Lecture 16 Unit Root Tests

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 16 Unit Root Tests RS – EC2 - Lecture 16 Lecture 16 Unit Root Tests 1 Autoregressive Unit Root • A shock is usually used to describe an unexpected change in a variable or in the value of the error terms at a particular time period. • When we have a stationary system, effect of a shock will die out gradually. But, when we have a non-stationary system, effect of a shock is permanent. • We have two types of non-stationarity. In an AR(1) model we have: - Unit root: | 1 | = 1: homogeneous non-stationarity - Explosive root: | 1 | > 1: explosive non-stationarity • In the last case, a shock to the system become more influential as time goes on. It can never be seen in real life. We will not consider them. 1 RS – EC2 - Lecture 16 Autoregressive Unit Root • Consider the AR(p) process: 1 2 p (L) yt t where (L) 11L L 2 .... p L As we discussed before, if one of the rj’s equals 1, Φ(1)=0, or 1 2 .... p 1 • We say yt has a unit root. In this case, yt is non-stationary. Example: AR(1): yt 1 yt 1 t Unit root: 1 = 1. H0 (yt non-stationarity): 1 = 1 (or, 1 –1 = 0) H1 (yt stationarity): 1 < 1 (or, 1 –1 < 0) • A t-test seems natural to test H0. But, the ergodic theorem and MDS CLT do not apply: the t-statistic does not have the usual distributions. Autoregressive Unit Root • Now, let’s reparameterize the AR(1) process. Subtract yt-1 from yt: yt yt yt1 (1 1) yt1 t 0 yt1 t • Unit root test: H0: α0 = 1 –1 = 0 H1: α0 < 0. • Natural test for H0: t-test . We call this test the Dickey-Fuller (DF) test. But, what is its distribution? • Back to the general, AR(p) process: (L)yt t We rewrite the process using the Dickey-Fuller reparameterization:: yt 0 yt1 1yt1 2yt2 .... p1yt( p1) t • Both AR(p) formulations are equivalent. 2 RS – EC2 - Lecture 16 Autoregressive Unit Root – Testing 1 2 p • AR(p) lag Φ(L): (L) 1 1L L 2 .... p L • DF reparameterization: 2 2 3 p 1 p (1 L ) 0 1 ( L L ) 2 ( L L ) .... p 1 ( L L ) • Both parameterizations should be equal. Then, Φ(1)=-α0. unit root hypothesis can be stated as H0: α0=0. Note: The model is stationary if α0< 0 natural H1: α0 < 0. • Under H0: α0=0, the model is AR(p-1) stationary in Δyt. Then, if yt has a (single) unit root, then Δyt is a stationary AR process. • We have a linear regression framework. A t-test for H0 is the Augmented Dickey-Fuller (ADF) test. Autoregressive Unit Root – Testing: DF • The Dickey-Fuller (DF) test is a special case of the ADF: No lags are included in the regression. It is easier to derive. We gain intuition from its derivation. • From our previous example, we have: y t 1y t 1 t 0 y t 1 t • If α0 = 0, system has a unit root:: H0 :0 0 H1 :0 0 (|0 | 0) ˆ 1 • We can test H with a t-test: t 1 0 SE ˆ ˆ • There is another associated test with H0, the ρ-test:. (T-1)( −1). 3 RS – EC2 - Lecture 16 Review: Stochastic Calculus • Kolmogorov Continuity Theorem • If for all T > 0, there exist a, b, δ > 0 such that: a (1 + b) •E(|X(t1, ω) – X(t2, ω)| ) ≤ δ |t1 –t2| • Then X(t, ω) can be considered as a continuous stochastic process. – Brownian motion is a continuous stochastic process. – Brownian motion (Wiener process): X(t, ω) is almost surely continuous, has independent normal distributed (N(0,t-s)) increments and X(t=0, ω) =0 (“a continuous random walk”). Review: Stochastic Calculus – Wiener process • Let the variable z(t) be almost surely continuous, with z(t=0)=0. •Define(,v) as a normal distribution with mean and variance v. • The change in a small interval of time t is z • Definition: The variable z(t) follows a Wiener process if – z(0) = 0 – z = ε√t ,where ε〜N(0,1) – It has continuous paths. – The values of z for any 2 different (non-overlapping) periods of time are independent. Notation: W(t), W(t, ω), B(t). 