The Holothurians of Easter Island
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Echinodermata: Holothuroidea) from the Latest Cretaceous Of
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universität München: Elektronischen Publikationen 285 Zitteliana 89 Short Communication First report of sea cucumbers (Echinodermata: Holothuroidea) from the latest Cretaceous of Paläontologie Bayerische Bavaria,GeoBio- Germany & Geobiologie Center Staatssammlung 1,2,3 LMU München für Paläontologie und Geologie LMUMike MünchenReich 1 n München, 01.07.2017 SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 Munich, Germany 2 n Manuscript received Ludwig-Maximilians-Universität München, Department für Geo- und Umweltwissenschaften, 30.12.2016; revision ac- Paläontologie und Geobiologie, Richard-Wagner-Straße 10, 80333 Munich, Germany 3 cepted 21.01.2017 GeoBio-Center der Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 Munich, Germany n ISSN 0373-9627 E-mail: [email protected] n ISBN 978-3-946705-00-0 Zitteliana 89, 285–289. Key words: fossil Holothuroidea; Cretaceous; Maastrichtian; Bavaria; Germany Schüsselwörter: fossile Holothuroidea; Kreide; Maastrichtium; Bayern; Deutschland The Bavarian Gerhardtsreit Formation (‶Gerhardts- 1993; Smith 2004) due to different reasons (Reich reiter Mergel″ / ‶Gerhardtsreiter Schichten″; cf. 2013). There are nearly 1,700 valid extant sea cucum- Böhm 1891; Hagn 1960; Wagreich et al. 2004), also ber species (Smiley 1994; Kerr 2003; Paulay pers. known as Gerhartsreit Formation (‶Gerhartsreiter comm.) known worldwide. The fossil record (since Schichten″; Hagn et al. 1981, 1992; Schwarzhans the Middle Ordovician; Reich 1999, 2010), by con- 2010; Pollerspöck & Beaury 2014) or ‶Gerhards- trast, is discontinuous in time and recorded ranges reuter Schichten″ (Egger 1899; Hagn & Hölzl 1952; of species with around 1,000 reported forms (Reich de Klasz 1956; Herm 1979, 2000) is exposed in Up- 2013, 2014, 2015b) since the early 19th century. -
Larvae of Marine Bivalves and Echinoderms
V.L. KflSVflNOV>G.fl. KRVUCHKOVfl VAKUUKOVfl-LAIVICDVCDevn Scientific Cditor Dovid L pQiuson LARVAE OF MARINE BIVALVES AND ECHINODERMS V.L. KASYANOV, G.A. KRYUCHKOVA, V.A. KULIKOVA AND L. A. MEDVEDEVA Scientific Editor David L. Pawson SMITHSONIAN INSTITUTION LIBRARIES Washington, D.C. 1998 Smin B87-101 Lichinki morskikh dvustvorchatykh moUyuskov i iglokozhikh Akademiya Nauk SSSR Dal'nevostochnyi Nauchnyi Tsentr Institut Biologii Morya Nauka Publishers, Moscow, 1983 (Revised 1990) Translated from the Russian © 1998, Oxonian Press Pvt. Ltd., New Delhi Library of Congress Cataloging-in-Publication Data Lichinki morskikh dvustvorchatykh moUiuskov i iglokozhikh. English Larvae of marine bivalves and echinodermsA^.L. Kasyanov . [et al.]; scientific editor David L. Pawson. p. cm. Includes bibliographical references. 1. Bivalvia — Larvae — Classification. 2. Echinodermata — Larvae — Classification. 3. Mollusks — Larvae — Classification. 4. Bivalvia — Lar- vae. 5. Echinodermata — Larvae. 6. Mollusks — Larvae. I. Kas'ianov, V.L. II. Pawson, David L. (David Leo), 1938-III. Title. QL430.6.L5313 1997 96-49571 594'.4139'0916454 — dc21 CIP Translated and published under an agreement, for the Smithsonian Institution Libraries, Washington, D.C., by Amerind Publishing Co. Pvt. Ltd., 66 Janpath, New Delhi 110001 Printed at Baba Barkha Nath Printers, 26/7, Najafgarh Road Industrial Area, NewDellii-110 015. UDC 591.3 This book describes larvae of bivalves and echinoderms, living in the Sea of Japan, which are or may be economically important, and where adult forms are dominant in benthic communities. Descriptions of 18 species of bivalves and 10 species of echinoderms are given, and keys are provided for the iden- tification of planktotrophic larvae of bivalves and echinoderms to the family level. -
Human Discovery and Settlement of the Remote Easter Island (SE Pacific)
