationofthickandthinbloodfilm,andbydipsticktest(Parachek;OrchidBiomedical, Goa,India).Thistesthasareportedsensitivityandspecificityofmorethan90% 1416 . Mineral element biomarkers and cut-off values for deficiency or low concentrations Plasma zinc concentration is currently the most widely used and accepted biomarker of populationzincstatusalthoughithaspoorsensitivityandspecificitywhenappliedtodetect deficiencyinindividuals 17 .Wedefinedzincdeficiencyandlowzincstatusasplasmazinc concentrations<9.9mol/Land<10.7mol/L,respectively 18 .

97 EffectsoffortificationusingNaFeEDTAonstatusofzincandothermineralelements ______

Because of lack of defined cutoff values to indicate deficiency for the remaining mineral elements, we considered plasma concentrations below the lower limit of ‘normal’ plasma valuestoindicatelowstatusofspecificmineralelements.Biomarkersarelackingthatpermit reliable determination and interpretation of individual copper status 19 ; however, plasma copperconcentrationisfrequentlyusedforthispurpose,andiseffectivelymaintainedwithin a relatively narrow range. Responses to depletion are variable, except in cases of severe depletion 20,21 . Therefore, whilst very low levels may relatively safely be interpreted as indicatingdeficiency,theinterpretationofmarginallylowlevelsisdifficult 22 .Moresevere dietaryrestrictiondepressescopperlevels 17 ,andplasmacopperconcentrations<7.1mol/L lendstrongsupporttothediagnosisofdeficiency 23 .Plasmacopperiselevatedintheacute phaseresponse.Weconsidered0.80–1.75mg/L(12.6–27.5mol/L) 24 asthenormalrangefor thiselement. Plasmamanganeseconcentrationsreflectdietaryintake 17 .Weconsideredconcentrationsof 4–12g/L(0.007–0.022mol/L)tobewithinthenormalrange 25 .Plasmaconcentrationsof magnesiumareusefulinassessingacutechangesinmagnesiumstatusbutmayfailtogivethe truepictureoftotalbodymagnesiumstatus 26 .However,effectsofmagnesiumdeficiencyare mainlyrestrictedtoextracellularfunctionsofmagnesiumbecauseintracellularconcentrations are under tight regulation 27 . We considered plasma concentrations < 0.745 mmol/L as indicatinglowmagnesiumstatus 28,29 . As with copper, plasma calcium concentration is maintained within a narrow range, but is depressed with habitually low intakes as shown in studies among South African 30,31 and Nigerian 3234 children.Weconsideredvalues<2.22mmol/Ltoindicatelowcalciumstatus 35 . Data analysis Datawasmissingforonechildatbaselineforwhomnolaboratoryresultswereobtained,and for20children(4%)attheendoftheintervention.Ofthese20children,12wereabsentatthe time of specimen collection and no laboratory results were obtained for 8 children. We imputedthesedatausingthemeanvalueswithineachtreatmentgroup.Becauselessthan10% ofdatawasmissing,thismethodofimputationshouldyieldsimilarresultstobetterbutmore sophisticatedmethods.Becauseofthesmalllosstofollowuphowever,wedonotexpectthat any differences arising from this method would be substantial. We also conducted a sensitivityanalysisbydoingacompletecaseanalysis.

98 Chapter5 ______

Figure5.1

Iron(brownball)inNaFeEDTA.3H 2Oisshieldedfrombindingtophytatesthathamperabsorptionoftheiron. Dissolvedinwater,oneofthethreewatermoleculesremainsattachedtothecentralironion.Black:carbon;red: oxygen;blue:nitrogen;yellow:hydrogen.Sodiumisnotpartofthe‘jacket’andhasthereforenotbeenshownin thediagram.[Coloursaredisplayedonlyintheelectronicversionofthisthesis]. WecalculatedEDTAintakesbasedonactualbodyweights.AlthoughthereisnoAcceptable

DailyIntake(ADI)availableforEDTA,thiscanbederivedfromtheADIforCaNa 2EDTA, whichwasestablishedas2.5mg/kgbodyweight 36 .Thus,assumingtheabsorptionofEDTA 10 moietyfromNaFeEDTAtobeidenticaltothatfromCaNa 2EDTA ,wedeterminedtheADI forEDTAtobe1.93mg/kgbodyweight. We assessed baseline and endofintervention concentrations of mineral elements within treatment groups to evaluate the children’s mineral element status at the two time points.

99 EffectsoffortificationusingNaFeEDTAonstatusofzincandothermineralelements ______

Visualinspectionofdistributionplotsofeachelementwasusedtodeterminenormality.We conducted multiple linear regression analyses to assess treatment effects on each of the mineral elements, with the group that received unfortified flour as the control. In these analyses,standardisedscoresoftheendofinterventionconcentrationofeachmineralelement wasthedependentvariable,withandwithoutadjustmentformalaria,ageandtherespective baselineconcentrationofthemineralelementthatwasconsideredasthedependentvariable. Standardised scores of nonnormally distributed outcomes were obtained from log transformedvalues.Resultsarereportedasmeandifferenceofstandardisedscorerelativeto the control for normally distributed outcomes, and as percent difference relative to the control,fornonnormallydistributedoutcomes. In a subgroup analysis we assessed whether children who were iron deficient at baseline were more at risk of developing mineral element deficiency than their iron sufficient counterparts,followingtheironintervention.Todothis,weassessedthetreatmenteffectson themineralelementsinstrataofchildrenwhowereirondeficientorsufficientatbaseline. Results EDTA intake in children receiving NaFeEDTA-fortified flour The mean (SD)daily intakeofEDTAwas1.15(0.21)mg/kgbodyweightand2.35(0.40) mg/kg body weight in children in the lowdose and highdose NaFeEDTA groups, respectively( figure5.2).Noneof139childreninthelowdoseNaFeEDTAgroupexceeded theADIforEDTA.Bycontrast,84%(101/121)oftheirpeersinthehighdoseNaFeEDTA groupexceededtheADI.

100 Chapter5 ______ 20 High-dose NaFeEDTA (56 mg/kg flour)

15

10 Frequency

5

0

30 Low-dose NaFeEDTA (28 mg/kg flour) 25

20

15 Frequency 10

5

0 1 2 3 4 DailyEDTAintake,mg/kgbodyweight Figure5.2 EDTAintake(mg/kgbodyweight)inthehighdoseNaFeEDTAgroup(upperpanel)andlowdoseNaFeEDTA group(lowerpanel);thedottedlineindicatestheADIforEDTA(1.93mg/kgbodyweight).

101 EffectsoffortificationusingNaFeEDTAonstatusofzincandothermineralelements ______ Baseline mineral element status Plasma concentrations of calcium, copper, potassium and magnesium were normally distributed,whilstconcentrationsofzincandmanganesewerenormallydistributedafterlog transformation.Atbaseline,thefollowingprevalencevaluesweremeasured:zincdeficiency: 42.0%;lowstatusforzinc,calciumandmagnesium:59.0%,66.0%and19.0%,respectively. Plasma concentrations of mineral elements and prevalence of low status at baseline were similar across treatment groups ( tables 5.15.2), with the possible exception of zinc deficiency,whichappearedtooccurmorefrequentlyinthecontrolgroup.Zincconcentrations werelowerandcoppervalueshigherinchildrenwithmalariaandinflammationascompared totheirpeerswithoutbothmalariaandinflammation.Wefoundnoevidenceofassociations between malaria and plasma concentrations at baseline or at the end of intervention of magnesium, manganese and calcium. Similarly, we found no evidence of associations betweeninflammationandthesemineralstatusindicators. Effect of the iron intervention on the mineral element concentrations Forzinc,calciumandmagnesium,theprevalenceoflowstatuswashigherattheendofthe interventionthanatbaseline.Thedistributionsofthesemineralelementsweresimilaracross interventiongroups(tables5.15.2),withtheexceptionofmagnesiumandmanganese.Plasma concentrations of magnesium seemed reduced – and prevalence of low magnesium status increased – in the high NaFeEDTA group relative to the control group. For plasma manganeseconcentrations,thedatawerecompatiblewithreductionsinbothgroupsreceiving NaFeEDTArelativetothatmeasuredinthecontrolgroup( table5.3). Lastly,therewasnoevidencethattheironinterventionswereassociatedwithchangesinzinc status,evenwhenchildrenwerestratifiedbyironstatusatbaseline.

102 Chapter5 ______ Control 128 128 10.4±3.7 9.3±1.5 2.15±0.1 2.08±0.1 21.8±4.3 18.7±3.2 0.80±0.1 0.76±0.1 0.03(0.02,0.04) 0.030(0.028,0.032) Electrolyticiron 126 127 10.4±2.0 9.4±1.7 2.18±0.2 2.09±0.1 22.5±3.9 19.7±3.5 0.82±0.1 0.78±0.1 0.03(0.02,0.04) 0.03(0.03,0.04) LowNaFeEDTA 140 138 10.6±2.8 9.3±1.5 2.21±0.3 2.09±0.1 22.7±5.6 19.4±3.7 0.82±0.1 0.78±0.1 0.03(0.02,0.04) 0.026(0.02,0.03) HighNaFeEDTA 121 120 10.4±3.79.4±1.8 2.19±0.2 2.08±0.1 22.3±4.2 19.7±3.4 0.81±0.1 0.75±0.1 0.03(0.03,0.05) 0.03(0.02,0.03) ter5monthsofintervention ied Baseline Month5 Baseline Month5 Baseline Month5 Baseline Month5 Baseline Month5 Baseline Month5 1 percentiles) th ,75 th Median(25 Table5.1Mineralelementstatusatbaselineandaf n Zincconcentration(mol/L) Calciumconcentration(mmol/L) Copperconcentration(mol/L) Magnesiumconcentration(mmol/L) Manganeseconcentration(mol/L) Allvaluesareexpressedasmean±SDunlessspecif 1

103 EffectsoffortificationusingNaFeEDTAonstatusofzincandothermineralelements ______

Table5.2Proportionofchildrenwithlowmineralelementconcentrationsatbaseline,by interventiongroup High Low Electrolytic NaFeEDTA NaFeEDTA Iron Control n 121 139 126 128 Baseline At5months 121 139 127 128 Zinc(low) 1 Baseline 51.2%(62) 61.4%(86) 57.0%(72) 67.2%(86) At5months 80.2%(97) 83.6%(117) 78.7%(100) 81.3%(104) Zincdeficiency 2 Baseline 36.4%(44) 42.1%(59) 39.7%(50) 50.8%(65) At5months 67.8%(82) 75.5%(105) 64.6%(82) 68.0%(87) Lowcalciumstatus 3 Baseline 62.8%(76) 66.4%(93) 63.5%(80) 69.5%(89) At5months 82.6%(100) 87.8%(122) 85.0%(108) 85.9%(110) Lowcopperstatus4 Baseline 0%(0) 0.7%(1) 0%(0) 0.8%(1) At5months 0%(0) 0.7%(1) 1.6%(2) 2.3%(3) Lowmagnesiumstatus5 Baseline 20.7%(0) 15.8%(0) 14.3%(0) 23.4%(1) At5months 43.8%(53) 32.4%(45) 25.2%(32) 37.5%(48) Lowmanganesestatus 7 Baseline 2.5%(3) 2.9%(4) 7.9%(10) 2.3%(3) At5months 3.3%(4) 6.5%(9) 2.4%(3) 2.3%(3) Valuesareindicatedas%(n) Lowstatusisdefinedasbelowthelowervalueofthereferencerange 1<10.7mol/L; 2<9.9mol/L; 3<2.22mmol/L; 4<12.6mol/L; 5<0.740mmol/Lforchildren≤5yearsand< 0.745mmol/Lforchildren>5years; 6<3.3mmol/L; 7<0.007mol/L

