Ep 2723384 B1

Total Page:16

File Type:pdf, Size:1020Kb

Ep 2723384 B1 (19) TZZ ¥¥_T (11) EP 2 723 384 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 47/00 (2006.01) A61P 25/28 (2006.01) 29.08.2018 Bulletin 2018/35 G01N 33/573 (2006.01) (21) Application number: 12802206.8 (86) International application number: PCT/US2012/043732 (22) Date of filing: 22.06.2012 (87) International publication number: WO 2012/177997 (27.12.2012 Gazette 2012/52) (54) TREATMENT OF PROTEINOPATHIES BEHANDLUNG VON PROTEINOPATHIEN TRAITEMENT DE PROTÉINOPATHIES (84) Designated Contracting States: • JOSEPH R MAZZULLI ET AL: "Gaucher Disease AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Glucocerebrosidase and -Synuclein Form a GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Bidirectional Pathogenic Loop in PL PT RO RS SE SI SK SM TR Synucleinopathies",CELL, CELL PRESS, US, vol. 146, no. 1, 23 June 2011 (2011-06-23) , pages (30) Priority: 22.06.2011 US 201161499930 P 37-52, XP028100083, ISSN: 0092-8674, DOI: 10.1016/J.CELL.2011.06.001 [retrieved on (43) Date of publication of application: 2011-06-07] 30.04.2014 Bulletin 2014/18 • SEANCLARK ET AL: "Improved pharmacological chaperones for the treatment of neuronopathic (73) Proprietor: The General Hospital Corporation Gaucher and Parkinson’s disease", Boston, MA 02114 (US) MOLECULAR GENETICS AND METABOLISM, vol. 102, 15 January 2011 (2011-01-15), page S12, (72) Inventors: XP055176973, DOI: 10.1016/j.ymgme.2010.11.039 • KRAINC, Dmitri • SAMARJIT PATNAIK ET AL: "Discovery, Boston, Massachusetts 02109 (US) Structure-Activity Relationship, and Biological • MAZZULLI, Joseph, R. Evaluation of Noninhibitory Small Molecule Boston, Massachusetts 02113 (US) Chaperones of Glucocerebrosidase", JOURNAL OF MEDICINAL CHEMISTRY, vol. 55, no. 12, 30 (74) Representative: Kehoe, Laura Ellen May 2012 (2012-05-30), pages 5734-5748, Keltie LLP XP055140348, ISSN: 0022-2623, DOI: No.1 London Bridge 10.1021/jm300063b London SE1 9BA (GB) • COOPER A A ET AL: "[alpha]-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in (56) References cited: Parkinson’s models", SCIENCE, AMERICAN WO-A1-2008/144773 WO-A1-2012/078855 ASSOCIATION FOR THE ADVANCEMENT OF WO-A2-2007/012061 WO-A2-2007/140212 SCIENCE, US, vol. 313, no. 5785, 21 July 2006 EA-B1- 013 752 US-A1- 2010 113 358 (2006-07-21), pages324-328, XP002536146, ISSN: 0036-8075, DOI: 10.1126/SCIENCE.1129462 [retrieved on 2006-06-22] • MICHAEL J.DEVINE ET AL: "Parkinson’sdisease and [alpha]-synuclein expression", MOVEMENT DISORDERS, vol. 26, no. 12, 1 September 2011 (2011-09-01), pages 2160-2168, XP055176859, ISSN: 0885-3185, DOI: 10.1002/mds.23948 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 723 384 B1 Printed by Jouve, 75001 PARIS (FR) (Cont. next page) EP 2 723 384 B1 • MARIA DO ROSÁRIO ALMEIDA: • ’Proteostasis Therapeutics Exclusively Licenses "Glucocerebrosidase Involvement in Parkinson Discoveries Related to Unfolded Protein Disease and Other Synucleinopathies", Response from Ron Laboratory at New York FRONTIERS IN NEUROLOGY, vol. 3, 1 January University’ PROTEOSTASIS THERAPEUTICS 07 2012 (2012-01-01), XP055176789, ISSN: January 2010, XP055140247 Retrieved from the 1664-2295, DOI: 10.3389/fneur.2012.00065 Internet: • EHUD GOLDIN ET AL: "High Throughput <URL:http://www.proteostasis.com/news_event Screening for Small Molecule Therapy for s/pr_2010_01_07.php> [retrieved on 2012-08-31] Gaucher Disease Using Patient Tissue as the • CLARK JOANNE ET AL.: ’Oral N-acetyl-cysteine Source of Mutant Glucocerebrosidase", PLOS attenuates loss of dopaminergic terminals in ONE, vol. 7, no. 1, 17 January 2012 (2012-01-17), alpha-synuclein overexpressing mice’ PLOS page e29861, XP055176689, DOI: ONE vol. 5, no. 8, 23 August 2010, page E12333, 10.1371/journal.pone.0029861 XP055140250 Retrieved from the Internet: • COOKSON, M.R.: ’alpha-Synuclein and neuronal <URL:http://www.plosone.org/article/info%3A cell death’ MOLECULAR doi%2F 10.1371%2Fjournal.pone.0012333> NEURODEGENERATIONvol. 