quaternary Review Human Discovery and Settlement of the Remote Easter Island (SE Pacific) Valentí Rull Laboratory of Paleoecology, Institute of Earth Sciences Jaume Almera (ICTJA-CSIC), C. Solé i Sabarís s/n, 08028 Barcelona, Spain; [email protected] Received: 19 March 2019; Accepted: 27 March 2019; Published: 2 April 2019 Abstract: The discovery and settlement of the tiny and remote Easter Island (Rapa Nui) has been a classical controversy for decades. Present-day aboriginal people and their culture are undoubtedly of Polynesian origin, but it has been debated whether Native Americans discovered the island before the Polynesian settlement. Until recently, the paradigm was that Easter Island was discovered and settled just once by Polynesians in their millennial-scale eastward migration across the Pacific. However, the evidence for cultivation and consumption of an American plant—the sweet potato (Ipomoea batatas)—on the island before the European contact (1722 CE), even prior to the Europe-America contact (1492 CE), revived controversy. This paper reviews the classical archaeological, ethnological and paleoecological literature on the subject and summarizes the information into four main hypotheses to explain the sweet potato enigma: the long-distance dispersal hypothesis, the back-and-forth hypothesis, the Heyerdahl hypothesis, and the newcomers hypothesis. These hypotheses are evaluated in light of the more recent evidence (last decade), including molecular DNA phylogeny and phylogeography of humans and associated plants and animals, physical anthropology (craniometry and dietary analysis), and new paleoecological findings. It is concluded that, with the available evidence, none of the former hypotheses may be rejected and, therefore, all possibilities remain open. -
EASTER ISLAND to TAHITI: TALES of the PACIFIC 2022 Route: Papeete, Tahiti, French Polynesia to Easter Island, Chile
EASTER ISLAND TO TAHITI: TALES OF THE PACIFIC 2022 route: Papeete, Tahiti, French Polynesia to Easter Island, Chile 19 Days National Geographic Resolution - 126 Guests National Geographic Orion - 102 Guests Expeditions in: Mar From $20,000 to $43,590 * Following in the wake of early Polynesian navigators, this voyage takes you to the farthest reaches of Oceania. From remote and enigmatic Easter Island, to the historically significant Pitcairn Islands through the “low islands” of the Tuamotu Archipelago to Tahiti, you’ll visit islands that are virtually inaccessible and untouched. The voyage begins in one of the most isolated landfalls of Polynesia: Easter Island. Walk the length of untouched tropical beaches, meet the descendants of H.M.S. Bounty mutineers, and drift dive or snorkel through an atoll pass. Call us at 1.800.397.3348 or call your Travel Agent. In Australia, call 1300.361.012 • www.expeditions.com DAY 1: U.S./Papeete, French Polynesia padding Depart in the late afternoon for Tahiti and arrive late in the evening on the same day. Check into a hotel room and spend the evening at your leisure. 2022 Departure Dates: 8 Nov DAY 2: Papeete/Embark padding This morning enjoy breakfast at your leisure and 2023 Departure Dates: spend some time exploring the resort while 6 Apr, 17 Apr adjusting to island time. Meet your fellow travelers for lunch and then join us for a tour of Tahiti before Important Flight Information embarking the ship in the late afternoon. (B,L,D) Please confirm arrival and departure dates prior to booking flights. -
Echinodermata) of Yap, Federated States of Micronesia
Shallow-water holothuroids (Echinodermata) of Yap, Federated States of Micronesia By Sun W. Kim*, Allison K. Miller, Catherine Brunson, Kristin Netchy, Ronald M. Clouse, Daniel Janies, Emmanuel Tardy, and Alexander M. Kerr Abstract In December 2002, July 2007 and December 2009, we surveyed the sea cucumber fauna of the western Caroline Island of Yap (Federated States of Micronesia). We collected 37 species of holothuroids, including 32 species of aspidochirotes and five species of apodans. We found all 13 of the previously reported species and 24 new records for the islands—19 aspidochirotes and five apodans. At least two of the new records appear to be previously undescribed species. Types of microhabitats and reef zonation were closely correlated with the species distributions of Yapese holothuroids.. *Corresponding Author E-mail: [email protected] Pacific Science, vol. 