8.6 Power Series Convergence

Total Page:16

File Type:pdf, Size:1020Kb

8.6 Power Series Convergence Power Series Week 8 8.6 Power Series Convergence Definition A power series about c is a function defined by the infinite sum 1 X n f(x) = an(x − c) n=0 1 where the terms of the sequence fangn=0 are called the coefficients and c is referred to as the center of the power series. Theorem / Definition Every power series converges absolutely for the value x = c. For every power series that converges at more than a single point there is a value R, called the radius of convergence, such that the series converges absolutely whenever jx − cj < R and diverges when jx − cj > R. A series may converge or diverge when jx − cj = R. The interval of x values for which a series converges is called the interval of convergence. By convention we allow R = 1 to indicate that a power series converges for all x values. If the series converges only at its center, we will say that R = 0. Examples f (n)(c) (a) Every Taylor series is also a power series. Their centers coincide and a = . n n! (b) We saw one example of a power series weeks ago. Recall that for jrj < 1, the geometric series converges and 1 X a arn = a + ar + ar2 + ar3 ::: = 1 − r n=0 We can view this as a power series where fang = a and c = 0, 1 X a axn = 1 − x n=0 This converges for jx − 0j = jxj < 1 so the radius of converges is 1. The series does not converge for x = 1 or x = −1. Therefore the interval of convergence is (−1; 1). Testing a Power Series for Convergence Step 1. Use the ratio test or root test to determine the radius of convergence. jx − cj < R Step 2. Plug in x = c + R and x = c − R. Check if the series converges for either of these end points. Step 3. Write out the interval of convergence ([c−R; c+R)] with the appropriate end point signifier chosen. 1 Power Series Week 8 Examples Determine the interval of convergence. 1 X xn (a) p n n3n n=1 By the ratio test the series will converge when p p a xn+1 n n3n n n 1 lim j n+1 j < 1 =) lim p · < 1 =) lim p x < 1 n+1 n n!1 an n!1 (n + 1) n + 13 x n!1 (n + 1) n + 1 3 x =) j j < 1 =) jxj < 3 3 Therefore the radius of convergence is 3 . We now check the end points. When x = 3 we have the series 1 X 1 p n n n=1 which converges as a p series with p > 1. When x = −3 we have the series, 1 X 1 (−1)n p n n n=1 which converges by the alternating series test. This gives that Interval of Convergence: [-3,3] . 1 n X 2 n (b) (4x − 8) n n=1 This strictly isn't expressed as a power series. But we can factor out a 4 from the parenthetical statement to give a series centered at 2, 1 n X 8 n (x − 2) n n=1 p Remember that lim n n = 1. Let's try the root test on this. The series will converge absolutely when n!1 r n pn n 8 n 8 1 lim janj = lim (x − 2) = lim p (x − 2) = j8(x − 2)j < 1 =) jx − 2j < n!1 n!1 n n!1 n n 8 1 =) Radius of Convergence: 8 Now check the endpoints. The left and right endpoints respectively give the series, 1 1 X 1 X 1 (−1)n n n n=1 n=1 The former is the alternating harmonic series and converges. The latter is the harmonic series and diverges. 1 1 15 17 Interval of Convergence: [2 − ; 2 + ) = ; 8 8 8 8 2 Power Series Week 8 1 X 2 (c) 2n (x − 3)n n=0 Apply the ratio test, 2 2n +2n+1(x − 3)n+1 lim = lim 22n + 1(x − 3) = jx − 3j lim 22n+1 n2 n n!1 2 (x − 3) n!1 n!1 This limit goes to infinity of course. Unless, the number we are multiplying by is zero. Therefore this converges only when x = 3. Therefore the radius of converges is 0 and the interval of convergence is [3; 3]. 