1 Example: WT (r) (1 2 3 ... [Tr] ); r [0,1] T 8 4 RS – EC2 - Lecture 16 Review: Stochastic Process: Wiener process • What is the distribution of the change in z over the next 2 time units? The change over the next 2 units equals the sum of: - The change over the next 1 unit (distributed as N(0,1)) plus - The change over the following time unit --also distributed as N(0,1). - The changes are independent. - The sum of 2 normal distributions is also normally distributed. Thus, the change over 2 time units is distributed as N(0,2). • Properties of Wiener processes: – Mean of z is 0 – Variance of z is t – Standard deviation of z is √t n – Let N=T/t, then z (T ) z (0) i t i1 9 Review: Stochastic Calculus – Wiener process 1 1 Example: WT (r) (1 2 3 ... [Tr] ) S[Tr]; r [0,1] T T • If T is large, WT(.) is a good approximation to W(r); r Є[0,1], defined: W(r) = limT→∞ WT(r) E[W(r) ] =0 Var[W(r) ] =t • Check Billingsley (1986) for the details behind the proof that WT(r) converges as a function to a continuous function W(r). • In a nutshell, we need q - εt satisfying some assumptions (stationarity, E[|εt| <∞ for q>2, etc.) -a FCLT (Functional CLT). - a Continuous Mapping Theorem. (Similar to Slutzky’s theorem). 10 5 RS – EC2 - Lecture 16 Review: Stochastic Calculus – Wiener process • Functional CLT (Donsker’s FCLT) If εt satisfies some assumptions, then D WT(r) W(r), where W(r) is a standard Brownian motion for r Є [0, 1]. Note: That is, sample statistics, like WT(r), do not converge to constants, but to functions of Brownian motions. • A CLT is a limit for one term of a sequence of partial sums {Sk}, Donsker’s FCLT is a limit for the entire sequence {Sk} instead of one term. 11 Review: Stochastic Calculus – Wiener process 2 -1 • Example: yt = yt-1 + εt (Case 1). Get distribution of (X’X/T ) for yt. T T t1 T T2 (y )2 T2 [ y ]2 T2 [S y ]2 t1 ti 0 t1 0 t1 t1 i1 t1 T T2 [(S )2 2y S y2] t1 0 t1 0 t1 2 T S T S 2 t1 T1 2y T1/2 t1 T1 T1y2 0 0 t1 T t1 T t/T 2 t/T T 1 T 1 2 1/2 1 2 S[Tr] dr2y0T S[Tr] drT y0 T T t1 (t1)T t1 (t1)T 1 1 2 X (r)2dr2y T1/2 X (r) drT1y2 T 0 T 0 0 0 1 d 2 W(r)2dr, T . 12 0 6 RS – EC2 - Lecture 16 Review: Stochastic Calculus – Ito’s Theorem • The integral w.r.t a Brownian motion, given by Ito’s theorem (integral): ∫ f(t,ω) dB = ∑ f(tk,ω) ∆Bk where tk* є [tk,tk + 1) as tk + 1 –tk → 0. As we increase the partitions of [0,T], the sum →p to the integral. • But, this is a probability statement: We can find a sample path where the sum can be arbitrarily far from the integral for arbitrarily large partitions (small intervals of integration). • You may recall that for a Rienman integral, the choice of tk* (at the start or at the end of the partition) is not important. But, for Ito’s integral, it is important (at the start of the partition). 2 • Ito’s Theorem result: ∫B(t,ω) dB(t,ω) = B (t,ω)/2 – t/2. 13 Autoregressive Unit Root – Testing: Intuition • We continue with yt = yt-1 + εt (Case 1). Using OLS, we estimate : T T T yt yt 1 ( yt 1 yt 1 ) yt 1 yt 1yt 1 ˆ t 1 t 1 1 t 1 T T T y 2 y 2 y 2 t1 t1 t1 t 1 t 1 t 1 • This implies: T T yt 1yt 1 ( yt 1 / T )( t / T ) T (ˆ 1) T t 1 t 1 T 1 T y 2 ( y / T ) 2 t1 T t 1 t 1 t 1 • From the way we defined WT(.), we can see that yt/sqrt(T) converges to a Brownian motion. Under H0, yt is a sum of white noise errors. 7 RS – EC2 - Lecture 16 Autoregressive Unit Root – Testing: Intuition • Intuition for distribution under H0: - Think of yt as a sum of white noise errors. - Think of εt as dW(t). Then, using Billingley (1986), we guess that T(ˆ-1) converges to 1 W (t)dW (t) ˆ d 0 T ( 1) 1 W (t) 2 dt 0 • We think of εt as dW(t). Then, Σk=0 to t εk, which corresponds to ∫0to(t/T) dW(s)=W( s/T) (for W(0)=0). Using Ito’s integral, we have 1 W (1)2 1 T (ˆ 1) d 2 1 W (t)2dt 0 Autoregressive Unit Root – Testing: Intuition • 1 W (1) 2 1 T (ˆ 1) d 2 1 W (t) 2 dt 0 Note: W(1) is a N(0,1). Then, W(1)2 is just a χ2(1) RV.