104 Chapter5 ______ Discussion We found no evidence that daily intake over a 5month period of flour fortified with NaFeEDTA, even at intake levels above the ADI, affected plasma concentrations of zinc, calcium, or copper. Our data suggested that intake of flour fortified with highdose NaFeEDTA maybe associated with marginally reducedplasmamagnesiumconcentrations, and a possible association between intake of flour fortified with NaFeEDTA with small reductionsofplasmamanganeseconcentrations. Plasma concentrations of zinc, calcium and magnesium at the end of the intervention had declined substantially relative to values measured at baseline. This may have occurred because all children received porridge, which may have led to a growth spurt and a concomitantdilutionofthesemineralelements.Thisfindingdoesnotinvalidateourresults, however, because treatment effects are indicated by comparing values at the end of the interventions,andnotwithininterventiongroups. Ofthemineralsassessed,thepotentialeffectofEDTAonzinchasbeenofmostconcern, because adverse effects observed in early animal studies arose from EDTAinduced zinc deficiency 37 .RecentstudieshavehoweverfoundnoadverseeffectofEDTAonzincundera varietyofconditions;bycontrast,theyindicatethatprogressivelyhighintakesofEDTAcan resultinincreasedzincexcretionandreducedretention.Forexample,dietaryintakeofEDTA resulted in increased zinc absorption and increased urinary excretion in rats; because the proportionalincreaseinabsorptionexceededtheproportionalincreaseinexcretion,however, net zinc retention was increased 11 . An earlier study showed that, when NaFeEDTA was addedtonormalGuatemalanmeals,theNaFeEDTAdose“equivalenttothatconsumedina daybyruralGuatemalans”(40mg)didnotinfluencethezincabsorptionofadults.Inamore recentstudy,consumptionofatestmealcontaining NaFeEDTA increased zinc absorption andurinaryexcretioninapparently healthy adultwomen relative to consumption of a test mealcontainingferroussulfate.However,therewasnoevidencethatzincretentiondiffered between groups receiving the two types of meals 4.Inhealthyinfants,noincreaseinzinc absorption was observed when NaFeEDTA was compared to ferrous sulfate plus ascorbic acid 3.Differencesbetweenstudiesintheeffectsofzincmaybeattributabletodifferentmolar ratiosofzinc:EDTA 11 .

105 EffectsoffortificationusingNaFeEDTAonstatusofzincandothermineralelements ______

Table5.3EffectsoffortificationwithNaFeEDTAandelectrolyticirononpost interventionmineralelementstatus Highdose Lowdose Electrolytic NaFeEDTA NaFeEDTA iron Zinc 0.03(0.24,0.24) 0.06(0.29,0.18) 0.03(0.21,0.27) Calcium 0.01(0.23,0.26) 0.04(0.20,0.28) 0.07(0.18,0.31) Copper 0.25(0.02,0.48) 0.11(0.12,0.33) 0.23(0.00,0.45) Magnesium 0.07(0.31,0.18) 0.22(0.02,0.45) 0.22(0.03,0.46)

Manganese 1 0.15(0.40,0.10) 0.30(0.53,0.06) 0.14(0.10,0.39) Resultsareindicatedasthedifferenceinsds(95%CI),adjustedforbaselineconcentrationsofthespecifiednutrient element,ageandmalaria. 1Logtransformed Ourdatasuggestedan associationbetweenhighdose NaFeEDTA and marginally reduced plasmamagnesiumconcentrations.Onamolarbasis,thedietaryintakesofmagnesiumand calciumaremuchhigherthanofEDTA,sothatitseemsunlikelythatingestedEDTAhasan effectontheabsorptionoftheseelements.Thus,althoughwecannotprecludethathighdose NaFeEDTA leads to reduced magnesium status, our observation is likely tobe a spurious finding. IncrementaldietaryEDTAintakeinratsslightlyincreasedurinarycalciumconcentrationbut hadnomeasurableeffectoncalciumretention 11 .Inagreementwithourfindings,however, studieswithstableisotopesshowedthatNaFeEDTAhadnoeffectoncalciumabsorptionin women 4norontheabsorptionofeithercalciumormagnesiuminhealthyinfants 3. Inrats,itwasfoundthatNaFeEDTAcanimprovetheabsorptionofcopperespeciallyfrom lowzincdietsbutotherwiseitdidnotinfluenceabsorption,excretionorretentionofcopper. In infants, no effect of NaFeEDTA on copper absorption was observed as compared to ferroussulfategivenatdosesthatsuppliedsimilaramountsofiron 3.Asjudgedbyplasma copper concentrations, children in our study appeared to have adequate copper status. Because plasma copper concentrations within the normal range do not reflect the dietary

106 Chapter5 ______ supplyofcopper,however,wecannotprecludeeffectsofNaFeEDTAoncopperstatusthat werenotmanifestedinplasmacopperconcentrations. WeobservedapparentlylowermanganeseconcentrationsinthegroupsreceivingNaFeEDTA relative to the control, and an increase relative to the control in the group receiving electrolytic iron; however, these changes were small and our estimates were imprecise. In addition,theprevalenceofchildrenwithlowmanganesestatuswaslow.Davidssonetal 3 found no influence of NaFeEDTA on manganese absorptionorexcretioninadultwomen. ThuswecannotprecludeaneffectofNaFeEDTAfromourdata,butthereisnoevidencethat thisshouldbeaconcern. Contrary toourexpectations,theEDTAintakeina substantial fraction of children in the group receiving highdose NaFeEDTA exceeded the ADI. The reasons were threefold: Firstly,whendesigningourstudy,wecalculatedtheintakeofEDTAbasedonweightsofUS childrenbecausewehadnodataonweightdistributionforourtargetpopulationofKenyan children. In fact, however, the Kenyan children in our study weighed less than their US counterparts.Second,webasedourcalculationsonaverageweightofUSchildreninsteadof theweightofchildrenfromanarbitrarilyselectedupperpercentile.Third,basedonearlier reports 38 , 39 , 8,weassumedthattheADIforEDTAwas2.5mg/kgbodyweight.Thisvalue, 36 however,wassetbyJECFA astheADIforCaNa 2EDTA,whereasrecalculationindicated anADIforEDTAof1.93mg/kg(seeourSubjectsandMethodssection). Therearetwoimportantarguments,however,whytheADIthatwederivedforEDTAshould notbeappliedtoorigidly,particularlywithshorttermexposureasinourstudy.First,itwas derived from the ADI set for CaNa 2EDTA, which is an additive without any nutritional valuethatisusedasashelflifeenhancingagent.TheADIvalueforCaNa 2EDTAwasbased on the noobservedeffect level (NOEL) of 250 mg/kg body weight reported for rats and dogs,withtheapplicationofasafetyfactorof100toprovideaconservativemarginofsafety on account of the inherent uncertainties in extrapolating animal toxicity data to potential effectsinthehumanbeing,andtotakeintoaccountvariationwithinthehumanspecies 36 .By contrast,NaFeEDTAisaddedsolelytoimprovehealthandtosatisfydietaryneedsforiron, whichmaywarranttheuseofalowersafetyfactorwhensettinganADIforEDTA.Because ironmaybetoxicatintakelevelslessthan10timesthoseforoptimalnutrition,asafetyfactor

107 EffectsoffortificationusingNaFeEDTAonstatusofzincandothermineralelements ______ of 100 as applied for food additives should not be considered immutable 40 , and a lower factormaybemoreappropriate. Second,theADIisanestimatebytheJointFAO/WHOExpertCommitteeonFoodAdditives (JECFA) of the amount of a food additive, expressedonabodyweightbasis,thatcanbe ingesteddailyoveralifetimewithoutappreciablehealthrisk 40 .Thusshorttermexposureto intakelevelsexceedingtheADI,asoccurredinourtrialforEDTA,shouldnotnecessarilybe viewedasahealthconcern. Wefoundnoevidencethatdailyconsumptionofflour fortified with NaFeEDTA for a 5 monthperiodatmeanlevelsofEDTAintakeof2.35mg/kgbodyweightaffectedthestatus ofzinc,calcium,magnesium,copperormanganeseasindicatedbytheplasmaconcentrations ofthesemineralelements.

108 Chapter5 ______ References 1. BallotDE,MacPhailAP,BothwellTH,GilloolyM,MayetFG.Fortificationofcurry powderwithNaFe(111)EDTAinanirondeficientpopulation:reportofacontrolled ironfortificationtrial. AmJClinNutr 1989; 49 (1) :162169. 2. DavidssonL,AlmgrenA,HurrellRF.Sodiumiron EDTA [NaFe(III)EDTA] as a foodfortificantdoesnotinfluenceabsorptionandurinaryexcretionofmanganesein healthyadults. JNutr 1998; 128 (7) :11391143. 3. Davidsson L, Ziegler E, Zeder C, Walczyk T, Hurrell R. Sodium iron EDTA [NaFe(III)EDTA]asafoodfortificant:erythrocyteincorporationofironandapparent absorption of zinc, copper, calcium, and magnesium from a complementary food basedonwheatandsoyinhealthyinfants. AmJClinNutr 2005; 81 (1) :104109. 4. DavidssonL,KastenmayerP,HurrellRF.SodiumironEDTA[NaFe(III)EDTA]asa food fortificant: the effect on the absorption and retention of zinc and calcium in women. AmJClinNutr 1994; 60 (2) :2317. 5. Viteri FE, Alvarez E, Batres R, et al. Fortification of sugar with iron sodium ethylenediaminotetraacetate (FeNaEDTA) improves iron status in semirural Guatemalanpopulations. AmJClinNutr 1995; 61 (5) :11531163. 6. WHO.Guidelinesonfoodfortificationwithmicronutrients.WHOandFAO,2006. 7. Andang'oPEA,OsendarpSJM,AyahR,etal.Efficacyofironfortifiedwholemaize flouronironstatusofschoolchildreninKenya:arandomisedcontrolledtrial. Lancet 2007; 369 (9575) :17991806. 8. BothwellTH,MacPhailAP.ThepotentialroleofNaFeEDTAasanironfortificant. InterJVitaminNutrRes 2004; 74 (6) :42134. 9. CandelaE,CamachoMV,MartinezTorresC,etal.Ironabsorptionbyhumansand swinefromFe(III)EDTA.FurtherStudies. JNutr 1984; 114 (12) :22042211. 10. INACG.IronEDTAforfoodfortification:areport of the International Nutritional Anaemia Consultative Group. Washington DC: The Nutrition Foundation, INACG Secretariat,1993. 11. HurrellRF,RibasS,DavidssonL.NaFe3+EDTAasafoodfortificant:influenceon zinc,calciumandcoppermetabolismintherat. BritJNutr 1994; 71 (1) :8593. 12. WieringaFT,DijkhuizenMA,WestCE,NorthropClewesCA,Muhilal.Estimation of the effect of the acute phase response on indicators of micronutrient status in Indonesianinfants. JNutr 2002; 132 (10) :30613066.