4, no. 9, 04 February [retrieved on 2012-09-06] 2009, page 8, XP021052340 Retrieved from the • CASTRO-OBREGON, SUSANA LYSOSOMES, Internet: AUTOPHAGY | LEARN SCIENCE AT SCITABLE <URL:http://www.molecularneurodegeneration. vol. 3, no. 9, 2010, page 49, XP055140254 com/content/4/1/9> [retrieved on 2012-08-31] Retrieved from the Internet: • ’Bolshaya meditsinskaya entsiklopediya’ <URL:http://www.nature.com/scitable/topicpa IZDANIE TRETIE. MOSKVA, (SOVETSKAYA ge/the-discovery-of-lysosomes-and-autophagy ENTSIKLOPEDIYA) vol. 13, 1980, pages 179 - 181, -14199828> [retrieved on 2012-09-10] XP008172691 • WINSLOW, ASHLEY R. ET AL.: ’alpha-Synuclein impairs macroautophagy: implications for Parkinson’s disease’ J CELL BIOL. vol. 190, no. 6, 2010, pages 1023 - 1037, XP055140237 • TATTI, MASSIMO ET AL.: ’Autophagy in Gaucher disease due to saposin C deficiency’ AUTOPHAGY vol. 7, no. 1, January 2011, pages 94 - 95, XP055140241 2 EP 2 723 384 B1 Description Background 5 [0001] Proteinopathies are diseases, disorders, and/or conditions associated with abnormalities in the production, folding, aggregation, metabolism, or degradation of proteins. Typically, proteinopathies are associated with and/or char- acterized by accumulation of one or more particular proteins into aggregates. Protein aggregates are observed in a variety of different types of diseases, disorders, and/or conditions, including cognitive impairment disorders, proliferative diseases, inflammatory diseases, cardiovascular diseases, immunologic diseases, ocular diseases, mitochondrial dis- 10 eases, neurodegenerative diseases, and lysosomal storage diseases. WO 2012/078855 A1 and Patnaik et al. (Med. Chem.; 55; 5734-5748) relate to substituted pyrazolopyrimidines and dihydropyrazolopyrimidines and the use of these compounds in treating lysosolmal storage disorders such as Gau- cher disease. 15 Clark et al (Mol. Gen. Metabol.; 102; S12; 2011) relates to improved pharmacological chaperones for the treatment of neuronopathic Gaucher and Parkinson’s disease. This document refers to a certain compound known from WO 2007/140212 A2 and WO 2008/144773 A1, that generally links synucleinopathy with GCase activity. 20 Cooper et al. (Science; 313; 324-328, 2006) generally describes alpha-synucein (aSyn) misfolding being associated with neurodegenerative disorders such as Parkinson’s disease. This document does not describe any involvement of GCase. Devine et al. (Movement Disorders; 26; 2160-2168, 2011) and Do Rosario Almeida (Frontiers in Neurology; 2; 65, 25 2012) describe the relation between Parkinson’s disease and synucleinopathy. WO 2007/012061 A2 relates to the use of antibodies that increase the lysosomal activity from the treatment of synucleinopatic disease, such as Parkinson’s disease. The antibodies of WO 2007/012061 A2 do not bind directly to a lysosomal enzyme. 30 Goldin et al. (PLoS ONE 7; e29861; 2012) describes the compound NCGC00182186 as a chaperone for GCase. Goldin suggests that NCGC00182186 may be suitable for the treatment of Gaucher disease. Summary 35 [0002] The present invention relates to the finding that activation of lysosomal enzymes, through increased levels and/or increased activity, can provide effective treatment for, and even prophylaxis of, certain proteinopathies. For example, the present invention provides novel insights into lysosomal activity and its effects on protein aggregation, and