Recommended publications
  • 3.3 Convergence Tests for Infinite Series
    3.3 Convergence Tests for Infinite Series 3.3.1 The integral test We may plot the sequence an in the Cartesian plane, with independent variable n and dependent variable a: n X The sum an can then be represented geometrically as the area of a collection of rectangles with n=1 height an and width 1. This geometric viewpoint suggests that we compare this sum to an integral. If an can be represented as a continuous function of n, for real numbers n, not just integers, and if the m X sequence an is decreasing, then an looks a bit like area under the curve a = a(n). n=1 In particular, m m+2 X Z m+1 X an > an dn > an n=1 n=1 n=2 For example, let us examine the first 10 terms of the harmonic series 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + : n 2 3 4 5 6 7 8 9 10 1 1 1 If we draw the curve y = x (or a = n ) we see that 10 11 10 X 1 Z 11 dx X 1 X 1 1 > > = − 1 + : n x n n 11 1 1 2 1 (See Figure 1, copied from Wikipedia) Z 11 dx Now = ln(11) − ln(1) = ln(11) so 1 x 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + > ln(11) n 2 3 4 5 6 7 8 9 10 1 and 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + < ln(11) + (1 − ): 2 3 4 5 6 7 8 9 10 11 Z dx So we may bound our series, above and below, with some version of the integral : x If we allow the sum to turn into an infinite series, we turn the integral into an improper integral.
    [Show full text]
  • Lecture 6A: Unit Root and ARIMA Models
    Lecture 6a: Unit Root and ARIMA Models 1 Big Picture • A time series is non-stationary if it contains a unit root unit root ) nonstationary The reverse is not true. • Many results of traditional statistical theory do not apply to unit root process, such as law of large number and central limit theory. • We will learn a formal test for the unit root • For unit root process, we need to apply ARIMA model; that is, we take difference (maybe several times) before applying the ARMA model. 2 Review: Deterministic Difference Equation • Consider the first order equation (without stochastic shock) yt = ϕ0 + ϕ1yt−1 • We can use the method of iteration to show that when ϕ1 = 1 the series is yt = ϕ0t + y0 • So there is no steady state; the series will be trending if ϕ0 =6 0; and the initial value has permanent effect. 3 Unit Root Process • Consider the AR(1) process yt = ϕ0 + ϕ1yt−1 + ut where ut may and may not be white noise. We assume ut is a zero-mean stationary ARMA process. • This process has unit root if ϕ1 = 1 In that case the series converges to yt = ϕ0t + y0 + (ut + u2 + ::: + ut) (1) 4 Remarks • The ϕ0t term implies that the series will be trending if ϕ0 =6 0: • The series is not mean-reverting. Actually, the mean changes over time (assuming y0 = 0): E(yt) = ϕ0t • The series has non-constant variance var(yt) = var(ut + u2 + ::: + ut); which is a function of t: • In short, the unit root process is not stationary.
    [Show full text]
  • Beyond Mere Convergence
    Beyond Mere Convergence James A. Sellers Department of Mathematics The Pennsylvania State University 107 Whitmore Laboratory University Park, PA 16802 [email protected] February 5, 2002 – REVISED Abstract In this article, I suggest that calculus instruction should include a wider variety of examples of convergent and divergent series than is usually demonstrated. In particular, a number of convergent series, P k3 such as 2k , are considered, and their exact values are found in a k≥1 straightforward manner. We explore and utilize a number of math- ematical topics, including manipulation of certain power series and recurrences. During my most recent spring break, I read William Dunham’s book Euler: The Master of Us All [3]. I was thoroughly intrigued by the material presented and am certainly glad I selected it as part of the week’s reading. Of special interest were Dunham’s comments on series manipulations and the power series identities developed by Euler and his contemporaries, for I had just completed teaching convergence and divergence of infinite series in my calculus class. In particular, Dunham [3, p. 47-48] presents Euler’s proof of the Basel Problem, a challenge from Jakob Bernoulli to determine the 1 P 1 exact value of the sum k2 . Euler was the first to solve this problem by k≥1 π2 proving that the sum equals 6 . I was reminded of my students’ interest in this result when I shared it with them just weeks before. I had already mentioned to them that exact values for relatively few families of convergent series could be determined.