109 EffectsoffortificationusingNaFeEDTAonstatusofzincandothermineralelements ______

13. RyanA.AnalysisofbloodserumontheLibertySeriesIIICPAESwiththeaxially viewedplasma.ICP24:VarianInc,1998. 14. MboeraLEG,FanelloCI,MalimaRC,etal.Comparison of the ParacheckPf test withmicroscopy,fortheconfirmationofPlasmodiumfalciparummalariainTanzania. AnnTropMedParasitol 2006; 100 (2) :11522. 15. Van Den Broek I, Hill O, Gordillo F, et al. Evaluation of three rapid tests for diagnosisof P.falciparum and P. vivax malariainColombia. AmJTropMedHyg 2006; 75 (6) :12091215. 16. GuthmannJP,RuizA,PriottoG,KiguliJ,BonteL,LegrosD.Validity,reliabilityand easeofuseinthefieldoffiverapidtestsforthediagnosisofPlasmodiumfalciparum malariainUganda. TransRSocTropMedHyg 2002; 96 (3) :2547. 17. Hambidge M. Biomarkers of trace mineral intake and status. J Nutr 2003; 133 (3) :948S955. 18. HotzC,BrownKH.Assessmentoftheriskofzinc deficiency in populations and optionsforitscontrol. FoodNutrBull ,2004; 25 (suppl2). 19. SchümannK,ClassenHG,DieterHH,etal.Hohenheimconsensusworkshop:copper. EurJClinNutr 2002; 56 (6) :46983. 20. Milne DB. Assessment of copper nutritional status. Clin Chem 1994; 40 (8) :1479 1484. 21. Milne DB. Copper intake and assessment of copper status. Am J Clin Nutr 1998; 67 (5) :1041S1045. 22. DanksDM.Diagnosisoftracemetaldeficiencywithemphasisoncopperandzinc. AmJClinNutr 1981; 34 (2) :278280. 23. Cordano A. Clinical manifestations of nutritional copper deficiency in infants and children. AmJClinNutr 1998; 67 (5) :1012S1016. 24. Iyengar V, WoittiezJ.Trace elements in human clinical specimens: evaluation of literaturedatatoidentifyreferencevalues. ClinChem 1988; 34 (3) :474481. 25. Rükgauer M, Klein J, KruseJarres JD. Reference values for the trace elements copper,manganese,selenium,andzincintheserum/plasmaofchildren,adolescents, andadults. JTraceElementsMedBiol 1997; 11 (2) :928. 26. ElinRJ.Assessmentofmagnesiumstatus. ClinChem 1987; 33 (11) :19651970. 27. Vormann J. Magnesium: nutrition and metabolism. Mol Aspects Med 2003; 24 (1 3) :2737.

110 Chapter5 ______ 28. JagarinecNZ,SurinaB,VrhovskiHebrangDV.Pediatricreferenceintervalsfor34 biochemicalanalytesinurbanschoolchildrenandadolescents. ClinChemLabMed 1998; 36 (5) :32737. 29. LowensteinFW,StantonMF.SerummagnesiumlevelsintheUnitedStates,1971 1974. JAmCollNutr 1986;5(4) :399414. 30. PettiforJM,RossP,MoodleyG,ShuenyaneE.Calcium deficiency in rural black childreninSouthAfrica:Acomparisonbetweenruralandurbancommunities. AmJ ClinNutr 1979; 32 (12) :24772483. 31. Pettifor JM, Ross P, Moodley G, Shuenyane E. The effect of dietary calcium supplementation on serum calcium, phosphorus, and alkaline phosphatase concentrationsinaruralblackpopulation. AmJClinNutr 1981; 34 (10) :21872191. 32. OginniLM,SharpCA,BadruOS,etal.Radiologicalandbiochemicalresolutionof nutritionalwithcalcium. ArchDisChild 2003; 88 (9) :812817. 33. OginniLM,SharpCA,WorsfoldM,BadruOS,DavieMWJ.Healingofricketsafter calciumsupplementation. Lancet 1999; 353 (9149) :296297. 34. OginniLM,WorsfoldM,OyelamiOA,SharpCA,PowellDE,DavieMWJ.Etiology ofricketsinNigerianchildren. JPediatr1996; 128 (5) :692694. 35. GhoshalAK,SoldinSJ.EvaluationoftheDadeBehringDimensionRxL:integrated chemistrysystempediatricreferenceranges. ClinChimActa 2003; 331 (12) :135146. 36. JECFA. Ethylenediaminetetraacetate, disodium and calcium disodium salts. SeventeenthReportoftheJointFAO/WHOExpertCommittee on Food Additives. Technical Report Series No. 539; FAO Nutrition Meetings Report Series, No, 53. Geneva,Switzerland:WorldHealthOrganization,1974. 37. SwenertonH,HurleyLS.Teratogeniceffectsofachelatingagentandtheirprevention byzinc. Science 1971; 173 (991) :624. 38. MacPhailAP,PatelRC,BothwellTH,LamparelliRD.EDTAandtheabsorptionof ironfromfood. AmJClinNutr 1994; 59 (3) :644648. 39. Heimbach J, Rieth S, Mohamedshah F, et al. Safety assessment of iron EDTA [sodium iron (Fe3+) ethylenediaminetetraacetic acid]: summary of toxicological, fortificationandexposuredata. FoodChemToxicol 2000; 38 (1) :99111. 40. WHO. Principles for the safety assessment of food additives and contaminants in food.InternationalProgrammeonChemicalSafety,EnviromentalHealthCriteriaNo. 70.Geneva,Switzerland:WorldHealthOrganization,1987.

111

Chapter6 ______ Generaldiscussion

GeneralDiscussion ______

This thesis aimed to assess: the benefits of consuming whole maize flour fortified with NaFeEDTAorelectrolyticironon:1)theironstatusofschoolagedchildren,and2)cognitive function and fine motor skills; and to assess two aspects of the safety of the use of NaFeEDTA;3)thesafetyofNaFeEDTAinchildrenwith αthalassaemia;and4)thesafetyof theinterventionsonthestatusofnutritionallyimportantmineralelements. MAINFINDINGS Themainfindingsofthisthesisaresummarisedinfigure 6.1.Thestudythatassessedthe potential benefits of NaFeEDTA and electrolytic iron, when added as iron fortificants to wholemaizeflour,showedthatNaFeEDTAimprovedironstatus,butelectrolyticirondidnot (chapter 2). In the groups receiving highdose NaFeEDTA and lowdose NaFeEDTA, respectively,irondeficiencyanaemiadecreasedby89%and48%;irondeficiencydecreased by 91% and 70%. The prevalence of anaemia decreased only in the highdoseNaFeEDTA group(by36%).Electrolyticironwasgivenatadoseofironequivalenttothatcontainedin highdoseNaFeEDTA,butdidnotimproveironstatus. Contrary to expectations, there was no evidence that the improved ironstatus observed in childrenwhoreceivedNaFeEDTAresultedinbetterscoresoftasksassessingcognitiveand motorfunction(chapter3). ThenexttwochaptersaddressthesafetyofNaFeEDTAasanironfortificant.Thestudyin chapter4assessedwhetherα +thalassaemiamodifiedtheeffectoftheintervention.Indoing so,thestudyaimedtodetermineifindividualswithα +thalassaemiarespondedbettertothe interventionthantheirpeerswithnormalgenotype;andifsucharesponsemightevenput thematriskofdevelopingironoverload.Therewasnosuchevidence. Thisconclusionis limited,however,bythe5monthinterventionperiodusedinthistrialanddoesnotpreclude thetheoreticalpossibilitythatintakeoffoodsfortifiedwithironasNaFeEDTAmayleadto ironoverload.Inthefinalstudy(chapter5),thesafetyofNaFeEDTAwasfurtheraddressed byassessingitspotentialtoadverselyaffectthestatusofothermineralelements.Therewas noevidencethatNaFeEDTAaffectszinc,copper,calcium,magnesiumandmanganesestatus. Because small changes in magnesium and manganese could reflect a large effect on their

114 Chapter6 ______ status,theeffectsofprolongedintakeofNaFeEDTAonthesenutrientsshouldbemonitored infortificationprogrammes. EFFECTOFIRONINTERVENTION

Effectonironstatus(chapter2) HighdoseNaFeEDTA Improvedallindicatorsofironstatus,particularlyin childrenwithirondeficiencyatbaseline;anddecreased theprevalenceofirondeficiencyanaemiaby89% LowdoseNaFeEDTA Improvedsomebutnotallindicatorsofironstatus; decreasedprevalenceofirondeficiencyanaemiaby48% Electrolyticiron Didnotimproveanyironstatusindicator Effectoncognitiveandmotorfunction(chapter3) BENEFITS Noevidentdifferencesinscoresoftasksmeasuring: • Attention • Spatialworkingmemory • Finemotorskills Adverseeffectsinpopulationswithα +thalassaemia (chapter4) Noevidencethatchildrenwithα +thalassaemia respondeddifferentlytoNaFeEDTAthantheirpeers withanormalgenotype. Adverseeffectsonmineralelementstatus(chapter5)

SAFETY NoevidenceofaneffectofNaFeEDTAonplasma concentrationsofzinc,copper,calcium,magnesiumor manganese Figure6.1Overviewofthemainfindings.