1 X (x + 1)n (d) n! n=0 Note that the center of this power series is −1. Use the ratio test n+1 (x + 1) n! x + 1 lim · = lim = 0 < 1 n!1 (n + 1)! (x + 1)n n!1 n + 1 This series converges no matter what the value of n is. Therefore, Radius of Convergence: 1 Interval of Convergence: (−∞; 1) 8.7 New from Old: Representing Functions by Power Series Now that we know a bit about power series how can we find the power series for a particular function? So 1 far we've only seen one really, = P xn for jxj < 1. We want to milk this identity for as much as we 1 − x can. One way we can do this is by arithmetic operations and substitution. Examples Determine the power series representation for the given function. Give the interval of convergence for the series. x2 (a) 1 − x We don't have much to work with right now. Let's stare at the power series we know and see if there's a way to transform it into the one we want. Notice that we can do this by multiplication. 1 1 x2 1 X X = x2 · = x2 xn = xn+2 1 − x 1 − x n=0 n=0 There we have it. Our power series representation. Let's think about the interval of convergence. The base series had the interval (−1; 1). We multiplied that series by a value not depending on n. Hence the convergence of the series is not affect. Our interval of convergence is then (−1; 1). 1 (b) 1 + 5y 1 Notice we can get this function by plugging in x = −5y into . Therefore, 1 − x 3 Power Series Week 8 1 1 1 1 X X = = = (−5y)n = (−1)5nyn 1 + 5y 1 − (−5y) n=0 n=0 The original series converges when jxj < 1 so after our substitution our series will converge for j − 5yj < 1 1 =) jyj < 5 . There's nothing special about having chosen y for our variable so we could instead say, 1 1 X 1 = (−1)n5nxn for jxj < 1 + 5x 5 n=0 1 (c) 2 − z Notice that, 1 1 1 1 1 1 X z n X 1 = · = · = zn 2 − z 2 1 − ( z ) 2 2 2n+1 2 n=0 n=0 This will converge when z = jxj < 1 =) jzj < 2 2 4 Power Series Week 8 8.8 Term by Term Differentiation 1 X n Theorem Assume the power series an(x − c) converges for jx − cj < R for some R > 0. For x values n=0 in this interval we can define a function 1 X n f(x) = an(x − c) n=0 f(x) has derivatives of all orders and they are given by differentiating the sum term by term. That is 1 0 X n−1 f (x) = nan(x − c) n=0 Furthermore, the derivative's power series has the same radius of convergence as the original. Note The ability to differentiate term by term is a special property of power series. For example, 1 X sin(n!x) f(x) = n2 n=1 1 The series defining this function converges for all values of x (compare it to n2 ). If we take the derivative of each term we get the series, 1 X cos(n!x) n! n2 n=1 which diverges for all x by the divergence test. Examples Determine a power series for the given function. 1 (a) (1 − x)2 Let's use our shiny new toy in the form of the theorem of this section. We want to think if we know a function whose derivative will give us the above function. We do. 1 1 1 1 d 1 d X X X = = xn = nxn−1 = (n + 1)nxn (for − 1 < x < 1) (1 − x)2 dx 1 − x dx n=0 n=0 n=0 k! (b) (1 − x)k+1 Notice that 1 1 1 k! dk 1 dk X X n! X (n + k)! = = xn = xn−k = xn (for − 1 < x < 1) (1 − x)k+1 dxk 1 − x dxk (n − k)! n! n=0 n=k n=0 Note The theorem says that the radius of convergence is unaffected by differentiation. However, the end points of convergence may be affect. 1 X xn f(x) = n2 n=1 5 Power Series Week 8 converges for −1 ≤ x ≤ 1. It's radius of convergence is 1 and it converges at both endpoints. On the other hand, 1 X xn−1 f 0(x) = n n=1 has radius of converges 1 but converges for −1 ≤ x < 1. Since setting x = 1 gives us the harmonic series which diverges. 8.9 Term by Term Integration 1 X n Theorem Assume the power series an(x − c) converges for jx − cj < R for some R > 0. For x values n=0 in this interval we can define a function 1 X n f(x) = an(x − c) n=0 f(x) is integrable and Z 1 X an f(x) dx = C + (x − c)n+1 n + 1 n=0 Furthermore, the integral's power series has the same radius of convergence as the original.