    [Show full text]
  • Econometrics Basics: Avoiding Spurious Regression
    Econometrics Basics: Avoiding Spurious Regression John E. Floyd University of Toronto July 24, 2013 We deal here with the problem of spurious regression and the techniques for recognizing and avoiding it. The nature of this problem can be best understood by constructing a few purely random-walk variables and then regressing one of them on the others. The figure below plots a random walk or unit root variable that can be represented by the equation yt = ρ yt−1 + ϵt (1) which can be written alternatively in Dickey-Fuller form as ∆yt = − (1 − ρ) yt−1 + ϵt (2) where yt is the level of the series at time t , ϵt is a series of drawings of a zero-mean, constant-variance normal random variable, and (1 − ρ) can be viewed as the mean-reversion parameter. If ρ = 1 , there is no mean-reversion and yt is a random walk. Notice that, apart from the short-term variations, the series trends upward for the first quarter of its length, then downward for a bit more than the next quarter and upward for the remainder of its length. This series will tend to be correlated with other series that move in either the same or the oppo- site directions during similar parts of their length. And if our series above is regressed on several other random-walk-series regressors, one can imagine that some or even all of those regressors will turn out to be statistically sig- nificant even though by construction there is no causal relationship between them|those parts of the dependent variable that are not correlated directly with a particular independent variable may well be correlated with it when the correlation with other independent variables is simultaneously taken into account.
    [Show full text]
  • Series Convergence Tests Math 121 Calculus II Spring 2015
    Series Convergence Tests Math 121 Calculus II Spring 2015 Some series converge, some diverge. Geometric series. We've already looked at these. We know when a geometric series 1 X converges and what it converges to. A geometric series arn converges when its ratio r lies n=0 a in the interval (−1; 1), and, when it does, it converges to the sum . 1 − r 1 X 1 The harmonic series. The standard harmonic series diverges to 1. Even though n n=1 1 1 its terms 1, 2 , 3 , . approach 0, the partial sums Sn approach infinity, so the series diverges. The main questions for a series. Question 1: given a series does it converge or diverge? Question 2: if it converges, what does it converge to? There are several tests that help with the first question and we'll look at those now. The term test. The only series that can converge are those whose terms approach 0. That 1 X is, if ak converges, then ak ! 0. k=1 Here's why. If the series converges, then the limit of the sequence of its partial sums n th X approaches the sum S, that is, Sn ! S where Sn is the n partial sum Sn = ak. Then k=1 lim an = lim (Sn − Sn−1) = lim Sn − lim Sn−1 = S − S = 0: n!1 n!1 n!1 n!1 The contrapositive of that statement gives a test which can tell us that some series diverge. Theorem 1 (The term test). If the terms of the series don't converge to 0, then the series diverges.