115 GeneralDiscussion ______ METHODOLOGICALISSUES Thefindingsdiscussedwithinthisthesisarebasedonarandomiseddoubleblindplacebo controlledtrial.Participantswereindividuallyrandomisedtotreatments,givingeachanequal probability of being in a given treatment group. Objective measures (biomarkers of iron status) determined by laboratory analysis were used to determine the outcome. Similarly, graduated mugs were used to determine uji intake (chapter 2). Researchers, staff and participants, and laboratory personnel were unaware of the identity of the treatments; and therewassmalllosstofollowup.Theabovefactorsstrengthenedthefindingsofthethesis. Thefollowingsectionsaddressthepotentialinfluenceofthreeissuesthatareimportantfor the validity of the findings in this thesis, namely the selection of the study population, potentialmisclassificationofoutcomes,andconfounding. Selection of study population Arelativelylargesamplesizeisnecessarytodetectsmalltomoderatetreatmentdifferences. Ofimportancetothevalidityofatrial,howeverarethecompliancetotreatment,andthetotal number of endpoints experienced. In the trial described in this thesis, compliance to treatments was high and was similar between groups (chapter 2). On the other hand, the proportion of children likely to achieve the desired endpoint (improved iron status) was smaller than expected. The trial was designed primarily to assess the effect of the iron interventionsonirondeficiencyanaemia;accordingly,thisoutcomewasusedtodetermine thesamplesizerequiredforthetrial.Thestudywasconductedinasitewithconfirmedhigh prevalence of anaemia; data on the prevalence of iron deficiency were not available at the timeofplanningthetrial.Theprevalenceofanaemiainthestudypopulationwas56%.Ithas beenassumedthat,atagloballevel,approximatelyhalfthenumberofanaemiacasesaredue to iron deficiency, with the remaining halfbeing due to malaria, other infections or other nutrientdeficiencies. 1Thusasubstantialproportionofthestudypopulationinthisthesiswas theoreticallyexpectedtobeirondeficient.However,althoughtheprevalenceofanaemiawas veryhighinthisstudypopulation,theprevalenceof iron deficiency was much less (15%) thanexpected.Thismayhavereducedtheprecision of the study assessing the efficacy of NaFeEDTAandelectrolyticiron(chapter2),butdoesnotaffectthevalidityofthefindings. ThestudyshowscompellingevidencethatNaFeEDTAimprovesironstatus.Largerbenefits can be expected when NaFeEDTA is used in populations with a larger burden of iron

116 Chapter6 ______ deficiency. The low prevalence of iron deficiency is also unlikely to have affected the findings in the studies described in chapters 4 (modification of the intervention by α+ thalassaemia)and5(theeffectoftheinterventiononothermineralelements);butmayhave contributed to the inability to observe an effect of the iron intervention on cognitive and motorfunctioninthestudydescribedinchapter3.Asindicatedinthatchapter,aneffectof improved iron status on cognitive or motor function is more likely to be observed in individualswithirondeficiencyanaemia 2. Misclassification As explained in the introduction of this thesis (chapter 1), malaria, infection and α+ thalassaemia complicate the determination of iron status. Malaria and inflammation can increase plasma ferritin concentrations independent of iron status, whilst malaria and α+ thalassaemia can also increase plasma concentrations of soluble transferrin receptor (sTfR) independentofironstatus.Becauseofthese considerations, body iron stores based on the ratio of sTfR to ferritin were not calculated 3. Others have addressed this complication by usingtwoormoreabnormalindicatorsofbodyironstatustodefineirondeficiency.Rather than using such composite measures to determine iron deficiency, treatment effects were assessed on three separate measures of iron status: haemoglobin, ferritin and transferrin receptor concentrations. The definition of iron deficiency used here was based solely on ferritin concentrations and may have led to an underestimation of the prevalence of iron deficiency: some iron deficient children whose ferritin concentrations were raised by underlying infections may have been classified as iron sufficient. Such potential misclassificationwouldreducethecontrastbetweenthegroupsthatwereclassifiedasiron sufficientandirondeficient,andthusunderestimateanydifferencesthatmayexistbetween the groups. In chapter 4, a method is described to adjust for the effect of malaria and inflammationonferritinconcentrations.Thepossibilityofmisclassificationofirondeficiency wasassessedbycomparingtheprevalenceofirondeficiencyobtainedfromadjustedferritin values to theprevalence reported in chapter 2. Prevalence estimates obtained from the two methodsweresimilar,although,aspointedoutinchapter4,residualconfoundingcannotbe ruledoutintheadjustedferritinestimates. Confounding Becausethisthesisisbasedonarandomisedtrial,confoundingisanunlikelyexplanationof thestudythatassessedtheefficaciesofNaFeEDTAandelectrolyticiron(chapter2);orthe

117 GeneralDiscussion ______ twostudiesthataddressedthesafetyofNaFeEDTA(chapters4and5).Thefindingsinthese studies include the whole randomised sample hence give confidence that the baseline comparabilityofthegroupswasretained.Bychance,theironstatusofchildreninthecontrol group was better at baseline than that of their peersinthetreatment groups.Althoughthe difference was small, baseline iron status is strongly associated with the outcome, end of interventionironstatus.Evensmalldifferencesinthedistributionoffactorsthatarestrongly associated with the outcome can lead to substantial confounding in the estimate of the treatment effect. Thisproblem was redressedbecause it was decided a priori to give more credencetoestimatesoftreatmenteffectthatwereadjustedforbaselineironstatus. Inthestudydescribedinchapter3,noevidencewasfoundthatironinterventionsimproved cognitiveormotorfunction.Inthisstudy,boththesmallsamplesizeandconfoundingmay havecontributedtothislackofevidence.Becausethestudywasbasedonasubgroupofthe originalrandomisedsample,thebalanceinbaselinefactorswaslost,andthestudyeffectively becameanobservationalstudy.Confoundingoccursifsuchfactorsareassociatedwithboth treatment group and outcome, in this case scores of tasks assessing cognitive and motor function.Althoughthiswasremediedbyadjustingforseveralbaselinefactors,confounding bybaselinefactorsthatwerenotmeasuredcannotbeprecluded.Inparticular,cognitiveand motorfunctionwerenotmeasuredatbaseline,which,iftheyhadbeenperformed,wouldmost likelyhavebeenstronglyassociatedwithresultsofsimilartestsattheendoftheintervention. Thedisadvantageofadministeringsuchtestsrepeatedly,however,isthatchildrenarelikely tolearnfromthefirsttest,andthustoscorebetteratthesecondtest.Thiswouldhaveresulted inimprovementinscoresacrossalltreatmentgroups.Theresultofsucha‘Hawthorne’effect isthateffectestimatestendtowardszero. INTERPRETATIONOFFINDINGS The efficacy of NaFeEDTA Oneofthegreatestchallengestotheapplicationofironfortificationistoidentifyafortificant thatcanprovideironinabioavailableformtopopulationsmainlyconsumingcerealbased diets.Inchapter1,thedifficultiesaredescribedinobtainingadequateironfromsuchdiets. The bioavailability of ingested iron in the form of ferrous sulfate and ferrous fumarate is relatively high, but is substantially reduced in the presence of phytates and other iron

118 Chapter6 ______ absorption inhibitors that occur in cerealbased diets. The findings of this thesis are in agreementwithpreviousreportsfromabsorptionstudiesusingstableisotopesthatironfrom NaFeEDTA has higher bioavailability than other forms of iron, particularly when given in highphytatediets 46.Theyaddtopreviousworkinwhichitsefficacywasdemonstratedin condimentssuchassoyandfishsauceinAsia, 7,8 currypowderinSouthAfrica, 9andinsugar inCentralAmerica 10 . Furthermore,thefindingsdescribedinchapter2showthatNaFeEDTAimprovesironstatus eveninmalariaendemicareas.Inpopulationsnotexposedtomalaria,thebeneficialeffectsof NaFeEDTAcanbeevenhigherthanthoseobservedinthisthesis.Thisisbecauseinfections mayreducetheutilisationofironforhaemoglobinsynthesis. 11 Thehigherimprovementsin individualswithirondeficiencyandthemuchsmallerresponseinindividualswhowereiron sufficient corroborates evidence that absorption of iron from NaFeEDTA is regulated according to the body’s iron needs 9. Thus, consumption of this product fortified with NaFeEDTAbyironsufficientindividualsresultsinadownregulationofironabsorption. The efficacy of electrolytic iron in improving iron status has only been assessed in low phytatevehicles 12,13 .Inoneofthesestudies, 12 noeffectofelectrolyticirononironstatuswas found;thishasbeenattributedtolowfortificationlevels. 14 Inthesecondstudy,electrolytic ironaddedtowheatflourimprovedtheironstatusofThaiwomen. 13 Asdescribedinchapter 2,noevidencewasfoundthatelectrolyticironaddedtowholemaizeflourimprovedtheiron statusofyoungchildren.Thisfindingshowsthatelectrolyticiron,atleastintheformandat the dose described, is not suitable for fortification of a highphytate food vehicle such as maizeflour. The effect of the intervention on cognitive and motor function Thefindingsofthestudydescribedinchapter3arecontrarytothosereportedbyothers.In controlledtrials,ironinterventionseitherthroughsupplementationorfortificationhavebeen shown to improve cognitive and motor function in this young children. 1517 However, compellingevidenceofacausallinkbetweenironandcognitiveandmotorfunctionsisyetto be established 18 .Thestudyreportedhereislimitedbypossibleconfounding, and because irondeficiencyanaemiawasmuchlessprevalentthananticipated.

119 GeneralDiscussion ______

Effect modification of the iron intervention by ααα+-thalassaemia Therehavebeennopublishedreportsontheeffectofincreasingironintakeoveraprolonged periodinindividualswith α+thalassemia.Thefindingsofthisthesissuggestthatintheshort term there is no indication that individuals with α+thalassemia genotypes respond any differentlytoanironfortificationinterventionfromtheirpeerswithanormalgenotype. The effect of NaFeEDTA on nutritionally important mineral elements TheAcceptabledailyintake(ADI)isexpressedonabodyweightbasisandisanestimateof theamountofafoodadditivethatcanbeingesteddaily“overalifetimewithoutappreciable healthrisk.” 19 .PreviousreportsoftheADIforEDTAareconfusing.TheJointFAO/WHO

ExpertCommitteeonFoodAdditives(JECFA)specificallydefinedtheADIforCaNa 2EDTA as a food additive, with a maximum daily intake of CaNa 2EDTA from all sources of 2.5 mg/kg body weight 20 . Other reports 5,21,22 erroneously quoted this value as the ADI for

EDTA.BasedontheADIforCaNa 2EDTA,anequivalentADIforEDTAof1.93mg/kgbody weightforEDTAiscalculatedinthisthesis(chapter5).In1999,JECFAallowedNaFeEDTA 23 foruseasasourceofironforfoodfortification .BasedontheearlierADIforCaNa 2EDTA, JECFA in its latest report established an ADI for EDTA of 1.9 mg/kg body weight for 24 , whichisinagreementwiththecalculatedvaluereportedinthisthesis(chapter5). The key documented safety issue for NaFeEDTA concerns the potential adverse effect of EDTAonzincandothermineralelements 20,21 .Despiteearlierconcerns,however,evidence fromisotopestudiesinbothanimalsandhumansindicatethatNaFeEDTAconsumedatdoses applicabletofoodfortificationdoesnotaffectthe metabolism of trace elements and other importantmineralelements.Thefindingshaveincludedstudiesonzinc,magnesium,copper, calcium and manganese 2528 .Inthisthesis,alsonoevidencewasfoundthatat intakes of EDTAabovethe ADI foran extendedperiod affectedthestatusofsuchmineralelements. Becausetheinterventionperiodofthetrialdescribedinthisthesiswas5monthsonly,itis recommended that the effect of prolonged consumption of NaFeEDTA on these mineral elementsismonitoredinprogrammeswhereitisusedasafortificant. In the trial reported here, children were carefully supervised to ensure that they actually consumedasmuchastheycouldofthetargetamountofflour.Thetargetintakeofflourin thetrialwasprobablyhigherthantheintakeofflourbychildrenunderreallifeconditions.

