Mary Bartlett Bunge 40
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Two Faces of Thrombosis: Coagulation Cascade and Platelet Aggregation. Are Platelets the Main Therapeutic Target
Thrombosis and Circulation Open Access Cimmino et al., J Thrombo Cir 2017, 3:1 Review Article Open Access The Two Faces of Thrombosis: Coagulation Cascade and Platelet Aggregation. Are Platelets the Main Therapeutic Target? Giovanni Cimmino*, Salvatore Fischetti and Paolo Golino Department of Cardio-Thoracic and Respiratory Sciences, Section of Cardiology, University of Campania “Luigi Vanvitelli”, Naples, Italy *Corresponding author: Giovanni Cimmino, MD, PhD, Department of Cardio-Thoracic and Respiratory Sciences, Section of Cardiology, University of Campania “Luigi Vanvitelli”, via Leonardo Bianchi, 180131 Naples, Italy. Tel: +39-081-7064175, Fax: +39-081-7064234; E-mail: [email protected] Received date: Dec 28, 2016, Accepted date: Jan 27, 2017, Published date: Jan 31, 2017 Copyright: © 2017 Giovanni C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Acute thrombus formation is the pathophysiological substrate underlying several clinical conditions, such as acute coronary syndrome (ACS) and stroke. Activation of coagulation cascade is a key step of the thrombotic process: vessel injury results in exposure of the glycoprotein tissue factor (TF) to the flowing blood. Once exposed, TF binds factor VII/VIIa (FVII/FVIIa) and in presence of calcium ions, it forms a tertiary complex able to activate FX to FXa, FIX to FIXa, and FVIIa itself. The final step is thrombin formation at the site of vessel injury with subsequent platelet activation, fibrinogen to fibrin conversion and ultimately thrombus formation. Platelets are the key cells in primary hemostasis. -
Diagnostic Methods in Hematology II
DiagnosticDiagnostic methodsmethods inin hematologyhematology IIII Jan Zivny Department of Pathophysiology 1. LF UK OutlineOutline Specialized hematology tests • Evaluation of anemia – Anemia basics • Anemia caused by excessive erythrocyte loss • Anemia caused by deficient erythropoiesis • Diagnostic methods used in leukemia/lymphoma ANEMIAANEMIA • WHO criteria: Hb < 125 g/L in adults • US criteria: –M: Hb < 135 g/L –F: Hb < 125 g/L •• AnemiaAnemia isis clinicalclinical signsign CausesCauses ofof anemiaanemia • Insufficient RBC production – deficient erythropoiesis • Excessive RBC loss – Hemolysis (shortened lifespan of erythrocytes) – Acute bleeding (chronic bleeding leads to iron depletion and results in iron loss and deficient erythropoiesis) AnemiaAnemia causedcaused byby deficientdeficient erythropoiesiserythropoiesis Causes of insufficient erythropoiesis? AnemiaAnemia causedcaused byby deficientdeficient erythropoiesiserythropoiesis • Iron metabolism related (microcytic) – Iron deficiency – Chronic diseases • Vitamin B12 or folate deficiency (macrocytic) • Insuficient EPO production and marrow failure (normocytic) – kidney failure – aplastic anemia – myelodysplasia – leukemia DiagnosticDiagnostic aproachesaproaches toto ironiron metabolismmetabolism relatedrelated anemiaanemia IronIron deficiencydeficiency ChronicChronic diseasesdiseases IronIron deficiencydeficiency • microcytic anemia and/or anisocytosis • ↓ blood reticulocytes • hypoproliferative BM • Blood loss in excess of 10 to 20 mL of blood per day (> 5-10 mg of iron) or -
Intrinsic Factor
ENZYMES INTRINSIC FACTOR EINECS Number 232-711-9 Alternative Names Vitamin B12-binding protein, Factor VII, Intrinsic Factor protein Assay Principle Intrinsic Factor binds specifically to Vitamin B12. The coating of a Vitamin B12-BSA (IF Content) conjugate to the ELISA plate allows for the extent of Intrinsic Factor binding to be investigated. A Mouse monoclonal Anti-Intrinsic Factor antibody is used to identify the concentration of Intrinsic Factor bound to the Vitamin B12. The Antibody bound to the Intrinsic Factor on the plate is identified by use of an Anti Mouse AP conjugate. PNPP substrate is used to develop signals, read at an absorbance of 405nm on a plate reader. What is pernicious anaemia? Key Benefits Intrinsic Factor is primarily used in the diagnosis of pernicious anaemia, a condition caused by a vitamin B12 deficiency. Prevalence in the