demonstrates that biochemical pathways linked to lysosomal function regulate levels of protein aggregation in various 40 contexts, specifically including various cell cultures (including both neuronal and non-neuronal cultures), mammalian organisms (e.g., mice), and human brain. The present invention specifically relates to the insight that, in some instances, increased trafficking of lysosomal enzymes can provide effective treatment (and/or prophylaxis) of certain proteinopa- thies. [0003] The present invention relates to the specific and surprising finding that, in some embodiments, increasing level 45 and/or activity of lysosomal enzymes can provide effective treatment of, and in some embodiments prophylaxis of, proteinopathies other than lysosomal storage diseases. The present invention teaches particularly that increasing level and/or activity of lysosomal enzymes can provide effective treatment of, and in some embodiments prophylaxis of, certain neurodegenerative diseases, disorders, and/or conditions. In some particular embodiments, the present invention dem- onstrates that increasing level and/or activity of lysosomal enzymes can provide effective treatment of, and in some 50 embodiments prophylaxis of, Parkinson’s Disease. [0004] The present invention relates to the particular finding that increasing level and/or activity of lysosomal enzyme, glucocerebrosidase (GCase), can provide effective treatment, and even prophylaxis of, certain proteinopathies. [0005] The present invention relates to the particular finding that increasing lysosomal degradation capacity can provide effective treatment for, and even prophylaxis of, certain proteinopathies. 55 [0006] As described herein, activating GCase activity in brain cells reduces α-synuclein levels in those cells. Suitably, activation of GCase
Recommended publications
  • Applying Screening Techniques to Two Orphan Gpcrs
    Universidade de Lisboa Faculdade de Farmácia Deorphanization of receptors: Applying screening techniques to two orphan GPCRs Ana Catarina Rufas da Silva Santos Mestrado Integrado em Ciências Farmacêuticas 2019 Universidade de Lisboa Faculdade de Farmácia Deorphanization of receptors: Applying screening techniques to two orphan GPCRs Ana Catarina Rufas da Silva Santos Monografia de Mestrado Integrado em Ciências Farmacêuticas apresentada à Universidade de Lisboa através da Faculdade de Farmácia Orientadora: Ghazl Al Hamwi, PhD Student Co-Orientadora: Professora Doutora Elsa Maria Ribeiro dos Santos Anes, Professora Associada com Agregação em Microbiologia 2019 Abstract G-Protein Coupled Receptors represent one of the largest families of cellular receptors discovered and one of the main sources of attractive drug targets. In contrast, it also has a large number of understudied or orphan receptors. Pharmacological assays such as β-Arrestin recruitment assays, are one of the possible approaches for deorphanization of receptors. In this work, I applied the assay system previously mentioned to screen compounds in two orphan receptors, GRP37 and MRGPRX3. GPR37 has been primarily associated with a form of early onset Parkinsonism due to its’ expression patterns, and physiological role as substrate to ubiquitin E3, parkin. Although extensive literature regarding this receptor is available, the identification of a universally recognized ligand has not yet been possible. Two compounds were proposed as ligands, but both were met with controversy. These receptor association with Autosomal Recessive Juvenile Parkinson positions it as a very attractive drug target, and as such its’ deorphanization is a prime objective for investigators in this area. Regarding MRGPRX3 information is much scarcer.