120 Chapter6 ______

Thus,whenflourisfortifiedatlevelsofthehighdoseNaFeEDTA,boththebenefitsoniron statusandtheactualEDTAintakewouldprobablybelessthanreportedinthisthesis.This leads to two conclusions. First, for reasons outlined in chapter 5, JECFA may consider revisingtheADIforEDTAonthebasisofasafetyfactorbelowthevalueof100thathas beenusedtoestablishtheADIforCaNa 2EDTA.Second,whenestablishingfortificantlevels of NaFeEDTA in flour fortification programmes, it should be considered to use levels equivalentorclosetothehighdoseNaFeEDTAinthistrial(56mgironasNaFeEDTA/kg flour). BIOLOGICALMECHANISMS Efficacy of NaFeEDTA and electrolytic iron Mechanisms underlying the higher bioavailability of iron from NaFeEDTA involve its propertyasametalchelator.ThemechanismbywhichNaFeEDTApromotestheabsorption of fortificant and intrinsic iron is the subject of the study in chapter 5. EDTA forms complexeswithironprotectingitfromotherpotentialchelators.Ironremainstightlyboundto EDTAintheacidmediumofthestomachbutlesssoatalowerpH.Asaconsequence,iron becomesavailableforabsorptionintheduodenum. 22,29 By contrast, electrolytic iron easily bindstophytatesandotherchelatingsubstancesinthediet,sothatitbecomesunavailablefor absorption.Itmayadditionallyeasilybeconvertedtoferricironandprecipitatedasinsoluble ironhydroxides. Regulation of iron absorption. Current evidence indicates that nonhaem iron is absorbed by duodenal enterocytes exclusivelyintheferrousform.Asdescribedinthefirstchapterofthisthesis,supplemental iron is usually provided in the form of ferrous salts, which can be taken up directly via divalent metal transporter1 (DMT1). By contrast, iron in NaFeEDTA occurs in the ferric form.Ferricironmustfirstbereducedtotheferrousformbeforeitcanbeabsorbed 30 .The absorption of ferric iron may be regulated by the expression of duodenal cytochrome b (Dcytb),thusreducingtheriskofexcessuptakeofferricironfromNaFeEDTAascompared toidenticaldosesofferrousironfromferroussulfate.

121 GeneralDiscussion ______

The finding that α+thalassaemia did not modify the effect of the intervention described within this thesis suggests that iron regulation in this condition is comparable to that in individualswithanormalgenotype. Iron status and cognitive function Adverseeffectsoncognitiveandmotordevelopmentofirondeficiencyareplausibleandmay be irreversible 31,32 . As is indicated in chapter 3, such relationships can be mediated by reduced oxygen resulting from iron deficiencyinduced anaemia 33,34 . Alternatively, iron deprivation may directly affect the functioning of specific brain areas 32,35 . Associations betweenirondeficiencyandimpairedcognitivefunctionhavebeenobservedmostlyinanimal studiesandobservationalstudiesinhumans.Ontheotherhand,thereisasyetnocompelling evidenceofacausallinkbetweenironandeitherofthesefunctions.Observationalstudiesare liabletobias:childrenwithirondeficiencyarelikelytobealsodeficientinothernutritional deficienciesthatmayexplaintherelationshipobserved. FUTURERESEARCH 1. Fortification is easiest to achieve, and has mostly been studied, when applied to industriallyprocessed foods. Most industriallyprocessed flour, however, has a low phytate content. Thus another trial may be needed to compare the costbenefit of NaFeEDTAversusotherformsofironinlowphytateflour. 2. As reported in chapter 5, a marked proportion of children had low status of micronutrientsotherthaniron.ThisthesisshowstheefficacyofusingNaFeEDTAas anironfortificantinahighphytatefoodvehicle.Whenusingfortificationmixeswith multiplemicronutrients,severalarereadilybrokendownbyferrousironsalts that are added in the mix. Because iron in NaFeEDTA may be less oxidative than ferrousiron,itshouldbeinvestigatedwhetherthesevitaminsarebetterretainedwhen ironisaddedasNaFeEDTA. 3. Because maize flour in rural Africa is almost exclusively obtained from smallscale mills,researchisneededtofurtherdevelopmethodologiesforsuchsettings.

122 Chapter6 ______

4. Research is desirable to compare NaFeEDTA to ferrous iron salts regarding their safety in populations with high incidence of malaria and other infections. This however should not delay implementation of programmes to fortify flour with NaFeEDTA; POLICYIMPLICATIONS Technically,ironhasgenerallybeenconsideredthemostchallengingmicronutrienttoaddto foods. 1Thisisparticularlythecasewhenironisaddedtoflourswithhighphytatecontent. Withthefindingspresentedinthisthesis,thetechnologyisnowavailabletofortifyfloureven in the most demanding conditions. In the last decade, technical guidelines for flour fortification have become available, 3638 andseveralorganisationshave beenestablishedto provide technical and financial assistance to start national fortification programmes. Fortification of the diet with iron is the most costeffective strategy to prevent iron deficiency. 5Inshort,itistimeforgovernmentstoactandimplementsuchprogrammes. The evidence presented in this thesis support the recommendation that NaFeEDTA is the preferred iron fortificant where high phytate levels substantially reduce iron absorption 38 . This includes flours from sorghum and millet, for which the production is increasingly becomingcentralisedincountriessuchasKenya. Acceptance of NaFeEDTA in fortification programmes has been slow, mainly because of reservationsaboutitscostandsafety.Thefindingspresentedinthisthesis,andworkfrom other groups 22,2528,3941 indicate that safety concerns should no longer delay the use of NaFeEDTAinflourfortificationprogrammes.Electrolyticironcantheoreticallyimproveiron statuswhenusedinhighphytatefloursathigherdosesorotherformsthanusedinthisthesis; itshouldbenoted,however,thereisatpresentnoempiricalevidencetosupportthis.Thus technicalguidelinesshouldbereviewedwithaviewtorecommendNaFeEDTAastheonly ironfortificantwithprovenefficacyinhighphytateflours.

123 GeneralDiscussion ______ CONCLUSIONS NaFeEDTAimprovesironstatuswhenaddedasanironfortificanttowholemaizeflourand is the preferred fortificant for iron fortification of whole maize flour, a highphytate food vehicle.IrondeficientindividualsbenefitmorefromconsumingNaFeEDTAfortifiedwhole maizeflourthantheirironsufficientpeers.Ontheotherhand,electrolyticiron,whengivenin theformandfortificationlevelsasreportedinthisthesis,doesnotimproveironstatuswhen addedasanironfortificanttowholemaizeflour. Thedatainthisthesissuggeststhatindividualswithα+thalassaemiaareunlikelytobeatrisk ofironoverload asa resultofconsumingwholemaize flour fortified with NaFeEDTA at fortification levels of 56mg iron/kg flour over a 5month period. In such individuals, iron status should be monitored in fortification programmes to confirm that this also applies followinglongerperiodsofconsumptionofNaFeEDTAfortifiedflour. NoevidencewasfoundwithinthisthesisthatdailyEDTAconsumptionofupto2.3mg/kg body weight adversely affected the status of nutritionallyimportantmineral elements.This tooshouldbemonitoredinfortificationprogrammes.

124 Chapter6 ______ References 1. L, de Benoist B, Dary O, Hurrell R, eds. Guidelines on food fortification with micronutrients. Geneva, Switzerland/Rome, Italy: World Health Organization/Food andAgricultureOrganisationoftheUnitedNations,2006. 2. GranthamMcGregorS,AniC.AReviewofStudiesontheEffectofIronDeficiency onCognitiveDevelopmentinChildren. JNutr 2001; 131 (2) :649S668. 3. CookJD,FlowersCH,SkikneBS.Thequantitativeassessmentofbodyiron. Blood 2003; 101 (9) :33593363. 4. Layrisse M, MartinezTorres C. Fe(III)EDTA complex as iron fortification. Am J ClinNutr 1977; 30 (7) :11661174. 5. MacPhailAP,PatelRC,BothwellTH,LamparelliRD.EDTAandtheabsorptionof ironfromfood. AmJClinNutr 1994; 59 (3) :644648. 6. MartínezTorresC,RomanoE,RenziM,LayrisseM.Fe(III)EDTAcomplexasiron fortification.Furtherstudies. AmJClinNutr 1979; 32 (4) :80916. 7. GarbyL,AreekulS.IronsupplementationinThaifishsauce. AnnTropMedParasitol 1974; 68: 46776. 8. ChenJ,ZhaoX,ZhangX,etal.StudiesontheeffectivenessofNaFeEDTAfortified soysauceincontrollingirondeficiency:apopulationbasedinterventiontrial. Food NutrBull 2005; 26 (2) :17786;discussion187. 9. BallotDE,MacPhailAP,BothwellTH,GilloolyM,MayetFG.Fortificationofcurry powderwithNaFe(111)EDTAinanirondeficientpopulation:reportofacontrolled ironfortificationtrial. AmJClinNutr 1989; 49 (1) :162169. 10. Viteri FE, Alvarez E, Batres R, et al. Fortification of sugar with iron sodium ethylenediaminotetraacetate (FeNaEDTA) improves iron status in semirural Guatemalanpopulations. AmJClinNutr 1995; 61 (5) :11531163. 11. OppenheimerSJ.IronandItsRelationtoImmunity and Infectious Disease. J Nutr 2001; 131 (2) :616S635. 12. Nestel P, Nalubola R, Sivakaneshan R, Wickramasinghe A, Atukorala S, Wickramanayake T. The use of ironfortified wheat flour to reduce anaemia among theestatepopulationinSriLanka. InterJVitaminNutrRes 2004; 74: 3551. 13. ZimmermannM,WinichagoonP,GowachirapantS.Comparison of the efficacy of wheatbased snacks fortified with ferrous sulfate, electrolytic iron, or hydrogen

125 GeneralDiscussion ______

reducedelementaliron:randomized,doubleblind,controlledtrialinThaiwomen. Am JClinNutr 2005; 82: 127682. 14. Zimmermann MB, Hurrell RF. Nutritional iron deficiency. Lancet 2007; 370 (9586) :511520. 15. Seshadri S, Gopaldas T. Impact of iron supplementation on cognitive functions in preschool and schoolaged children: the Indian experience. Am J Clin Nutr 1989; 50 (3) :675S684. 16. SoemantriAG,PollittE,KimI.Irondeficiencyanemiaandeducationalachievement. AmJClinNutr 1985; 42 (6) :12211228. 17. SoewondoS,HusainiM,PollittE.Effectsofirondeficiencyonattentionandlearning processesinpreschoolchildren:Bandung,Indonesia. AmJClinNutr 1989; 50 (3) :667 674. 18. VerhoefH,WestC,BleichrodtN,DekkerP,BornM,eds.Effectsofmicronutrients duringpregnancyandearlyinfancyonmentalandpsychomotordevelopment.Nestlé Nutrition Workshop Series Pediatric Program. Basel: Nestec Ltd. Vevey/S. Karger AG,2003. 19. WHO.Principlesforthesafetyassessmentoffoodadditivesandcontaminantsinfood. InternationalProgrammeonChemicalSafety.EnvironmentalHealthCriteriaNo.70. Geneva,Switzerland:WorldHealthOrganization,1987. 20. INACG. Iron EDTA for food fortification: a report of the International Nutritional Anaemia Consultative Group. Washington DC: The Nutrition Foundation, INACG Secretariat,1993. 21. HeimbachJ,RiethS,MohamedshahF,etal.SafetyassessmentofironEDTA[sodium iron (Fe3+) ethylenediaminetetraacetic acid]: summary of toxicological, fortification andexposuredata. FoodChemToxicol 2000; 38 (1) :99111. 22. BothwellTH,MacPhailAP.ThepotentialroleofNaFeEDTAasanironfortificant. InterJVitaminNutrRes 2004; 74 (6) :42134. 23. JECFA. International Programme on Chemical Safety. Joint FAO/WHO Expert CommitteeonFoodAdditives(JECFA).Fiftythirdmeeting,Rome,110June1999. Additives and Contaminants. Geneva, Switzerland/Rome, Italy: World Health Organization/FoodandAgricultureOrganizationoftheUnitedNations. 24. JECFA. International Programme on Chemical Safety. Joint FAO/WHO Expert CommitteeonFoodAdditives.68thJECFAmeetingsummary19th28thJune2007.