Recommended publications
  • Calculus and Differential Equations II
    Calculus and Differential Equations II MATH 250 B Sequences and series Sequences and series Calculus and Differential Equations II Sequences A sequence is an infinite list of numbers, s1; s2;:::; sn;::: , indexed by integers. 1n Example 1: Find the first five terms of s = (−1)n , n 3 n ≥ 1. Example 2: Find a formula for sn, n ≥ 1, given that its first five terms are 0; 2; 6; 14; 30. Some sequences are defined recursively. For instance, sn = 2 sn−1 + 3, n > 1, with s1 = 1. If lim sn = L, where L is a number, we say that the sequence n!1 (sn) converges to L. If such a limit does not exist or if L = ±∞, one says that the sequence diverges. Sequences and series Calculus and Differential Equations II Sequences (continued) 2n Example 3: Does the sequence converge? 5n 1 Yes 2 No n 5 Example 4: Does the sequence + converge? 2 n 1 Yes 2 No sin(2n) Example 5: Does the sequence converge? n Remarks: 1 A convergent sequence is bounded, i.e. one can find two numbers M and N such that M < sn < N, for all n's. 2 If a sequence is bounded and monotone, then it converges. Sequences and series Calculus and Differential Equations II Series A series is a pair of sequences, (Sn) and (un) such that n X Sn = uk : k=1 A geometric series is of the form 2 3 n−1 k−1 Sn = a + ax + ax + ax + ··· + ax ; uk = ax 1 − xn One can show that if x 6= 1, S = a .
    [Show full text]
  • Topic 7 Notes 7 Taylor and Laurent Series
    Topic 7 Notes Jeremy Orloff 7 Taylor and Laurent series 7.1 Introduction We originally defined an analytic function as one where the derivative, defined as a limit of ratios, existed. We went on to prove Cauchy's theorem and Cauchy's integral formula. These revealed some deep properties of analytic functions, e.g. the existence of derivatives of all orders. Our goal in this topic is to express analytic functions as infinite power series. This will lead us to Taylor series. When a complex function has an isolated singularity at a point we will replace Taylor series by Laurent series. Not surprisingly we will derive these series from Cauchy's integral formula. Although we come to power series representations after exploring other properties of analytic functions, they will be one of our main tools in understanding and computing with analytic functions. 7.2 Geometric series Having a detailed understanding of geometric series will enable us to use Cauchy's integral formula to understand power series representations of analytic functions. We start with the definition: Definition. A finite geometric series has one of the following (all equivalent) forms. 2 3 n Sn = a(1 + r + r + r + ::: + r ) = a + ar + ar2 + ar3 + ::: + arn n X = arj j=0 n X = a rj j=0 The number r is called the ratio of the geometric series because it is the ratio of consecutive terms of the series. Theorem. The sum of a finite geometric series is given by a(1 − rn+1) S = a(1 + r + r2 + r3 + ::: + rn) = : (1) n 1 − r Proof.
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • 3.3 Convergence Tests for Infinite Series
    3.3 Convergence Tests for Infinite Series 3.3.1 The integral test We may plot the sequence an in the Cartesian plane, with independent variable n and dependent variable a: n X The sum an can then be represented geometrically as the area of a collection of rectangles with n=1 height an and width 1. This geometric viewpoint suggests that we compare this sum to an integral. If an can be represented as a continuous function of n, for real numbers n, not just integers, and if the m X sequence an is decreasing, then an looks a bit like area under the curve a = a(n). n=1 In particular, m m+2 X Z m+1 X an > an dn > an n=1 n=1 n=2 For example, let us examine the first 10 terms of the harmonic series 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + : n 2 3 4 5 6 7 8 9 10 1 1 1 If we draw the curve y = x (or a = n ) we see that 10 11 10 X 1 Z 11 dx X 1 X 1 1 > > = − 1 + : n x n n 11 1 1 2 1 (See Figure 1, copied from Wikipedia) Z 11 dx Now = ln(11) − ln(1) = ln(11) so 1 x 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + > ln(11) n 2 3 4 5 6 7 8 9 10 1 and 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + < ln(11) + (1 − ): 2 3 4 5 6 7 8 9 10 11 Z dx So we may bound our series, above and below, with some version of the integral : x If we allow the sum to turn into an infinite series, we turn the integral into an improper integral.