    [Show full text]
  • Angiotensin-Converting Enzyme Inhibitors Or Angiotensin II Receptor Blockers and the Risk of Developing Rheumatoid Arthritis in Antihypertensive Drug Users
    Jong, H.J.I. de, Vandebriel, R.J., Saldi, S.R.F., Dijk, L. van, Loveren, H. van, Cohen Tervaert, J.W., Klungel, O.H. Angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers and the risk of developing rheumatoid arthritis in antihypertensive drug users. Pharmacoepidemiology and Drug Safety: 2012, 21(8), 835-843 Postprint Version 1.0 Journal website http://dx.doi.org/10.1002/pds.3291 Pubmed link http://www.ncbi.nlm.nih.gov/pubmed/22674737 DOI 10.1002/pds.3291 This is a NIVEL certified Post Print, more info at http://www.nivel.eu Angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers and the risk of developing rheumatoid arthritis in antihypertensive drug users†‡ HILDA J. I. DE JONG1,2,3, ROB J. VANDEBRIEL1, SITI R. F. SALDI3, LISET VAN DIJK4, HENK VAN LOVEREN1,2, JAN WILLEM COHEN TERVAERT5, OLAF H. KLUNGEL3,* ABSTRACT Purpose: Angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) are effective in the treatment of cardiovascular disease. Next to effects on hypertension and cardiac function, these drugs have anti-inflammatory and immunomodulating properties which may either facilitate or protect against the development of autoimmunity, potentially resulting in autoimmune diseases. Therefore, we determined in the current study the association between ACE inhibitor and ARB use and incident rheumatoid arthritis (RA). Methods: A matched case–control study was conducted among patients treated with antihypertensive drugs using the Netherlands Information Network of General Practice (LINH) database in 2001–2006. Cases were patients with a first-time diagnosis of RA. Each case was matched to five controls for age, sex, and index date, which was selected 1 year before the first diagnosis of RA.
    [Show full text]
  • Preladenant | Medchemexpress
    Inhibitors Product Data Sheet Preladenant • Agonists Cat. No.: HY-10889 CAS No.: 377727-87-2 Molecular Formula: C₂₅H₂₉N₉O₃ • Molecular Weight: 503.56 Screening Libraries Target: Adenosine Receptor Pathway: GPCR/G Protein Storage: Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month SOLVENT & SOLUBILITY In Vitro DMSO : 5 mg/mL (9.93 mM; Need ultrasonic) Mass Solvent 1 mg 5 mg 10 mg Concentration Preparing 1 mM 1.9859 mL 9.9293 mL 19.8586 mL Stock Solutions 5 mM 0.3972 mL 1.9859 mL 3.9717 mL 10 mM --- --- --- Please refer to the solubility information to select the appropriate solvent. In Vivo 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 0.5 mg/mL (0.99 mM); Suspended solution; Need ultrasonic 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 0.5 mg/mL (0.99 mM); Suspended solution; Need ultrasonic 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 0.5 mg/mL (0.99 mM); Clear solution BIOLOGICAL ACTIVITY Description Preladenant is a potent and competitive antagonist of the human adenosine A2A receptor with a Ki of 1.1 nM and has over 1000-fold selectivity over other adenosine receptors. [1] IC₅₀ & Target Ki: 1.1 nM (Adenosine A2A receptor) In Vitro Preladenant also completely antagonizes cAMP in cells expressing the recombinant human A2A receptor. Preladenant is determined to has KB values of 1.3 nM at the A2A receptor; the value is in good agreement with the Ki value determined in Page 1 of 3 www.MedChemExpress.com the radioligand binding assay.