126 Chapter6 ______

WHO Technical Report Series. Geneva, Switzerland/Rome, Italy: World Health Organization/FoodandAgricultureOrganizationoftheUnitedNations,2007. 25. DavidssonL,AlmgrenA,JuilleratMA,HurrellRF.Manganeseabsorptioninhumans: the effect of phytic acid and ascorbic acid in soy formula. Am J Clin Nutr 1995; 62 (5) :984987. 26. Davidsson L, Cederblad A, Lonnerdal B, Sandstrom B. The effect of individual dietary components on manganese absorption in humans. Am J Clin Nutr 1991; 54 (6) :10651070. 27. Davidsson L, Ziegler E, Zeder C, Walczyk T, Hurrell R. Sodium iron EDTA [NaFe(III)EDTA]asafoodfortificant:erythrocyteincorporationofironandapparent absorption of zinc, copper, calcium, and magnesium from a complementary food basedonwheatandsoyinhealthyinfants. AmJClinNutr 2005; 81 (1) :104109. 28. DavidssonL,KastenmayerP,HurrellR.SodiumironEDTA[NaFe(III)EDTA]asa food fortificant: the effect on the absorption and retention of zinc and calcium in women. AmJClinNutr 1994; 60 (2) :2317. 29. CandelaE,CamachoMV,MartinezTorresC,etal.IronAbsorptionbyHumansand SwinefromFe(III)EDTA.FurtherStudies. JNutr 1984; 114 (12) :22042211. 30. WesslingResnick M. Biochemistry of iron uptake. Crit Rev Biochem Mol Biol 1999; 34 (5) :285314. 31. GranthamMcGregor SM, Powell CA, Walker SP, Himes JH. Nutritional supplementation, psychosocial stimulation, and mental development of stunted children:theJamaicanStudy. Lancet 1991; 338 (8758) :15. 32. Beard J. Iron deficiency alters brain development and functioning. J Nutr 2003; 133 (5) :1468S1472. 33. GordonN.Irondeficiencyandtheintellect. BrainDev 2003; 25 (1) :38. 34. StoltzfusRJ,KvalsvigJD,ChwayaHM,etal.Effects of iron supplementation and anthelmintictreatmentonmotorandlanguagedevelopmentofpreschoolchildrenin Zanzibar:doubleblind,placebocontrolledstudy. BMJ 2001; 323 (7326) :1389. 35. Beard JL. Iron Biology in Immune Function, Muscle Metabolism and Neuronal Functioning. J.Nutr. 2001; 131 (2) :568S580. 36. MicronutrientInitiative.Fortificationhandbook.Vitaminandmineralfortificationof wheatflourandmaizemeal,2006.Availablefrom: http://www.sph.emory.edu/wheatflour/documents.php(accessed28September2007).

127 GeneralDiscussion ______

37. PAHO/CDC/MOD/Unicef/INTA.Flourfortificationwithiron,folicacidandvitamin B12. Regional meeting report (Santiago, Chile: 910 October 2003). Washington DC/Geneva, Switzerland/Atlanta GA: Pan American Health Organization/World Health Organization/Centers For Disease Control And Prevention, 2003. Available from:http://www.paho.org/English/AD/FCH/NU/ChileRglReport_2004.pdf(accessed 28September2007). 38. SUSTAIN. Guidelines for iron fortification of cereal food staples. Sharing US Technology to Aid the Improvement of Nutrition, 2001. Available from: http://www.micronutrient.org/resources/publications/fe_guide.pdf (accessed 28 September2007). 39. DavidssonL,AlmgrenA,HurrellRF.SodiumironEDTA[NaFe(III)EDTA]asafood fortificant does not influence absorption and urinary excretion of manganese in healthyadults. JNutr 1998; 128 (7) :11391143. 40. DavidssonL,DimitriouT,BoyE,WalczykT,HurrellRF.Ironbioavailabilityfrom ironfortified Guatemalan meals based on corn tortillasandblackbean paste. Am J ClinNutr 2002; 75 (3) :535539. 41. HurrellRF,RibasS,DavidssonL.NaFe3+EDTAasafoodfortificant:influenceon zinc,calciumandcoppermetabolismintherat. BritJNutr 1994; 71 (1) :8593.

128

Summary ______

Summary ______

Summary Foodfortificationisrecognizedtobeaneffectivestrategyforreachingsubstantialproportions ofpopulationswithmicronutrientdeficiencies.Thisstrategyhasthepotentialtoplayakey roleinreducingtheprevalenceofirondeficiency,whichremainscurrentlythemostcommon nutrientdeficiencyworldwide. Alargeproportionoftheworld’spopulationconsumesflour,makingitoneofthepotentially mosteffectivefoodvehiclesforfortification.Ironfortificationofflourisdifficult,however, becausefoodgrainscontainnaturalsubstancessuchasphytatesthatinhibitironabsorption. Electrolyticironhas relativelylowbioavailability but is favoured for fortification in many countriesbecauseitislowcost,stableanditdoes not affect the organolepticproperties of food vehicles. Ferrous sulfate, which is highly bioavailable and commonly used for fortificationandsupplementation,isnotsuitableinhotclimatesbecauseitcausesrancidity andcanonlybeusedinfloursthatarestoredforshortperiods.Ferrousfumarateisalsohighly bioavailable under normal circumstances and causes fewer sensory problems than ferrous sulfate. Thebioavailability of all three fortificantsissubstantiallyreduced,however,inthe presence of iron absorption inhibitors, limiting their effective use in flour especially from wholegrainsorinhighphytatediets. Findingsfromstableisotopestudiesindicatethatthebioavailabilityoffortificantironfrom NaFeEDTAissubstantiallylessaffectedbyabsorptioninhibitorsthanthatofelectrolyticiron, or iron from inorganic ferrous salts. In addition to its satisfactory bioavailability in high phytatediets,NaFeEDTAislightincolour,relativelystableandisunaffectedbycookingor prolongedstorage;makingitanattractiveironfortificantforregionswherehightemperatures and likely prolonged storage may limit the use of other forms of iron. The efficacy of NaFeEDTAhadalsobeenshowninfieldtrialswithcondimentsasfortificationvehicles.It wasalsoproposedbytheInternationalNutritionalAnaemiaConsultativeGroup(INACG)for thefortificationofhighphytateflours,butitspotentialinahighphytatefoodvehiclehadnot been assessed, in human efficacy studies. The work described in this thesis comprised a randomised placebocontrolled iron intervention trial among 38 year old Kenyan school children(n=516)betweenMayandNovember2005.It aimed to assess the efficacy and benefitsofconsumingwholemaizeflourfortifiedwithNaFeEDTAorelectrolyticiron,andto explore the safety of fortification with NaFeEDTA. In addition to measuring the effect of NaFeEDTAonironstatus,itsbenefitswereassessedoncognitiveandmotorfunction.

132 Summary ______

TheuseofNaFeEDTAinfortificationprogrammeshasbeendelayedbyconcernsaboutits safety.EvidencefromanimalstudiesassessingthetoxicityofEDTAcomplexesshowsthat themostimportantpotentialconsequenceoftheprolongedadministrationoflargequantities ofanEDTAcomplexisdeficiencyofzincandothernutritionallyimportantmineralelements, especiallydivalentcations.Otherworkersusedisotopestudiestoassesspotentiallyadverse effectsofNaFeEDTAonothermineralelements,especiallyzinc.Findingsfromsuchstudies haveshown,however,thattheintakeofNaFeEDTAatlevelspresentinthedietasaresultof food fortification, are unlikely to affect the statusofthesemineralelements.Inadditionto assessingtheefficacyandfurtherbenefitsofNaFeEDTA,thisthesisexaminedthesafetyof NaFeEDTAbyassessingitseffectonthestatusoffivemineralelementsafterfivemonthsof dailyconsumptionofthefortificant.Thesettingofthefieldtrialinthisthesiswasamalaria endemic area with a high prevalence of the red cell disorder, α +thalassaemia. It has been suggested that iron absorption may be higher in individuals with this condition than in individualswithanormalgenotype.BecausethebioavailabilityofironfromNaFeEDTAis relatively high, the thesis further addressed its safety by assessing potential effect modificationoftheironinterventionbyα +thalassaemia.Theobjectiveofthisassessmentwas to determine if individuals with α +thalassaemia may potentially load more iron than their counterpartswithanormalgenotype. The findings of this thesis show that, even when used in a highphytate food vehicle, NaFeEDTAisefficaciousinimprovingironstatus,whereaselectrolyticironisnot( chapter 2).TwolevelsofNaFeEDTAfortificationwereused.FortificationwithNaFeEDTAathigh levels(56mgironperkgflour),orlowlevels(28 mg/kg) reduced the prevalence of iron deficiency anaemia by 89% (95% CI 49% to 97%) and 48% (20% to 77%), respectively. Similarly,NaFeEDTAconsumptionreducedtheprevalenceofanaemiaandirondeficiency. HighdosefortificationwithNaFeEDTAledtolargergainsinironstatusthanlowdoselevel, andfortificationwithNaFeEDTAwasmoreefficaciousinchildrenwithpoorironstatusat baseline.Althoughotherstudieshaveshownthatsupplyingirontochildrenofasimilarage groupimprovescognitivefunction,thisthesisfoundnoevidenceofdifferencesinscoresof cognitiveormotordevelopmenttestsbetweenchildrenwhoconsumedironfortifiedwhole maizeflourandthosewhoconsumedunfortifiedwholemaizeflour(chapter3 ). Findingsofthesafetyassessmentsshowednoevidencethatindividualswithα +thalassaemia respondeddifferentlytotheironinterventionthantheircounterpartswithanormalgenotype