    [Show full text]
  • Beyond Mere Convergence
    Beyond Mere Convergence James A. Sellers Department of Mathematics The Pennsylvania State University 107 Whitmore Laboratory University Park, PA 16802 [email protected] February 5, 2002 – REVISED Abstract In this article, I suggest that calculus instruction should include a wider variety of examples of convergent and divergent series than is usually demonstrated. In particular, a number of convergent series, P k3 such as 2k , are considered, and their exact values are found in a k≥1 straightforward manner. We explore and utilize a number of math- ematical topics, including manipulation of certain power series and recurrences. During my most recent spring break, I read William Dunham’s book Euler: The Master of Us All [3]. I was thoroughly intrigued by the material presented and am certainly glad I selected it as part of the week’s reading. Of special interest were Dunham’s comments on series manipulations and the power series identities developed by Euler and his contemporaries, for I had just completed teaching convergence and divergence of infinite series in my calculus class. In particular, Dunham [3, p. 47-48] presents Euler’s proof of the Basel Problem, a challenge from Jakob Bernoulli to determine the 1 P 1 exact value of the sum k2 . Euler was the first to solve this problem by k≥1 π2 proving that the sum equals 6 . I was reminded of my students’ interest in this result when I shared it with them just weeks before. I had already mentioned to them that exact values for relatively few families of convergent series could be determined.
    [Show full text]
  • Series Convergence Tests Math 121 Calculus II Spring 2015
    Series Convergence Tests Math 121 Calculus II Spring 2015 Some series converge, some diverge. Geometric series. We've already looked at these. We know when a geometric series 1 X converges and what it converges to. A geometric series arn converges when its ratio r lies n=0 a in the interval (−1; 1), and, when it does, it converges to the sum . 1 − r 1 X 1 The harmonic series. The standard harmonic series diverges to 1. Even though n n=1 1 1 its terms 1, 2 , 3 , . approach 0, the partial sums Sn approach infinity, so the series diverges. The main questions for a series. Question 1: given a series does it converge or diverge? Question 2: if it converges, what does it converge to? There are several tests that help with the first question and we'll look at those now. The term test. The only series that can converge are those whose terms approach 0. That 1 X is, if ak converges, then ak ! 0. k=1 Here's why. If the series converges, then the limit of the sequence of its partial sums n th X approaches the sum S, that is, Sn ! S where Sn is the n partial sum Sn = ak. Then k=1 lim an = lim (Sn − Sn−1) = lim Sn − lim Sn−1 = S − S = 0: n!1 n!1 n!1 n!1 The contrapositive of that statement gives a test which can tell us that some series diverge. Theorem 1 (The term test). If the terms of the series don't converge to 0, then the series diverges.