    [Show full text]
  • 1.Intro Corregida
    Heterómeros de receptores de dopamina como dianas terapéuticas en la enfermedad de Parkinson y en discinesias inducidas por el tratamiento con L-DOPA Daniel Farré Pérez ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • The Two Tondition to Martin
    THETWO TONDITIONUS 20170306038A1 TO MARTIN ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2017/ 0306038 A1 BROGDON et al. (43 ) Pub . Date : Oct. 26 , 2017 ( 54 ) COMPOSITIONS AND METHODS OF USE Publication Classification FOR AUGMENTED IMMUNE RESPONSE (51 ) Int. Cl. AND CANCER THERAPY CO7K 16 / 28 ( 2006 .01 ) (71 ) Applicants : Jennifer BROGDON , Sudbury , MA CO7K 16 / 28 ( 2006 . 01) (US ) ; Daniela CIPOLLETTA , A61K 45 / 06 (2006 . 01 ) Arlington , MA (US ) ; Glenn A61K 39 /00 ( 2006 .01 ) DRANOFF , Lexington , MA ( US ) ; A61K 39 /00 (2006 .01 ) Deborah A . KNEE . Del Mar. CA (US ): (52 ) U . S . Cl. CPC . .. .. CO7K 16 / 2878 ( 2013. 01 ) ; C07K 16 /2818 Fei WANG , San Diego , CA (US ) ( 2013 .01 ) ; A61K 45 / 06 ( 2013 .01 ) ; CO7K ( 72 ) Inventors : Jennifer BROGDON , Sudbury , MA 2317 / 74 ( 2013 . 01 ) ; C07K 2317 / 732 ( 2013 .01 ) ; (US ) ; Daniela CIPOLLETTA , CO7K 2317 / 567 ( 2013 . 01 ) ; COZK 2317 / 56 Arlington , MA (US ) ; Glenn ( 2013 .01 ) ; CO7K 2317 /51 ( 2013 .01 ) ; CO7K DRANOFF , Lexington , MA (US ) ; 2317 / 24 (2013 .01 ) ; A61K 2039 /507 (2013 . 01 ) ; Deborah A . KNEE , Del Mar, CA (US ) ; A61K 2039 /505 ( 2013 . 01 ) ; COZK 2317 / 75 ( 2013 . 01 ) ; CO7K 2317/ 92 ( 2013 .01 ) ; CO7K Fei WANG , San Diego , CA (US ) 2317/ 515 (2013 . 01) ( 21 ) Appl. No. : 15 /517 ,872 (57 ) ABSTRACT (22 ) PCT Filed : Oct . 8 , 2015 The present invention provides antibody compositions , (86 ) PCT No. : PCT/ US2015 / 054770 including , e . g ., antibodies, engineered antibodies and anti body fragments that bind to a tumor necrosis factor receptor $ 371 ( c ) ( 1 ), superfamily member ( i. e . , 18 ) , and compositions comprising ( 2 ) Date : Apr.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.402,830 B2 Cialella Et Al
    USOO940283OB2 (12) United States Patent (10) Patent No.: US 9.402,830 B2 Cialella et al. (45) Date of Patent: * Aug. 2, 2016 (54) METHODS OF TREATING DYSKINESIA AND FOREIGN PATENT DOCUMENTS RELATED DSORDERS WO 93.18767 A1 9, 1993 (71) Applicant: Melior Discovery, Inc., Exton, PA (US) OTHER PUBLICATIONS (72) Inventors: John Ciallella, Exton, PA (US); John Afanasev et al., Effects of amphetamine and Sydnocarbon dopamine Gruner, Exton, PA (US); Andrew G. release and free radical generation in rat striatum, Pharmacol Reaume, Exton, PA (US); Michael S. Biochem Behav, 2001, 69(3-4):653-8. Saporito, Exton, PA (US) Anderzhanova et al., Effect of d-amphetamine and Sydnocarb on the extracellular level of dopamine, 3,4-dihydroxyphenylacetic acid, and (73) Assignee: Melior Discovery, Inc., Exton, PA (US) hydroxyl radicals generation in rat striatum, Ann NY AcadSci, 2000, 914:137-45. Anderzhanova et al., Effects of Sydnocarb and D-amphetamine on the (*) Notice: Subject to any disclaimer, the term of this extracellular levels of amino acids in the rat caudate-putamen, Eur J patent is extended or adjusted under 35 Pharmacol, 2001, 428(1):87-95. U.S.C. 154(b) by 0 days. Bashkatova et al., Neuroshemical changes and neurotoxic effects of This patent is Subject to a terminal dis an acute treatment with Sydnocarb, a novel psychostimulant: com claimer. parison with D-amphetamine, Ann NY AcadSci, 2002,965: 180-192. Cody, Precursor medications as a source of methamphetamine and/or amphetamine positive drug testing results, J Occup Environ Med, (21) Appl. No.: 14/702,242 2002, 44(5):435-50.