general + SUPPLY SECURITY population varies from around 3% - 5%, and increases dramatically to Fully manufactured by BBI 5% - 20% among people older than 65 years. Solutions at our Crumlin site, ensuring control over manufacturing processes and supply chain + HIGH PURITY Intrinsic Factor has a purity of >95% ensuring optimal performance in your assay + PROVEN PERFORMANCE Porcine Intrinsic Factor works in a range of immunoassay formats The role of Intrinsic Factor in diagnosis + HIGH QUALITY Intrinsic Factor has a high affinity and specificity to vitamin B12, which Manufactured under a makes it ideal for use in immunoassays. Most commercial assays utilise Quality System compliant a competitive binding technique generating a chemiluminescent signal. with ISO 13485:2016 with Commercial assays can usually detect to a level of ~50 pg/ml vitamin B12. -
In Vitro Modelling of the Mucosa of the Oesophagus and Upper Digestive Tract
21 Review Article Page 1 of 21 In vitro modelling of the mucosa of the oesophagus and upper digestive tract Kyle Stanforth1, Peter Chater1, Iain Brownlee2, Matthew Wilcox1, Chris Ward1, Jeffrey Pearson1 1NUBI, Newcastle University, Newcastle upon Tyne, UK; 2Applied Sciences (Department), Northumbria University, Newcastle upon Tyne, UK Contributions: (I) Conception and design: All Authors; (II) Administrative support: All Authors; (III) Provision of study materials or patients: All Authors; (IV) Collection and assembly of data: All Authors; (V) Data analysis and interpretation: All Authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Kyle Stanforth. NUBI, Medical School, Framlington Place, Newcastle University, NE2 4HH, Newcastle upon Tyne, UK. Email: [email protected]. Abstract: This review discusses the utility and limitations of model gut systems in accurately modelling the mucosa of the digestive tract from both an anatomical and functional perspective, with a particular focus on the oesophagus and the upper digestive tract, and what this means for effective in vitro modelling of oesophageal pathology. Disorders of the oesophagus include heartburn, dysphagia, eosinophilic oesophagitis, achalasia, oesophageal spasm and gastroesophageal reflux disease. 3D in vitro models of the oesophagus, such as organotypic 3D culture and spheroid culture, have been shown to be effective tools for investigating oesophageal pathology. However, these models are not integrated with modelling of the upper digestive tract—presenting an opportunity for future development. Reflux of upper gastrointestinal contents is a major contributor to oesophageal pathologies like gastroesophageal reflux disease and Barratt’s oesophagus, and in vitro models are essential for understanding their mechanisms and developing solutions. -
Hereditary Intrinsic Factor Deficiency in China Caused by a Novel Mutation
Ruan et al. BMC Medical Genetics (2020) 21:221 https://doi.org/10.1186/s12881-020-01158-z CASE REPORT Open Access Hereditary intrinsic factor deficiency in China caused by a novel mutation in the intrinsic factor gene—a case report Jing Ruan, Bing Han* , Junling Zhuang, Miao Chen, Fangfei Chen, Yuzhou Huang and Wenzhe Zhou Abstract Background: Hereditary intrinsic factor deficiency is a rare disease characterized by cobalamin deficiency with the lack of gastric intrinsic factor because of gastric intrinsic factor (GIF) mutations. Patients usually present with cobalamin deficiency without gastroscopy abnormality and intrinsic factor antibodies. Case presentation: A Chinese patient presented with recurrent severe anemia since age 2 with low cobalamin level and a mild elevation of indirect bilirubin. The hemoglobin level normalized each time after intramuscular vitamin B12 injection. Gene test verified a c.776delA frame shift mutation in exon 6 combined with c.585C > A nonsense early terminationmutationinexon5ofGIF which result in the dysfunction of gastric intrinsic factor protein. The hereditary intrinsic factor deficiency in literature was further reviewed and the ancestry of different mutation sites were discussed. Conclusions: A novel compound heterozygous mutation of GIF in a Chinese patient of hereditary intrinsic factor deficiency was reported. It was the first identified mutation of GIF in East-Asia and may indicate a new ancestry. Keywords: Megaloblastic anemia, Cobalamin deficiency, Intrinsic factor Background IFD is caused by homozygous or compound heterozy- Vitamin B12 or cobalamin deficiency is characterized by gous mutation in the gene of gastric intrinsic factor on megaloblastic anemia with neurological problems and chromosome 11q12. It presents in early childhood with can be caused by numerous acquired and inherited dis- the lack of gastric intrinsic factor, while the gastric acid eases [1]. -