68, no. 3 February, 10, 2014 (Early view) Introduction Coral reefs are among the most biologically diverse marine ecosystems, yet they are threatened by climate change, overexploitation, eutrophication and ocean acidification (Hughes 1994, Reaka-Kudla 1997, Bruno et al. 2009). The currently known 93,000 coral reef associated species are estimated to only represent a small portion of the actual diversity (Reaka- Kudla 1997). In addition, many species have not been seen since their original descriptions, often over a century ago, causing ongoing taxonomic confusion. This taxonomic confusion is not limited to rare species; statuses of even some common species remain in flux. We clearly have much to learn about the alpha diversity of coral reefs (Reaka-Kudla 1997, Bouchet et al. 2002, Michonneau et al. -
The Pitcairn Islands the World’S Largest Fully Protected Marine Reserve
A fact sheet from March 2015 The Pitcairn Islands The world’s largest fully protected marine reserve Overview In March 2015, the United Kingdom declared the world’s largest fully protected marine reserve in the remote waters surrounding the Pitcairn Islands in the South Pacific Ocean. The designation marks the first time any government has combined creation of a fully protected marine area with detailed plans for surveillance and enforcement that include use of the most up-to-date technology available. This approach sets a new standard for the comprehensive monitoring of protected areas. In 2013, The Pew Charitable Trusts and The National Geographic Society joined the local government, the Pitcairn Island Council, in submitting a proposal calling for creation of a marine reserve to protect these spectacular waters. The Pitcairn Islands Marine Reserve spans 834,334 square kilometres (322,138 square miles). Together with the Chagos Marine Reserve in the Indian Ocean, designated in 2010, the United Kingdom has created the world’s two biggest fully protected marine areas, totalling 1,474,334 square kilometres (569,243 square miles). Through these actions, the United Kingdom—caretaker of the fifth-greatest amount of marine habitat of any country in the world—has established its place as a global leader in ocean conservation. Pitcairn Islands Marine Reserve Traditional and cultural non-commercial fishing by the Pitcairn islanders and their visitors is permitted within 2 nautical miles of the summit of 40 Mile Reef and in a transit zone between Pitcairn and 40 Mile Reef. © 2015 The Pew Charitable Trusts Encompassing 99 per cent of Pitcairn’s exclusive economic zone, the Pitcairn Islands Marine Reserve is about 3½ times the size of the land area of the United Kingdom. -
Europa, Glorieuses, Juan De Nova), Mozambique Channel, France Chantal Conand, Thierry Mulochau, Sabine Stöhr, Marc Eléaume, Pascale Chabanet
Inventory of echinoderms in the Iles Eparses (Europa, Glorieuses, Juan de Nova), Mozambique Channel, France Chantal Conand, Thierry Mulochau, Sabine Stöhr, Marc Eléaume, Pascale Chabanet To cite this version: Chantal Conand, Thierry Mulochau, Sabine Stöhr, Marc Eléaume, Pascale Chabanet. Inventory of echinoderms in the Iles Eparses (Europa, Glorieuses, Juan de Nova), Mozambique Channel, France. Acta Oecologica, Elsevier, 2016, 72, pp.53-61. 10.1016/j.actao.2015.06.007. hal-01306705 HAL Id: hal-01306705 https://hal.univ-reunion.fr/hal-01306705 Submitted on 26 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Inventory of echinoderms in the Iles Eparses (Europa, Glorieuses, Juan de Nova), Mozambique Channel, France * C. Conand a, b, , T. Mulochau c,S.Stohr€ d,M.Eleaume b, P. Chabanet e a Ecomar, UniversitedeLaReunion, 97715 La Reunion, France b Departement Milieux et Peuplements Aquatiques, MNHN, 47 rue Cuvier, 75005 Paris, France c BIORECIF, 3 ter rue de l'albatros, 97434 La Reunion, France d Swedish Museum of Natural History, Frescativagen€ 40, 114 18 Stockholm, Sweden e IRD, BP 50172, 97492 Ste Clotilde, La Reunion, France abstract The multidisciplinary programme BioReCIE (Biodiversity, Resources and Conservation of coral reefs at Eparses Is.) inventoried multiple marine animal groups in order to provide information on the coral reef health of the Iles Eparses. -