    [Show full text]
  • Chemical Properties Biological Description
    Data Sheet (Cat.No.T4290) Preladenant Chemical Properties CAS No.: 377727-87-2 Formula: C25H29N9O3 Molecular Weight: 503.57 Appearance: N/A Storage: 0-4℃ for short term (days to weeks), or -20℃ for long term (months). Biological Description Description Preladenant is an orally bioavailable antagonist of the adenosine A2A receptor (Ki: 1.1 nM) and has >1000-fold selectivity over all other adenosine receptors. Targets(IC50) A2A: None In vitro In cells expressing the recombinant human A2A receptor, Preladenant completely antagonizes cAMP. The KB values of Preladenant is 1.3 nM at the A2A receptor. A similar functional assay with A2B receptor-expressing cells is used to demonstrate selectivity over A2B receptors. In this assay, the KB value for Preladenant is 1.2 μM and this selectivity for the A2A receptor is 923-fold over the A2B receptor. In vivo Preladenant (1 mg/kg) inhibits L-Dopa-induced behavioral sensitization. In the mouse tail suspension test and the mouse and rat forced swim test, Preladenant exhibits antidepressant-like profiles. Preladenant dose- dependently reduces the parkinsonian scores at doses of 1 mg/kg (min score: 9.0) and 3 mg/kg (min score: 6.5). A subthreshold dose of Preladenant reduces minimum and mean parkinsonian scores in animals treated with 3 mg kg of L-Dopa to 5.25 and 6.88 respectively. A Wilcoxin test is used to compare individual treatments against the vehicle. Preladenant (3 mg/kg), L-Dopa (3, 6, and 12 mg/kg), and the combination of Preladenant and L- Dopa (1 or 3 mg/kg+3 mg/kg) are all significantly improved on the minimum parkinsonian score.
    [Show full text]
  • Advances in Non-Dopaminergic Treatments for Parkinson's Disease
    REVIEW ARTICLE published: 22 May 2014 doi: 10.3389/fnins.2014.00113 Advances in non-dopaminergic treatments for Parkinson’s disease Sandy Stayte 1,2 and Bryce Vissel 1,2* 1 Neuroscience Department, Neurodegenerative Disorders Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia 2 Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia Edited by: Since the 1960’s treatments for Parkinson’s disease (PD) have traditionally been directed Eero Vasar, University of Tartu, to restore or replace dopamine, with L-Dopa being the gold standard. However, chronic Estonia L-Dopa use is associated with debilitating dyskinesias, limiting its effectiveness. This has Reviewed by: resulted in extensive efforts to develop new therapies that work in ways other than Andrew Harkin, Trinity College Dublin, Ireland restoring or replacing dopamine. Here we describe newly emerging non-dopaminergic Sulev Kõks, University of Tartu, therapeutic strategies for PD, including drugs targeting adenosine, glutamate, adrenergic, Estonia and serotonin receptors, as well as GLP-1 agonists, calcium channel blockers, iron Pille Taba, Universoty of Tartu, chelators, anti-inflammatories, neurotrophic factors, and gene therapies. We provide a Estonia Pekka T. Männistö, University of detailed account of their success in animal models and their translation to human clinical Helsinki, Finland trials. We then consider how advances in understanding the mechanisms of PD, genetics, *Correspondence: the possibility that PD may consist of multiple disease states, understanding of the Bryce Vissel, Neuroscience etiology of PD in non-dopaminergic regions as well as advances in clinical trial design Department, Neurodegenerative will be essential for ongoing advances. We conclude that despite the challenges ahead, Disorders Laboratory, Garvan Institute of Medical Research, patients have much cause for optimism that novel therapeutics that offer better disease 384 Victoria Street, Darlinghurst, management and/or which slow disease progression are inevitable.