    [Show full text]
  • Commodity Prices and Unit Root Tests
    Commodity Prices and Unit Root Tests Dabin Wang and William G. Tomek Paper presented at the NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management St. Louis, Missouri, April 19-20, 2004 Copyright 2004 by Dabin Wang and William G. Tomek. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies. Graduate student and Professor Emeritus in the Department of Applied Economics and Management at Cornell University. Warren Hall, Ithaca NY 14853-7801 e-mails: [email protected] and [email protected] Commodity Prices and Unit Root Tests Abstract Endogenous variables in structural models of agricultural commodity markets are typically treated as stationary. Yet, tests for unit roots have rather frequently implied that commodity prices are not stationary. This seeming inconsistency is investigated by focusing on alternative specifications of unit root tests. We apply various specifications to Illinois farm prices of corn, soybeans, barrows and gilts, and milk for the 1960 through 2002 time span. The preponderance of the evidence suggests that nominal prices do not have unit roots, but under certain specifications, the null hypothesis of a unit root cannot be rejected, particularly when the logarithms of prices are used. If the test specification does not account for a structural change that shifts the mean of the variable, the results are biased toward concluding that a unit root exists. In general, the evidence does not favor the existence of unit roots. Keywords: commodity price, unit root tests.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Sequences, Series and Taylor Approximation (Ma2712b, MA2730)
    Sequences, Series and Taylor Approximation (MA2712b, MA2730) Level 2 Teaching Team Current curator: Simon Shaw November 20, 2015 Contents 0 Introduction, Overview 6 1 Taylor Polynomials 10 1.1 Lecture 1: Taylor Polynomials, Definition . .. 10 1.1.1 Reminder from Level 1 about Differentiable Functions . .. 11 1.1.2 Definition of Taylor Polynomials . 11 1.2 Lectures 2 and 3: Taylor Polynomials, Examples . ... 13 x 1.2.1 Example: Compute and plot Tnf for f(x) = e ............ 13 1.2.2 Example: Find the Maclaurin polynomials of f(x) = sin x ...... 14 2 1.2.3 Find the Maclaurin polynomial T11f for f(x) = sin(x ) ....... 15 1.2.4 QuestionsforChapter6: ErrorEstimates . 15 1.3 Lecture 4 and 5: Calculus of Taylor Polynomials . .. 17 1.3.1 GeneralResults............................... 17 1.4 Lecture 6: Various Applications of Taylor Polynomials . ... 22 1.4.1 RelativeExtrema .............................. 22 1.4.2 Limits .................................... 24 1.4.3 How to Calculate Complicated Taylor Polynomials? . 26 1.5 ExerciseSheet1................................... 29 1.5.1 ExerciseSheet1a .............................. 29 1.5.2 FeedbackforSheet1a ........................... 33 2 Real Sequences 40 2.1 Lecture 7: Definitions, Limit of a Sequence . ... 40 2.1.1 DefinitionofaSequence .......................... 40 2.1.2 LimitofaSequence............................. 41 2.1.3 Graphic Representations of Sequences . .. 43 2.2 Lecture 8: Algebra of Limits, Special Sequences . ..... 44 2.2.1 InfiniteLimits................................ 44 1 2.2.2 AlgebraofLimits.............................. 44 2.2.3 Some Standard Convergent Sequences . .. 46 2.3 Lecture 9: Bounded and Monotone Sequences . ..... 48 2.3.1 BoundedSequences............................. 48 2.3.2 Convergent Sequences and Closed Bounded Intervals . .... 48 2.4 Lecture10:MonotoneSequences .
    [Show full text]
  • Calculus Online Textbook Chapter 10
    Contents CHAPTER 9 Polar Coordinates and Complex Numbers 9.1 Polar Coordinates 348 9.2 Polar Equations and Graphs 351 9.3 Slope, Length, and Area for Polar Curves 356 9.4 Complex Numbers 360 CHAPTER 10 Infinite Series 10.1 The Geometric Series 10.2 Convergence Tests: Positive Series 10.3 Convergence Tests: All Series 10.4 The Taylor Series for ex, sin x, and cos x 10.5 Power Series CHAPTER 11 Vectors and Matrices 11.1 Vectors and Dot Products 11.2 Planes and Projections 11.3 Cross Products and Determinants 11.4 Matrices and Linear Equations 11.5 Linear Algebra in Three Dimensions CHAPTER 12 Motion along a Curve 12.1 The Position Vector 446 12.2 Plane Motion: Projectiles and Cycloids 453 12.3 Tangent Vector and Normal Vector 459 12.4 Polar Coordinates and Planetary Motion 464 CHAPTER 13 Partial Derivatives 13.1 Surfaces and Level Curves 472 13.2 Partial Derivatives 475 13.3 Tangent Planes and Linear Approximations 480 13.4 Directional Derivatives and Gradients 490 13.5 The Chain Rule 497 13.6 Maxima, Minima, and Saddle Points 504 13.7 Constraints and Lagrange Multipliers 514 CHAPTER Infinite Series Infinite series can be a pleasure (sometimes). They throw a beautiful light on sin x and cos x. They give famous numbers like n and e. Usually they produce totally unknown functions-which might be good. But on the painful side is the fact that an infinite series has infinitely many terms. It is not easy to know the sum of those terms.