133 Summary ______

(chapter 4 ). There was also no evidence that NaFeEDTA adversely affected the status of zinc, calcium, copper, magnesium or manganese, even at levels of NaFeEDTA intake exceedingtheAcceptableDailyIntake(ADI)ofEDTA( Chapter5 ).TheADIisanestimate oftheamountofafoodadditive,expressedonabodyweightbasis,whichcanbeingested dailyoveralifetimewithoutappreciablehealthrisk.TheADIforEDTAwasderivedinthis thesisfromtheADIsetforCaNa 2EDTA,whichisanadditivewithoutanynutritionalvalue that is used as an agent to enhance shelf life. By contrast, NaFeEDTA is added solely to improvehealthandtosatisfydietaryneedsforiron,whichmaywarranttheuseofalower safetyfactorwhensettinganADIforEDTA.Becauseironmaybetoxicatintakelevelsless than10timesthoseforoptimalnutrition,asafetyfactorof100asappliedforfoodadditives shouldnotbeconsideredimmutable,andalowerfactormaybemoreappropriate. ThisthesisconcludesthatNaFeEDTAisthepreferredironfortificantforhighphytateflours andthatelectrolyticironshouldnotbeusedinthesefloursuntilthereisadequateevidence fromhumanstudiesthatitisefficaciousathigherfortificationlevelsorinotherformsthan usedinourtrial.Thethesisfoundnoevidencethatthebenefitofimprovedironstatusextends to improved cognitive or motor function. There was no evidence that NaFeEDTA, when consumedatthelevelsinourtrial,posesariskofpotentialironoverloadinindividualswith α+thalassaemia,orthatitadverselyaffectsthestatusofzinc,calcium,copper,magnesiumof manganese.WerecommendmonitoringtheeffectofprolongeduseofNaFeEDTA,bothin individuals with α +thalassaemia and on the status of other mineral elements. This should howevernotdelaytheuseofNaFeEDTAinfortificationprogrammes.Thereisnoevidence that NaFeEDTA at levels used for fortification is unsafe, whereas it has the potential to substantiallycontributetothereductionofirondeficiency. AsubstantialproportionofthewholemaizeflourconsumedinAfricancountries,particularly inruralareas,isproducedinlocalhammermills.Futureresearchshouldassessthepotential of fortifying whole maize flour with NaFeEDTA at this small scale level, and develop appropriatemethodologiesfortheapplicationofsuch fortification. Because deficiencies of several micronutrients usually coexist, multiple micronutrient fortification may be more effectivethansinglenutrientfortificationinimprovingthehealthstatusofpopulations.Some vitaminsarereadilybrokendownbyinorganicferroussaltsthatareaddedinthefortification mix. Because iron in NaFeEDTA may be less oxidative than ferrous iron, it should be investigatedwhetherthesevitaminsarebetterretainedwhenironisaddedasNaFeEDTA.

134

Samenvatting ______

Samenvatting ______

Samenvatting Voedselverrijking wordt algemeen gezien als een effectieve manier om populaties met gebreksziektentebereiken.Dezestrategiekanmogelijkeensleutelrolspeleninhetbestrijden vanijzergebrek,nogaltijddemeestvóórkomendegebreksziekteterwereld. Meeliséénvandemeestgeschiktesoortenvoedselomteverrijken,omdateengrootdeelvan dewereldbevolkingditalsbasisvoedselheeft.Hetisechtermoeilijkommeelteverrijkenmet ijzer,omdatgranenvannaturestoffenbevattendiedeijzeropnameremmen,zoalsfytaten.In veellandenwordtelektrolytischijzergebruikt,omdathetrelatiefgoedkoopenstabielisen omdathetdesmaakengeurvanvoedselnietverandert. Het heeft echter een relatief lage biobeschikbaarheid.IJzersulfaatheefteenhogebiobeschikbaarheidenwordtvaakgebruikt voor verrijking en suppletie. Het is echter niet geschikt voor gebruik in warme klimaten, omdathetranzigheidkanveroorzakenenalleentoepasbaarisinmeeldatvoorkorteperioden wordtopgeslagen.IJzerfumaraatkanookgoedwordenopgenomenenbeïnvloedtdesmaak en geurwaarneming minder dan ijzersulfaat. De biobeschikbaarheid van alle drie de ijzerzouten wordt echter aanzienlijk verlaagd in de aanwezigheid van stoffen die de ijzeropname remmen. Hun toepasbaarheid in meel is daarom beperkt, vooral als het volkorenmeelbetreft,ofalshetvoedingspatroonrijkisaanfytaten. Vergeleken met elektrolytisch ijzer of ijzer in de vormvananorganischezouten,wordtde beschikbaarheid van toegevoegd ijzer in de vorm van NaFeEDTA aanzienlijk minder beïnvloeddooropnameremmers.Ditblijktuitresultatenvanstudiesmetstabieleisotopen.De werkzaamheidvanNaFeEDTAisookaangetoondinstudieswaarinhetwastoegevoegdaan specerijenenkruidensauzen,maarnognietinhumanestudieswaarbijhettoegevoegdisaan voedseldathogefytaatgehaltesbevat.Inditproefschriftwordteeninterventiestudiebij3tot 8jarigeKeniaanseschoolkinderenbeschreven,waarinwerdgekekennaardeeffectiviteitvan meeluithelemaïskorrels,datverrijktwasmetNaFeEDTAofelektrolytischijzer.Verderis deveiligheidvandezeNaFeEDTAverrijkingonderzocht.NaastheteffectvanNaFeEDTA opijzerstatus,isookdeinvloedopdecognitieveenmotorischeontwikkelingvandekinderen gemeten. TotnutoewordtijzeralsNaFeEDTAnauwelijksgebruiktinvoedselverrijkingsprogramma’s vanwegezorgenoverdeveiligheid.Verscheidenestudieshebbenaangetoonddatlangdurige toedieningvangrotehoeveelhedenvanhetEDTAcomplexmogelijkleidttoteengebrekaan

138 Samenvatting ______ zink en andere mineralen die vanuit voedingskundig oogpunt belangrijk zijn, met name tweewaardige kationen. In de studie beschreven in dit proefschrift, werd naast de werkzaamheidookdeveiligheidvanNaFeEDTAonderzocht.Ditwerdgedaandoornavijf maandendagelijkstoedienenvanNaFeEDTAdestatusvanvijfanderemineralentemeten. Deze studie werd uitgevoerd in een gebied waarin malaria endemisch is en waarin α+ thalassemie,eenafwijkinginderodebloedcellen,veelvoorkomt.Opnamevanijzerzouin individuen met deze aandoening hoger zijn in vergelijking tot degene met een normaal genotype.OmdatdebiobeschikbaarheidvanNaFeEDTArelatiefhoogis,werdindezestudie apart gekeken naar de veiligheid in deze groep. Het doel hiervan was om te bepalen of kinderen met α+thalassemie meer ijzerstapeling hebben dan degenen met een normaal genotype. De resultaten van dit proefschrift tonen aan dat verrijking met NaFeEDTA de ijzerstatus verbetert, zelfs wanneer het gebruikt wordt in voedsel met hoge fytaatgehaltes. In tegenstellingtotNaFeEDTAbleekelektrolytischijzernieteffectieftezijn.NaFeEDTAwerd toegediend in twee verschillende doseringen: met een hoog gehalte van verrijking (56 mg ijzer per kg meel) en met een laag gehalte van verrijking (28 mg/kg). Hoge en lage NaFeEDTAverrijking leidde tot een verlaging van de prevalentie van ijzergebreks bloedarmoede, met respectievelijk 89% (95% BI: 49% tot 97%) en 48% (20% tot 77%). InnamevanNaFeEDTAverlaagdeeveneensdeprevalentievanbloedarmoedeenijzergebrek. VerrijkingmethogegehaltesNaFeEDTAleiddetoteensterkereverbeteringinijzerstatusdan lagegehaltes.VerderwasverrijkingmetNaFeEDTAeffectieverinkinderendiebijaanvang vandeinterventieeenlageijzerstatushadden. Erwarengeenaanwijzingendatindividuenmetα+thalassemieandersopdeijzerinterventie reageerdendankinderenmeteennormaalgenotype.Bovendienwarenergeenindicatiesdie eropduiddendatNaFeEDTAeennegatiefeffecthadopdebloedwaardenvoorzink,calcium, koper, magnesium of mangaan, zelfs met innameniveaus van NaFeEDTA waarbij de ‘AcceptableDailyIntake’(ADI)voorEDTAwerdoverschreden.DeADIiseenschattingvan de hoeveelheid van een aan voedsel toegevoegde stof, uitgedrukt per kilogram lichaamsgewicht, die levenslang dagelijks kan worden ingenomen zonder relevante gezondheidsrisico’s.DeADIvanEDTAwerdinditproefschriftafgeleidvandeADIdiewas bepaald voor CaNa 2EDTA, een stof zonder voedingswaarde die wordt toegevoegd om de houdbaarheidvanvoedselteverhogen.OmdatNaFeEDTA,integenstelingtotCaNa 2EDTA,

139 Samenvatting ______ uitsluitendwordtgebruiktomdegezondheidteverbeteren,zoubijhetberekenenvandeADI voor EDTA mogelijk een lagere veiligheidsfactor gebruikt moeten worden dan bij CaNa 2 EDTA.Omdatijzertoxischisbijinnameniveausdieminderdan10keerlagerzijndannodig voor een optimale voeding, moet een veiligheidsfactor van 100, zoals toegepast bij de berekeningvandeADIvoortoegevoegdestoffen,nietgezienwordenalsonherroepelijk;een lagerefactorismogelijkgeschikter. Inditproefschriftwordto.a.geconcludeerddatmeelmethogegehaltesaanfytatenhetbeste verrijktkanwordenmetNaFeEDTA.Hetverdientaanbevelingomelektrolytischijzerniette gebruikeninvolkorenmeel,totdatdemogelijkewerkzaamheidvoldoendewordtaangetoond bijhogereniveausvanverrijkingofbijanderevormendangebruiktindezeinterventiestudie. Inditproefschriftwerdengeenaanwijzingen gevonden die erop duiden dat een verbeterde ijzerstatus gepaard gaat met een verbeterde cognitieve of motorische ontwikkeling. Er zijn ookgeenaanwijzingengevondendatNaFeEDTA,metdegebruikteinnameniveaus,eenrisico vanijzerstapelingvormtinkinderenmetα+thalassemie,ofdatheteennegatiefeffecthadop destatusvoorzink,calcium,koper,magnesiumofmangaan.Hetverdientwelaanbevelingom het effect van langdurige inname van NaFeEDTA in individuen met α+thalassemie op de bloedwaarden van andere mineralen te volgen. Omdat NaFeEDTA kan bijdragen aan een aanzienlijke verlaging van ijzergebreksbloedarmoede en er geen aanwijzingen zijn dat NaFeEDTAonveiligisbijdehoeveelhedendiegebruiktwordenvoorverrijking,zouditniet moetenleidentotuitstelvanhetgebruikvanNaFeEDTAinverrijkingsprogramma’s. In Afrika wordt een aanzienlijk deel van het volkoren meel geproduceerd in kleinschalige fabriekjes.Toekomstigonderzoekzougerichtmoetenzijnophetontwikkelenentoepassen van methoden om maïsmeel op kleine schaal te verrijken. Omdat gebreksziekten van verscheidene micronutriënten vaak tegelijkertijd vóórkomen, kan verrijking met meerdere micronutriënteneffectieverzijninhetverbeterenvandegezondheidstoestandvanpopulaties dan wanneer met één voedingsstof wordt verrijkt. Sommige vitaminen worden snel afgebroken door anorganische ijzerzouten wanneer deze worden verwerkt in een micronutriëntenmixdievoorverrijkingwordtgebruikt.OmdatijzerinNaFeEDTAminder oxidatief is dan in anorganische zouten, zijn studies nodig om te onderzoeken of deze vitaminen beter behouden blijven als ijzer wordt gebruikt in de vorm van NaFeEDTA.