Study Finds Axon Regeneration After Schwann Cell Graft to Injured Spinal Cord 23 December 2013
Study finds axon regeneration after Schwann cell graft to injured spinal cord 23 December 2013 A study carried out at the University of Miami Miller dimensional structures that determine how School of Medicine for "The Miami Project to Cure regenerating axons become exposed to myriad Paralysis" has found that transplanting self- growth-promoting and inhibitory cues," wrote the donated Schwann cells (SCs, the principal researchers. The researchers also noted that it was ensheathing cells of the nervous system) that are important to understand conditions that favor elongated so as to bridge scar tissue in the injured astrocytes to be permissive for axonal growth into spinal cord, aids hind limb functional recovery in lesion transplants. rats modeled with spinal cord injury. "We demonstrated that the elongation of astrocyte The study will be published in a future issue of Cell processes into SC transplants, and the formation of Transplantation but is currently freely available NG2+ tunnels, enables brainstem axon online as an unedited early e-pub. regeneration and improvement in function," they concluded. "This study supports the clinical use of "Injury to the spinal cord results in scar and cavity SCs for SCI repair and defines important formation at the lesion site," explains study characteristics of permissive spinal cord/graft corresponding author Dr. Mary Bartlett Bunge of interfaces." the University of Miami Miller School of Medicine. "Although numerous cell transplantation strategies "Developing the means to bridge the glial scar have been developed to nullify the lesion following chronic spinal cord injury is one of the environment, scar tissue - in basil lamina sheets - major stumbling blocks of therapy" said Dr. -
Blood Coagulation Overview and Inherited Hemorrhagic Disorders 2002 Abshire
Blood Coagulation Overview and Inherited Hemorrhagic Disorders 2002 Abshire 1) Thrombin is one of the key proteins in the coagulation cascade and has both procoagulant and anticoagulant properties. Which one of the following is an important anticoagulation function: a. Activation of factors V and VIII b. Factor XIII activation c. Stimulation of the thrombin activated fibrinolytic inhibitor (TAFI) d. Complex with thrombomodulin (TM). 2) The endothelial cell lining blood vessels possesses several important anticoagulation functions . Which one of the following is one of its' important hemostasis (procoagulant) functions? a. Production of nitric oxide (NO) b. Activation of thrombomodulin (TM) c. Release of plasminogen activator inhibitor (PAI-I) d. Release of TPA e. Interaction of heparin sulfate with anti-thrombin III (AT III) 3) A term well infant is born without complications after a normal pregnancy and initial nursery stay. Upon drawing the metabolic screen, the baby is noted to have prolonged oozing from the heelstick sample. CBC, plt ct, PT, a PTT and fibrinogen were normal. Family history is negative. He returns for the 2 week check and the mother notices that the umbilical cord has been oozing for 4 days. A screening test for factor XIII deficiency is ordered and the baby's clot does not dissolve in 5 M urea. The euglobulin lysis time (ELT) was less than one hour. The most likely diagnosis is: a. Factor XIII heterozygous deficiency b. Homozygous antiplasmin deficiency c. Mild hemophilia B (Factor IX deficiency) d. von Willebrand Disease e. Tissue plasminogen activator (TPA) excess. 4) The newborn's coagulation system is both similar and quite different from a child's. -
General Considerations of Coagulation Proteins