    [Show full text]
  • Zeros and Coefficients
    Zeros and coefficients Alexandre Eremenko∗ 10.28.2015 Abstract Asymptotic distribution of zeros of sequences of analytic functions is studied. Let fn be a sequence of analytic functions in a region D in the complex plane. The case of entire functions, D = C will be the most important. Sup- pose that there exist positive numbers Vn → ∞, such that the subharmonic functions 1 log |fn| areuniformlyboundedfromabove (1) Vn on every compact subset of D, and for some z0 ∈ D the sequence 1 log |fn(z0)| isboundedfrombelow. (2) Vn Under these conditions, one can select a subsequence such that for this sub- sequence 1 log |fn| → u, (3) Vn where u is a subharmonic function in D, u =6 −∞. This convergence can be understood in various senses, for example, quasi-everywhere, which means at every point except a set of points of zero logarithmic capacity, and also in ′ p D (Schwartz distributions), or in Lloc, 1 ≤ p< ∞. The corresponding Riesz measures converge weakly. The limit measure, −1 which is (2π) ∆u, describes the limit distribution of zeros of fn. ∗Supported by NSF grant DMS-1361836. 1 For all these facts we refer to [9] or [10]. This setting is useful in many cases when one is interested in asymptotic distribution of zeros of sequences of analytic functions. Let us mention several situations to which our results apply. 1. Let fn be monic polynomials of degree n, and Vn = n. We denote by µn the so-called empirical measures, which are the Riesz measures of (1/n)log |fn|. The measure µn is discrete, with finitely many atoms, with an atom of mass m at every zero of fn of multiplicity m.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Power Series and Convergence Issues
    POWER SERIES AND CONVERGENCE ISSUES MATH 153, SECTION 55 (VIPUL NAIK) Corresponding material in the book: Section 12.8, 12.9. What students should definitely get: The meaning of power series. The relation between Taylor series and power series, the notion of convergence, interval of convergence, and radius of convergence. The theorems for differentiation and integration of power series. Convergence at the boundary and Abel’s theorem. What students should hopefully get: How notions of power series provide an alternative interpre- tation for many of the things we have studied earlier in calculus. How results about power series combine with ideas like the root and ratio tests and facts about p-series. Executive summary Words ... P∞ k (1) The objects of interest here are power series, which are series of the form k=0 akx . Note that for power series, we start by default with k = 0. If the set of values of the index of summation is not specified, assume that it starts from 0 and goes on to ∞. The exception is when the index of summation occurs in the denominator, or some other such thing that forces us to exclude k = 0. 0 (2) Also note that x is shorthand for 1. When evaluating a power series at 0, we simply get a0. We do not actually do 00. (3) If a power series converges for c, it converges absolutely for all |x| < |c|. If a power series diverges for c, it diverges for all |x| > |c|. P k (4) Given a power series akx , the set of values where it converges is either 0, or R, or an interval that (apart from the issue of inclusion of endpoints) is symmetric about 0.
    [Show full text]
  • Calculus 1120, Fall 2012
    Calculus 1120, Fall 2012 Dan Barbasch November 13, 2012 Dan Barbasch () Calculus 1120, Fall 2012 November 13, 2012 1 / 5 Absolute and Conditional Convergence We need to consider series with arbitrary terms not just positive (nonnegative) ones. For such series the partial sums sn = a1 + ··· + an are not necessarily increasing. So we cannot use the bounded monotone convergence theorem. We cannot use the root/ratio test or the integral test directly on such series. The notion of absolute convergence allows us to deal with the problem. Dan Barbasch () Calculus 1120, Fall 2012 November 13, 2012 2 / 5 Absolute and Conditional Convergence P Definition: A series an is said to converge absolutely, if the series P janj converges. For convergence without absolute values, we say plain convergent. For plain convergence, but the series with absolute values does not converge, we say conditionally convergent. Theorem: If a series is absolutely convergent, then it is convergent. Note the difference between if and only if and if then. Typically we apply the root/ratio integral test and comparison test for absolute convergence, and use the theorem. REMARK: NOTE the precise definitions of the terms and the differences. Dan Barbasch () Calculus 1120, Fall 2012 November 13, 2012 2 / 5 Alternating Series Test P1 n−1 Theorem: (Alternating Series Test) Suppose n=1(−1) an satisfies 1 an ≥ 0; (series is alternating) 2 an is decreasing 3 limn!1 an = 0: Then the series is (possibly only conditionally) convergent. Error Estimate: jS − snj ≤ an+1. P1 i−1 S − sn = i=n+1(−1) ai . an+1 − an+2 + an+3 − · · · =(an+1 − an+2) + (an+3 − an+4) + ··· = =an+1 − (an+2 − an+3) − (an+4 − an+5) − ::: So 0 ≤ jS − snj = an+1 − an+2 + an+3 − · · · ≤ an+1 The proof is in the text and in the previous slides (also every text on calculus).