    [Show full text]
  • 5'-Nucleotidases, Nucleosides and Their Distribution in the Brain: Patho- Logical and Therapeutic Implications
    Send Orders for Reprints to [email protected] Current Medicinal Chemistry, 2013, 20, 4217-4240 4217 5'-Nucleotidases, Nucleosides and their Distribution in the Brain: Patho- logical and Therapeutic Implications Zsolt Kovács1,*, Árpád Dobolyi2, Katalin A. Kékesi3,4 and Gábor Juhász3 1Department of Zoology, University of West Hungary, Savaria Campus, Szombathely, Hungary; 2Laboratory of Neuro- morphology, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary; 3Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary; 4 Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary Abstract: Elements of the nucleoside system (nucleoside levels, 5’-nucleotidases (5’NTs) and other nucleoside metabolic enzymes, nucleoside transporters and nucleoside receptors) are unevenly distributed in the brain, suggesting that nucleo- sides have region-specific functions in the human brain. Indeed, adenosine (Ado) and non-Ado nucleosides, such as guanosine (Guo), inosine (Ino) and uridine (Urd), modulate both physiological and pathophysiological processes in the brain, such as sleep, pain, memory, depression, schizophrenia, epilepsy, Huntington’s disease, Alzheimer’s disease and Parkinson’s disease. Interactions have been demonstrated in the nucleoside system between nucleoside levels and the ac- tivities of nucleoside metabolic enzymes, nucleoside transporters and Ado receptors in the human brain. Alterations in the nucleoside system may induce pathological changes, resulting in central nervous system (CNS) diseases. Moreover, sev- eral CNS diseases such as epilepsy may be treated by modulation of the nucleoside system, which is best achieved by modulating 5’NTs, as 5’NTs exhibit numerous functions in the CNS, including intracellular and extracellular formation of nucleosides, termination of nucleoside triphosphate signaling, cell adhesion, synaptogenesis and cell proliferation.
    [Show full text]
  • Biomolecules
    biomolecules Review Receptor Ligands as Helping Hands to L-DOPA in the Treatment of Parkinson’s Disease Fabio Del Bello , Mario Giannella, Gianfabio Giorgioni * , Alessandro Piergentili and Wilma Quaglia Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università di Camerino, Via S. Agostino 1, 62032 Camerino, Italy; [email protected] (F.D.B.); [email protected] (M.G.); [email protected] (A.P.); [email protected] (W.Q.) * Correspondence: [email protected]; Tel.: +39-0737402368 Received: 18 March 2019; Accepted: 6 April 2019; Published: 9 April 2019 Abstract: Levodopa (LD) is the most effective drug in the treatment of Parkinson’s disease (PD). However, although it represents the “gold standard” of PD therapy, LD can cause side effects, including gastrointestinal and cardiovascular symptoms as well as transient elevated liver enzyme levels. Moreover, LD therapy leads to LD-induced dyskinesia (LID), a disabling motor complication that represents a major challenge for the clinical neurologist. Due to the many limitations associated with LD therapeutic use, other dopaminergic and non-dopaminergic drugs are being developed to optimize the treatment response. This review focuses on recent investigations about non-dopaminergic central nervous system (CNS) receptor ligands that have been identified to have therapeutic potential for the treatment of motor and non-motor symptoms of PD. In a different way, such agents may contribute to extending LD response and/or ameliorate LD-induced side effects. Keywords: Parkinson’s disease; levodopa therapy; levodopa-induced side effects; dopaminergic drugs; non-dopaminergic receptor ligands 1. Introduction Parkinson’s disease (PD), also known as idiopathic paralysis agitans, is one of the most frequent chronic neurodegenerative diseases worldwide.