    [Show full text]
  • Unit Roots and Cointegration in Panels Jörg Breitung M
    Unit roots and cointegration in panels Jörg Breitung (University of Bonn and Deutsche Bundesbank) M. Hashem Pesaran (Cambridge University) Discussion Paper Series 1: Economic Studies No 42/2005 Discussion Papers represent the authors’ personal opinions and do not necessarily reflect the views of the Deutsche Bundesbank or its staff. Editorial Board: Heinz Herrmann Thilo Liebig Karl-Heinz Tödter Deutsche Bundesbank, Wilhelm-Epstein-Strasse 14, 60431 Frankfurt am Main, Postfach 10 06 02, 60006 Frankfurt am Main Tel +49 69 9566-1 Telex within Germany 41227, telex from abroad 414431, fax +49 69 5601071 Please address all orders in writing to: Deutsche Bundesbank, Press and Public Relations Division, at the above address or via fax +49 69 9566-3077 Reproduction permitted only if source is stated. ISBN 3–86558–105–6 Abstract: This paper provides a review of the literature on unit roots and cointegration in panels where the time dimension (T ), and the cross section dimension (N) are relatively large. It distinguishes between the ¯rst generation tests developed on the assumption of the cross section independence, and the second generation tests that allow, in a variety of forms and degrees, the dependence that might prevail across the di®erent units in the panel. In the analysis of cointegration the hypothesis testing and estimation problems are further complicated by the possibility of cross section cointegration which could arise if the unit roots in the di®erent cross section units are due to common random walk components. JEL Classi¯cation: C12, C15, C22, C23. Keywords: Panel Unit Roots, Panel Cointegration, Cross Section Dependence, Common E®ects Nontechnical Summary This paper provides a review of the theoretical literature on testing for unit roots and cointegration in panels where the time dimension (T ), and the cross section dimension (N) are relatively large.
    [Show full text]
  • Chapter 10 Infinite Series
    10.1 The Geometric Series (page 373) CHAPTER 10 INFINITE SERIES 10.1 The Geometric Series The advice in the text is: Learn the geometric series. This is the most important series and also the simplest. The pure geometric series starts with the constant term 1: 1+x +x2 +... = A.With other symbols CzoP = &.The ratio between terms is x (or r). Convergence requires 1x1 < 1(or Irl < 1). A closely related geometric series starts with any number a, instead of 1. Just multiply everything by a : a + ox + ax2 + - .= &. With other symbols x:=oern = &. As a particular case, choose a = xN+l. The geometric series has its first terms chopped off: Now do the opposite. Keep the first terms and chop of the last terms. Instead of an infinite series you have a finite series. The sum looks harder at first, but not after you see where it comes from: 1- xN+l N 1- rN+l Front end : 1+ x + - -.+ xN = or Ern= 1-2 - ' n=O 1-r The proof is in one line. Start with the whole series and subtract the tail end. That leaves the front end. It is =N+1 the difference between and TT; - complete sum minus tail end. Again you can multiply everything by a. The front end is a finite sum, and the restriction 1x1 < 1or Irl < 1 is now omitted. We only avoid x = 1or r = 1, because the formula gives g. (But with x = 1the front end is 1+ 1+ . + 1. We don't need a formula to add up 1's.) Personal note: I just heard a lecture on the mathematics of finance.
    [Show full text]
  • Final Exam: Cheat Sheet"
    7/17/97 Final Exam: \Cheat Sheet" Z Z 1 2 6. csc xdx = cot x dx =lnjxj 1. x Z Z x a x 7. sec x tan xdx = sec x 2. a dx = ln a Z Z 8. csc x cot xdx = csc x 3. sin xdx = cos x Z Z 1 x dx 1 = tan 9. 4. cos xdx = sin x 2 2 x + a a a Z Z dx x 1 2 p = sin 10. 5. sec xdx = tan x 2 2 a a x Z Z d b [f y g y ] dy [f x g x] dx. In terms of y : A = 11. Area in terms of x: A = c a Z Z d b 2 2 [g y ] dy [f x] dx. Around the y -axis: V = 12. Volume around the x-axis: V = c a Z b 13. Cylindrical Shells: V = 2xf x dx where 0 a< b a Z Z b b b 0 0 14. f xg x dx = f xg x] f xg x dx a a a R m 2 2 n 2 2 15. HowtoEvaluate sin x cos xdx.:Ifm or n are o dd use sin x =1 cos x and cos x =1 sin x, 2 1 1 2 resp ectively and then apply substitution. Otherwise, use sin x = 1 cos 2x or cos x = 1 + cos 2x 2 2 1 or sin x cos x = sin 2x. 2 R m n 2 2 2 16. HowtoEvaluate tan x sec xdx.:Ifm is o dd or n is even, use tan x = sec x 1 and sec x = 2 1 + tan x, resp ectively and then apply substitution.
    [Show full text]