140

Acknowledgements ______

Acknowledgements ______

Acknowledgements Theworkdescribedinthisthesiswasmadepossiblebycontributionsfromvariousinstitutions andindividualstowhomIamindebted.Ithankallthosewho,indifferentways,havewalked besidemealongtheway;offeringsupportandencouragement,challengingmythinking,and teachingmetoconsideralternativeviews. RosemaryandDrMwaniki:Thankyouforbelievinginme;andforyoursupportright fromthestart.Rosemaryinyou,Ihavealwayshadasisterandafriend;abondwhichthis experiencehasonlyservedtostrengthen.Thankyoufortheemailsandphonecallsacross themiles;theencouragement,yourguidanceduring thefieldwork;andfortheexample youhavebeen.Dr.Mwaniki,thankyouforyourmentoringandsupportthroughitall. Yoursoundadviceandcontributionshavegonealongwayinmakingallthispossible. Tomypromoterandcopromoters:Thankyouforyourinsightsandsupport;andforwelcoming metoyourhomes.Ihavelearntalotfromyou.ToCliveWest,whobeganthework,butwas not here to see it through. Although our meeting wasbrief, his energy and strong will were evident,righttotheend.Heknewwhathewantedandwentforit.Clive,Iwouldhavelikedto knowyoumoreandhopethattheworkmeasuresuptoyourexpectations. Frans, Ivalue yourbirds’eyeviewofthework, your abilitytohonerightintosectionsthat neededmoreinputorwerenotsound.Ibegantoreallygettoknowyoutowardstheendand enjoyedourdiscussions.Idon’ttakeitforgrantedthatyoualwaysmadetimetodiscussthe workandgivecommentsontheworkIsentyouinspiteofyourbusyschedule. Saskia, your patience, contributions and advice; and your organizing abilities made a great differencetothework.Thankyouforyourencouragementtoarticulatemyideas.Yourgiftfor listening was crucial to my growth in this work; and for your commitment to the work, travellingfromVlaardingentoWageningenforsupervisionmeetings. Hans,Ihavelearntalotfromyouandknowthatthoughthisjourneyhascometoanend,itis butabeginning.Thankyouforchallengingmythinking,fornottiringwhenthingsdidnotseem tomakesensetome;andforyourthoroughassessmentofthework.Youwerethetoothcombin thiswork–ithaditsfrustrations,anditsjoystoo!Yourgreatestmentoringisnotsomuchin whatyousayordo,butwhoyouare:yourcommitmenttosoundscienceandexcellence. To Sarah Karanja, Tracy Ouma and Silas Nzyuko – thank you for being dedicated research assistants.Yourcommitmentwasinstrumentalinthesmoothrunningofthefieldwork.Felister KingoriandJoyceNduku:fortakingtheworkasyourownandgoingbeyondtherequirements ofduty;everwatchfulforgoodresearchpracticeinthefieldandensuringthatIhadeverythingI needed.Thank youforthemanymeals youpreparedformewhilstinthefield,MrsK!Ben

144 Acknowledgements ______

Omondi for your efficiency at specimen collection. Your death was a great loss. To Penny Holdingforthematerialsandsupervisionofthecognitiveandmotordevelopmenttesting. LucyOkmaandJanHarryvanthankyouforyourhelpinorderingthelabsupplies,andLucyfor guidingmethroughthebloodcollectionprocedures.GeaBrussen,fororganisingmytripstoand fromtheNetherlandsandmyaccommodationduringmystaysatWageningen.Marie,thankyoufor the“sunshine”,alwayshelpfulwithasmile.Ilookforwardtoreadingthatbookchapter!ToInge Brouwerforadoptingmeintoherfold;tothePhDstudentsintheDivisionofHumanNutritionwho indifferentwayshavebeensupportiveespeciallyduringmyfinallongstayinWageningen;special thankstoyou,MarielleEngberinkandAndreaWerkman!ToAnneleenKuijstenSjoerdforhelping outwiththeDutchsummary.ToJanBuremaforstatisticaladvice,LidwienvanderHeijden,Paul Hulshof and all colleagues in the Division of Human Nutrition who have been supportive in differentways.Icannotmentionyouall,butIamforevergrateful. Warmthankstomyparents,sistersandbrothersforbeingthereformeduringthistimeandfor understandingwhenIcouldnotbepresentatfamilyfunctions.Yourlove,encouragementand prayersmadeabigdifference!Toallmyfriends,especiallyOlympia,LouisaandNaomi.Thank youforyourprayers,encouragementandsupport.Olympia,fortakingchargewhenIwasaway fromhome.Iamforevergrateful.Tomyparanymphs,GerdaPotandHuaidongDu:thankyou foryourhelpwithpreparationsforthethesisdefense.Iamindebtedtoyou! IthankMasenoUniversityforgrantingmestudyleavetoenablemeworkonthisPhD; andthedirectorKEMRIforthesupportIreceivedwhilstattachedtotheinstitutionfor this work. Special thanks to the director, Centre for Public Health Research and the researchteamfortheirsupportthroughoutthestudyperiodthatenabledthefieldworkto runasscheduled;andtothedirector,CentreforGeographicalMedicine,Kilifi,foryour supportduringthefieldworkperiodinMalindi. Myheartfeltthanksalsogotothefollowingfortheirsupport: Herbert Smorenburg, Unilever, South Africa, Catherine Transler and all others at Unilever Vlaardingen who contributed to the work; Julius Maundu, formerly of Unilever Kenya; Carel Wreesmann,CorinedeWolfandGeoffSmithofAkzoNobel;RobKraaijenhagenandRiekiete Stroet , Meander Medical Centre, The Netherlands; Erasto Mbugi, Wageningen University; CorinneSprongandRobDekker,NIZOFoodResearch,Ede;TonyKamigwi,JaneMukamiand the data team at KEMRI; Beatrice Kilonzo; Administration and staff of Marafa, Kabiboni, Waresa,andGoodHopeschools;theEducationoffice,MarafaandtheOfficerofHealth,Malindi; theManagers,DelMonteandKakuzi,Thikawhereweoriginallyplannedtoconductthestudy.

145

CurriculumVitae ______

CurriculumVitae ______

TheAuthor PaulineEmmaAokoAndang’owasborninKisumu,Kenya on the 15 th January1968,and grew up inNjoro, near Nakuru, Kenya. In 1990 she graduated from Kenyatta University, Nairobi, Kenya, with a Bachelor of Education in Home Economics after which she was postedtoteachHomeScienceatKoruGirls’secondaryschool,wheresheservedfortwoand ahalfyears. In1992,havingreceivedtheJohnCrawfordscholarship,PaulinejoinedFlindersUniversityof South Australia, where she was finally able to pursue studies in Dietetics, in which she developedaninterestinherfirstyearofhighschool.In1995sheobtainedaMastersdegreein Nutrition and Dietetics after which she joined Maseno University as a tutorial fellow and eventuallybecamealecturerinthesameinstitution.In2003PaulinejoinedtheDivisionof Human Nutrition, Wageningen University, as a PhD sandwich student, on a collaborative researchprojectinvolvingUnileverFoodandHealthResearchInstitute,R&D,Vlaardingen; theCentreforPublicHealthResearch,KenyaMedicalResearchInstituteandtheDivisionof HumanNutrition,WageningenUniversity.DuringhertimeintheNetherlandssheattended severalPhDcoursesatWageningenUniversityandtheErasmusSummercourseofferedby NIHES,Rotterdam,andalsoattendedseveralconferencesanddisciplinespecificmeetings.

148 TheAuthor ______

OVERVIEWOFCOMPLETEDTRAININGACTIVITIES Discipline specific activities Courses IntroductiontoEpidemiologyandStatistics,2003 PrinciplesofResearchinMedicine,ErasmusSummerProgramme,Rotterdam,2005 ClinicalTrials,ErasmusSummerProgramme,Rotterdam,2005 TopicsinEvidencebasedMedicine,ErasmusSummerProgramme,Rotterdam,2005 IntroductiontoDataanalysis,ErasmusSummerProgramme,Rotterdam,2005 RegressionAnalysis,ErasmusSummerProgramme,Rotterdam,2005 HistoryofEpidemiologicIdeas,ErasmusSummerProgramme,Rotterdam,2005 MasterclassDietaryInfluencesonBloodPressureVLAG,2007 PhilosophyandEthicsofFoodScienceandTechnologyVLAG,2007

Meetings and Conferences 18 th InternationalNutritionCongress,Durban,SouthAfrica(Posterpresentation) SymposiumonIron,Unilever Bioavailability2006,ChiangMai,Thailand.(oralpresentation,workshop). Biofortificationworkshop,HarvestPlus,Mombasa,Kenya,April2006 AfricanNutritionLeadershipProgramme(ANLP),November2006 MicronutrientForum2007,Istanbul(Posterpresentation;participant:Younginvestigators’ Workshop). General courses Howtowriteandreadamedicalpaper,ErasmusSummerProgramme,Rotterdam,2005 Writingandpresentingascientificpaper,WageningenGraduateSchools(WGS),2006 ProjectandTimeManagementWGS,2006 AdvancedstatisticsWGS,2007 Optional PreparationPhDresearchproposal,2003 HNE38802ConceptsandMethodsinEpidemiologyin2006/2007 Staffseminars,WageningenUniversity,20032007 Journalclub2006/2007,Tanzania2006andWageningen,Oldsmobiles2007

149

The studies described in this thesis were funded by Unilever Food and Health Research Institute,Vlaardingen,theNetherlands;withadditionalsupportfromAkzoNobelChemicals, Arnhem,TheNetherlandsandconductedincollaborationwiththeCentreforPublicHealth Research,KenyaMedicalResearchInstitute,Nairobi. ThisPhDprojectwaspartoftheresearchprogrammeoftheGraduateSchoolonAdvanced StudiesinFoodTechnology,NutritionandHealthSciences(VLAG),WageningenUniversity, TheNetherlands. Financial support by Dr JA Zwartz foundation and Wageningen University, for the publicationofthisthesisisgratefullyacknowledged. Cover Achildinthecompoundofoneofthestudyschools;donkeycartusedtoferryporridgetothe neighbouringnurseryschool(backcover).PhotobySaskiaOsendarp. Coverdesign: CarlLooijen Layout: PaulineAndang’o Printing: Ponsen&LooijenB.V.,Wageningen,TheNetherlands.