    [Show full text]
  • Sequences, Series and Taylor Approximation (Ma2712b, MA2730)
    Sequences, Series and Taylor Approximation (MA2712b, MA2730) Level 2 Teaching Team Current curator: Simon Shaw November 20, 2015 Contents 0 Introduction, Overview 6 1 Taylor Polynomials 10 1.1 Lecture 1: Taylor Polynomials, Definition . .. 10 1.1.1 Reminder from Level 1 about Differentiable Functions . .. 11 1.1.2 Definition of Taylor Polynomials . 11 1.2 Lectures 2 and 3: Taylor Polynomials, Examples . ... 13 x 1.2.1 Example: Compute and plot Tnf for f(x) = e ............ 13 1.2.2 Example: Find the Maclaurin polynomials of f(x) = sin x ...... 14 2 1.2.3 Find the Maclaurin polynomial T11f for f(x) = sin(x ) ....... 15 1.2.4 QuestionsforChapter6: ErrorEstimates . 15 1.3 Lecture 4 and 5: Calculus of Taylor Polynomials . .. 17 1.3.1 GeneralResults............................... 17 1.4 Lecture 6: Various Applications of Taylor Polynomials . ... 22 1.4.1 RelativeExtrema .............................. 22 1.4.2 Limits .................................... 24 1.4.3 How to Calculate Complicated Taylor Polynomials? . 26 1.5 ExerciseSheet1................................... 29 1.5.1 ExerciseSheet1a .............................. 29 1.5.2 FeedbackforSheet1a ........................... 33 2 Real Sequences 40 2.1 Lecture 7: Definitions, Limit of a Sequence . ... 40 2.1.1 DefinitionofaSequence .......................... 40 2.1.2 LimitofaSequence............................. 41 2.1.3 Graphic Representations of Sequences . .. 43 2.2 Lecture 8: Algebra of Limits, Special Sequences . ..... 44 2.2.1 InfiniteLimits................................ 44 1 2.2.2 AlgebraofLimits.............................. 44 2.2.3 Some Standard Convergent Sequences . .. 46 2.3 Lecture 9: Bounded and Monotone Sequences . ..... 48 2.3.1 BoundedSequences............................. 48 2.3.2 Convergent Sequences and Closed Bounded Intervals . .... 48 2.4 Lecture10:MonotoneSequences .
    [Show full text]
  • Calculus Online Textbook Chapter 10
    Contents CHAPTER 9 Polar Coordinates and Complex Numbers 9.1 Polar Coordinates 348 9.2 Polar Equations and Graphs 351 9.3 Slope, Length, and Area for Polar Curves 356 9.4 Complex Numbers 360 CHAPTER 10 Infinite Series 10.1 The Geometric Series 10.2 Convergence Tests: Positive Series 10.3 Convergence Tests: All Series 10.4 The Taylor Series for ex, sin x, and cos x 10.5 Power Series CHAPTER 11 Vectors and Matrices 11.1 Vectors and Dot Products 11.2 Planes and Projections 11.3 Cross Products and Determinants 11.4 Matrices and Linear Equations 11.5 Linear Algebra in Three Dimensions CHAPTER 12 Motion along a Curve 12.1 The Position Vector 446 12.2 Plane Motion: Projectiles and Cycloids 453 12.3 Tangent Vector and Normal Vector 459 12.4 Polar Coordinates and Planetary Motion 464 CHAPTER 13 Partial Derivatives 13.1 Surfaces and Level Curves 472 13.2 Partial Derivatives 475 13.3 Tangent Planes and Linear Approximations 480 13.4 Directional Derivatives and Gradients 490 13.5 The Chain Rule 497 13.6 Maxima, Minima, and Saddle Points 504 13.7 Constraints and Lagrange Multipliers 514 CHAPTER Infinite Series Infinite series can be a pleasure (sometimes). They throw a beautiful light on sin x and cos x. They give famous numbers like n and e. Usually they produce totally unknown functions-which might be good. But on the painful side is the fact that an infinite series has infinitely many terms. It is not easy to know the sum of those terms.
    [Show full text]