Biodiversidad De Los Equinodermos (Echinodermata) Del Mar Profundo Mexicano
Biodiversidad de los equinodermos (Echinodermata) del mar profundo mexicano Francisco A. Solís-Marín,1 A. Laguarda-Figueras,1 A. Durán González,1 A.R. Vázquez-Bader,2 Adolfo Gracia2 Resumen Nuestro conocimiento de la diversidad del mar profundo en aguas mexicanas se limita a los escasos estudios existentes. El número de especies descritas es incipiente y los registros taxonómicos que existen provienen sobre todo de estudios realizados por ex- tranjeros y muy pocos por investigadores mexicanos, con los cuales es posible conjuntar algunas listas faunísticas. Es importante dar a conocer lo que se sabe hasta el momen- to sobre los equinodermos de las zonas profundas de México, información básica para diversos sectores en nuestro país, tales como los tomadores de decisiones y científicos interesados en el tema. México posee hasta el momento 643 especies de equinoder- mos reportadas en sus aguas territoriales, aproximadamente el 10% del total de las especies reportadas en todo el planeta (~7,000). Según los registros de la Colección Nacional de Equinodermos (ICML, UNAM), la Colección de Equinodermos del “Natural History Museum, Smithsonian Institution”, Washington, DC., EUA y la bibliografía revisa- 1 Colección Nacional de Equinodermos “Ma. E. Caso Muñoz”, Laboratorio de Sistemá- tica y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), Universidad Nacional Autónoma de México (UNAM). Apdo. Post. 70-305, México, D. F. 04510, México. 2 Laboratorio de Ecología Pesquera de Crustáceos, Instituto de Ciencias del Mar y Lim- nología (ICML), (UNAM), Apdo. Postal 70-305, México D. F., 04510, México. 215 da, existen 348 especies de equinodermos que habitan las aguas profundas mexicanas (≥ 200 m) lo que corresponde al 54.4% del total de las especies reportadas para el país. -
Community Structure, Diversity, and Distribution Patterns of Sea Cucumber
Community structure, diversity, and distribution patterns of sea cucumber (Holothuroidea) in the coral reef area of Sapeken Islands, Sumenep Regency, Indonesia 1Abdulkadir Rahardjanto, 2Husamah, 2Samsun Hadi, 1Ainur Rofieq, 2Poncojari Wahyono 1 Biology Education, Postgraduate Directorate, Universitas Muhammadiyah Malang, Malang, East Java, Indonesia; 2 Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Malang, Malang, Indonesia. Corresponding author: A. Rahardjanto, [email protected] Abstract. Sea cucumbers (Holothuroidea) are one of the high value marine products, with populations under very critical condition due to over exploitation. Data and information related to the condition of sea cucumber communities, especially in remote islands, like the Sapeken Islands, Sumenep Regency, East Java, Indonesia, is still very limited. This study aimed to determine the species, community structure (density, frequency, and important value index), species diversity index, and distribution patterns of sea cucumbers found in the reef area of Sapeken Islands, using a quantitative descriptive study. This research was conducted in low tide during the day using the quadratic transect method. Data was collected by making direct observations of the population under investigation. The results showed that sea cucumbers belonged to 11 species, from 2 orders: Aspidochirotida, with the species Holothuria hilla, Holothuria fuscopunctata, Holothuria impatiens, Holothuria leucospilota, Holothuria scabra, Stichopus horrens, Stichopus variegates, Actinopyga lecanora, and Actinopyga mauritiana and order Apodida, with the species Synapta maculata and Euapta godeffroyi. The density ranged from 0.162 to 1.37 ind m-2, and the relative density was between 0.035 and 0.292 ind m-2. The highest density was found for H. hilla and the lowest for S. -
Independent Research Projects Tropical Marine Biology Class Summer 2012, La Paz, México