    [Show full text]
  • Unprecedented Therapeutic Potential with a Combination of A2A/NR2B Receptor Antagonists As Observed in the 6-OHDA Lesioned Rat Model of Parkinson’S Disease
    RESEARCH ARTICLE Unprecedented Therapeutic Potential with a Combination of A2A/NR2B Receptor Antagonists as Observed in the 6-OHDA Lesioned Rat Model of Parkinson’s Disease Anne Michel1*, Patrick Downey1, Jean-Marie Nicolas2, Dieter Scheller1 1. Neurosciences TA Biology, UCB BioPharma SPRL, Braine l’Alleud, Belgium, 2. Non-Clinical Development, UCB BioPharma SPRL, Braine l’Alleud, Belgium *[email protected] OPEN ACCESS Citation: Michel A, Downey P, Nicolas J-M, Scheller D (2014) Unprecedented Therapeutic Potential with a Combination of A2A/NR2B Receptor Antagonists as Observed in the 6-OHDA Abstract Lesioned Rat Model of Parkinson’s Disease. PLoS ONE 9(12): e114086. doi:10.1371/journal.pone. In Parkinson’s disease, the long-term use of dopamine replacing agents is 0114086 associated with the development of motor complications; therefore, there is a need Editor: Joohyung Lee, Prince Henry’s Institute, Australia for non-dopaminergic drugs. This study evaluated the potential therapeutic impact Received: July 17, 2014 of six different NR2B and A2A receptor antagonists given either alone or in Accepted: November 4, 2014 combination in unilateral 6-OHDA-lesioned rats without (monotherapy) or with (add- on therapy) the co-administration of L-Dopa: Sch-58261+ Merck 22; Sch- Published: December 16, 2014 58261+Co-101244; Preladenant + Merck 22; Preladenant + Radiprodil; Tozadenant Copyright: ß 2014 Michel et al. This is an open- access article distributed under the terms of the + Radiprodil; Istradefylline + Co-101244. Animals given monotherapy were Creative Commons Attribution License, which permits unrestricted use, distribution, and repro- assessed on distance traveled and rearing, whereas those given add-on therapy duction in any medium, provided the original author were assessed on contralateral rotations.
    [Show full text]
  • Chapter 2 Methodological Aspects
    Chapter 2 Methodological aspects Chapter 2.1 Indications for antihypertensive drug use in a prescription database BLG van Wijk, OH Klungel, ER Heerdink, A de Boer Department of Pharmacoepidemiology & Pharmacotherapy, Utrecht Institute for Pharmaceutical Sciences, Utrecht University Submitted CHAPTER 2.1 Summary Background: Drugs termed antihypertensives are prescribed and registered for other indications than hypertension alone. In pharmacoepidemiological studies, this could introduce several forms of bias. The objective of this study was to determine the extent to which drugs classified as antihypertensive drugs are prescribed for other diseases than hypertension. Methods: The NIVEL database was used, containing prescriptions from a sample of general practitioners in The Netherlands. Classes of antihypertensive drugs were analyzed separately, based on ATC-codes: miscellaneous antihypertensives, diuretics, beta-blockers, calcium channel blockers and agents acting on the renin angiotensin system. In addition, these classes were further subdivided based on their specific mechanism of action. All first prescriptions of a patient in the database for an antihypertensive drug were selected. ICPC diagnoses studied were: increased blood pressure, hypertension without organ damage, hypertension with organ damage and hypertension with diabetes mellitus for which the above- defined antihypertensive drugs were prescribed. Results: Of 24,812 patients who received a first prescription for an antihypertensive drug, 63.0% received a first prescription for hypertension related diagnoses (diuretics: 54.1%, beta-blockers: 59.1%, calcium channel blockers: 60.3%, agents acting on the renin angiotensin system: 82.8% and miscellaneous antihypertensives: 64.6%). Subdividing and restricting these subgroups based on their mechanism of action yields a higher percentage of first prescriptions with hypertension related diagnoses (low-ceiling diuretics: 78.8%, selective beta- blockers: 69.9% and dihydropyridine calcium channel blockers: 76.8%).
    [Show full text]