ANNALS OF CLINICAL AND LABORATORY SCIENCE, Vol. 8, No. 2 Copyright © 1978, Institute for Clinical Science General Considerations of Coagulation Proteins DAVID GREEN, M.D., Ph.D.* Atherosclerosis Program, Rehabilitation Institute of Chicago, Section of Hematology, Department of Medicine, and Northwestern University Medical School, Chicago, IL 60611. ABSTRACT The coagulation system is part of the continuum of host response to injury and is thus intimately involved with the kinin, complement and fibrinolytic systems. In fact, as these multiple interrelationships have un folded, it has become difficult to define components as belonging to just one system. With this limitation in mind, an attempt has been made to present the biochemistry and physiology of those factors which appear to have a dominant role in the coagulation system. Coagulation proteins in general are single chain glycoprotein molecules. The reactions which lead to their activation are usually dependent on the presence of an appropriate surface, which often is a phospholipid micelle. Large molecular weight cofactors are bound to the surface, frequently by calcium, and act to induce a favorable conformational change in the reacting molecules. These mole cules are typically serine proteases which remove small peptides from the clotting factors, converting the single chain species to two chain molecules with active site exposed. The sequence of activation is defined by the enzymes and substrates involved and eventuates in fibrin formation. Mul tiple alternative pathways and control mechanisms exist throughout the normal sequence to limit coagulation to the area of injury and to prevent interference with the systemic circulation. Introduction RatnofP4 eloquently indicates in an arti cle aptly entitled: “A Tangled Web. -
Scalable Culture Techniques to Generate Large Numbers of Purified
CLINICAL ARTICLE Scalable culture techniques to generate large numbers of purified human Schwann cells for clinical trials in human spinal cord and peripheral nerve injuries Aisha Khan, MSc, MBA,1,3 Anthony Diaz, MS,1,2 Adriana E. Brooks, MS,1,3 S. Shelby Burks, MD,1,2 Gagani Athauda, MD,7 Patrick Wood, PhD,1,2 Yee-Shuan Lee, PhD,3 Risset Silvera, BS,1,3 Maxwell Donaldson, BA,1,3 Yelena Pressman, MS,1 Kim D. Anderson, PhD,8 Mary Bartlett Bunge, PhD,1,2,4 Damien D. Pearse, PhD,1–3,6 W. Dalton Dietrich, PhD,1,2,4,5 James D. Guest, MD, PhD,1,2 and Allan D. Levi, MD, PhD1,2 1The Miami Project to Cure Paralysis, 2Department of Neurological Surgery, 3Interdisciplinary Stem Cell Institute, and Departments of 4Cell Biology and 5Neurology, University of Miami Miller School of Medicine, Miami; 6Bruce W. Carter Department of Veterans Affairs, Veterans Affairs Medical Center, Miami; 7Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida; and 8Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Institute for Functional Restoration, Case Western Reserve University School, Cleveland, Ohio OBJECTIVE Schwann cells (SCs) have been shown to play an essential role in axon regeneration in both peripheral nerve injuries (PNIs) and spinal cord injuries (SCIs). The transplantation of SCs as an adjunctive therapy is currently under investigation in human clinical trials due to their regenerative capacity. Therefore, a reliable method for procuring large quantities of SCs from peripheral nerves is necessary. This paper presents a well-developed, validated, and optimized manufacturing protocol for clinical-grade SCs that are compliant with Current Good Manufacturing Practices (CGMPs). -
Vitamin B12 Deficiency Cascade: Understanding Nutritional Deficit
Vitamin B12 Deficiency Cascade: Understanding Nutritional Deficit In the United States and the United Kingdom, vitamin B12 and/or complete blood count (CBC) values suggestive of B12 deficiency is estimated to affect about 6% of people below age deficiency.10 Although often used as the first-line screening test 60 and nearly 20% above age 60.1 for B12 deficiency, serum B12 measurement used in isolation generally has poor sensitivity and specificity for detection of B12 Vitamin B12 is an essential nutrient for the production of deficiency, causing a significant number of patients with vitamin normal red blood cells, DNA synthesis, and normal neurological B12 