Independent Research Projects Tropical Marine Biology Class Summer 2012, La Paz, México Western Washington University Universidad Autónoma de Baja California Sur Title pp Effects of human activity, light levels and weather conditions on the feeding behaviors of Pelecanus occidentalis in Pichilingue Bay, Baja California Sur, Mexico……………………………………………………………….....3 Predation of the brittle star Ophiocoma alexandri in the La Paz region, Baja California Sur, Mexico………………………………………………….……………..24 The effect of water temperature and disturbance on the movement of Nerita scabricosta in the intertidal zone…………………………………..….………….....38 Nocturnal behavior in Euapta godeffroyi (accordion sea cucumber): the effects of light exposure and time of day………………………………………….…....51 Queuing behavior in the intertidal snail Nerita scabricosta in the Gulf of California…………………………………………………………………....62 The effects of sunscreen on coral bleaching of the genus Pocillopora located in Baja California Sur……………………………………………………….….…76 Effect of tide level on Uca Crenulata burrow distribution and burrow shape………….…89 Habitat diversity and substratum composition in relation to marine invertebrate diversity of the subtidal in Bahía de La Paz, B.C.S, México………….……110 Ophiuroids (Echinodermata: Ophiuroidea) associated with sponge Mycale sp. (Poecilosclerida: Mycalidae) in the Bay of La Paz, B.C.S., México.…………….………128 Human disturbance on the abundance of six common species of macroalgae in the Bay of La Paz, Baja California Sur, Mexico.…………….……..…137 1 Summer 2012 Class Students: -
Sea Cucumber.Pdf
Cover photograph: Underwater photograph of an adult brown sea cucumber Isostichopus fuscus (Ludwig, 1875) at Santa Cruz, Galápagos Islands, Ecuador; courtesy Steven W. Purcell. FAO FISHERIES AND Managing sea cucumber AQUACULTURE TECHNICAL fisheries with an ecosystem PAPER approach 520 By Steven W. Purcell FAO Consultant National Marine Science Centre Southern Cross University Coffs Harbour, NSW, Australia Edited and compiled by Alessandro Lovatelli Fishery Resources Officer (Aquaculture) Fisheries and Aquaculture Resources Use and Conservation Division FAO Fisheries and Aquaculture Department Rome, Italy Marcelo Vasconcellos FAO Consultant Institute of Oceanography Federal University of Rio Grande Rio Grande, RS, Brazil and Yimin Ye Senior Fishery Resources Officer Fisheries and Aquaculture Resources Use and Conservation Division FAO Fisheries and Aquaculture Department Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2010 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the authors and do not necessarily reflect the views of FAO. ISBN 978-92-5-106489-4 All rights reserved. -
High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review
Mar. Drugs 2011, 9, 1761-1805; doi:10.3390/md9101761 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review Sara Bordbar 1, Farooq Anwar 1,2 and Nazamid Saari 1,* 1 Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mails: [email protected] (S.B.); [email protected] (F.A.) 2 Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +60-389-468-385; Fax: +60-389-423-552. Received: 3 August 2011; in revised form: 30 August 2011 / Accepted: 8 September 2011 / Published: 10 October 2011 Abstract: Sea cucumbers, belonging to the class Holothuroidea, are marine invertebrates, habitually found in the benthic areas and deep seas across the world. They have high commercial value coupled with increasing global production and trade. Sea cucumbers, informally named as bêche-de-mer, or gamat, have long been used for food and folk medicine in the communities of Asia and Middle East. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as Vitamin A, Vitamin B1 (thiamine), Vitamin B2 (riboflavin), Vitamin B3 (niacin), and minerals, especially calcium, magnesium, iron and zinc. A number of unique biological and pharmacological activities including anti-angiogenic, anticancer, anticoagulant, anti-hypertension, anti-inflammatory, antimicrobial, antioxidant, antithrombotic, antitumor and wound healing have been ascribed to various species of sea cucumbers. Therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives especially triterpene glycosides (saponins), chondroitin sulfates, glycosaminoglycan (GAGs), sulfated polysaccharides, sterols (glycosides and sulfates), phenolics, cerberosides, lectins, peptides, glycoprotein, glycosphingolipids and essential fatty acids.