deficiency to be overlooked.11 function.2 Low B12 status is rarely attributable to dietary insufficiency and is more typically the result of malabsorption LabCorp’s Vitamin B12 Deficiency Cascade (141503) utilizes a related to chronic inflammation of the stomach or the use of sequential selection algorithm to properly identify patients with medications such as proton pump inhibitors and metformin.3,4 vitamin B12 deficiency and to understanding the cause of the One of the most common causes of vitamin B12 deficiency nutritional deficit, such as Pernicious Anemia (see algorithm on is a condition known as Pernicious Anemia (PA), a type of the reverse). In this approach, a second-line assay, Methylmalonic autoimmune-mediated chronic atrophic gastritis.5,6 Patients with Acid (MMA), Serum or Plasma (706961), is performed when the PA lack intrinsic factor proteins, which are essential for -
Cell Transplantation to the Rescue: Repairing the Injured Spinal Cord
Cell transplantation to the rescue: Repairing the injured spinal cord Mary Bartlett Bunge, PhD Christine E. Lynn Distinguished Professor of Neuroscience Professor of Cell Biology, Neurological Surgery, and Neurology The Miami Project to Cure Paralysis® University of Miami Miller School of Medicine [email protected] Founders (1985) Current Staff -Barth Green, M.D. - 21 basic science faculty -Donald Misner - 16 clinical science faculty -Beth Roscoe - 12 management -Nick Buoniconti - 18 post-docs -Marc Buoniconti - 17 graduate students - 104 research staff Scientific Directors - 41 support staff -ÅkeSeiger, M.D., Ph.D. - other students (high -Richard Bunge, M.D. school, undergrad, -W. Dalton Dietrich, Ph.D. medical, residents) Spinal Cord Injury (SCI) • 12,000 new cases / year in the U.S. • Approx 1.275 million Americans with paralysis due to SCI; 5.3 million with paralysis due to some type of CNS injury/disorder • Nearly 50%, ages 16-30; 80%,males • Higher occurrence in military, Dept of Defense funding • MVAs (36.5%), falls (28.5), violence (14) Quality of Life Issues with SCI Muscle paralysis, loss of feeling Reduced pulmonary function Early cardiovascular disease, stroke, DVTs Lack of bowel and bladder control; infection Temperature, blood pressure vary widely Pressure ulcers, osteoporosis Sexual function/fertility impaired Pain long–term, 80 % Obesity, diabetes, cognitive decline Cultured cells for CNS repair “If we have normal cell types available in culture and if a nervous system disease stems from an absence or deficiency of one of these cell types, then it is an obvious step to transfer cultured cells into the diseased animal to attempt to correct the deficiency. -
Gastric Intrinsic Factor the Demonstration, by W
Gut, 1968, 9, 373-375 Gut: first published as 10.1136/gut.9.4.373 on 1 August 1968. Downloaded from Gastric intrinsic factor The demonstration, by W. B. Castle1 and his collaboraters some 40 years ago of a haemopoietic substance in the gastric secretion absent in pernicious anaemia was the starting point of a chain of observations that has continued to the present time. Intrinsic factor (IF) has now been obtained in a relatively pure state from human gastric juice2 and from hog pyloric mucosa.3It is a mucoprotein with a molecular weight of about 60,000 and contains about 13 % of carbohydrates. Each molecule binds one molecule of vitamin B12, that is, 1 mg of IF binds 25 gg of vitamin B12. In man, as well as in the guinea pig, cat, rabbit, and monkey, IF arises from the gastric parietal cell but surprisingly in the rat and mouse its source is the chief cell.4 Substances that stimulate secretion of hydrochloric acid in man also stimulate that of intrinsic factor. These include histamine and gastrin and their analogues, and insulin. Cholinergic drugs such as carbachol are not effective.5'6 The early and rapid rise in intrinsic factor secretion preceding that of acid has suggested that the stimulus to secretion has washed out preformed IF from the parietal cell. If, however, histamine is infused over a longer period the IF level is main- tained above base line levels indicating a continuous stimulus to increased production.7 The normal stomach produces far more intrinsic factor than is required for vitamin B12 absorption.