Slides C: Semisimplicity

Total Page:16

File Type:pdf, Size:1020Kb

Slides C: Semisimplicity Slides C: Semisimplicity 1. K-algebras and center Z(R). 2. Simple rings and modules 3. Artinian rings and modules 4. Semisimple modules 5. Radical of a module 6. Jacobson radical of a ring 7. Product of rings 8. Wedderburn Structure Theorem 9. Over an algebraically closed field Noncommutative rings and algebras We now return to noncommutative (but associative and unital) rings. We normally take right R-modules. Then an R-module homomorphism f : M ! N satisfies: f (xr) = f (x)r which is an \associativity rule". A left R-module is the same as a right Rop-module where Rop is the opposite ring of R with order of multiplication reversed: ab in Rop is ba in R. Definition. For K a field, a K-algebra is ring A which is also a K-module (vector space over K) so that addition is K-linear and multiplication is K-bilinear. K-algebra and center Z(R) Definition. The center Z(R) of a ring R is the set of all z 2 R which commutes with all elements of R. E.g., 0; 1 2 Z(R). Z(R) := fz 2 R j rz = zr 8r 2 Rg Proposition 1.1. Z(R) is a subring of R. Proposition 1.2. For K a field, R is a K-algebra , K ⊆ Z(R) Simple rings Definition. A ring is simple if it has no nontrivial 2-sided ideals. Examples. I Fields are simple rings. I A division ring D is simple: A division ring is a ring in which every nonzero element has an inverse. Fields are commutative division rings. I H, the ring of quaternions t + xi + yj + zk; t; x; y; z 2 R is a division ring which is not a field. I H is an R-algebra. It is a division algebra over R. I Matn(D) is simple. Matn(D) is the ring of n × n matrices over a division ring D. Simple modules Definition. A module S over any ring is simple if it has no nontrivial submodules (the only submodules are 0, S). Schur's Lemma. An R-module homomorphism f : S ! T between simple R-modules is either an isomorphism or 0. Corollary. For S a simple R-module, EndR (S) is a division ring. Example. For D a division ring, Dn is a simple module over the ∼ n ∼ op n simple ring Matn(D) = EndD (DD ) = EndD (D D ). Artinian rings and modules Definition. An R-module M is Artinian if it satisfies the descending chain condition (DCC) for submodules, i.e., given any descending sequence of submodules: N1 ⊇ N2 ⊇ N2 ⊇ · · · there is an m so that Nm = Nm+1 = ··· . Definition. A ring R is (right) Artinian if it satisfies the DCC for right ideals, i.e., RR is an Artinian module. Properties of Artinian modules Proposition. • Submodules and quotient modules of Artinian modules are Artinian. (Same as for Noetherian modules.) • Every nonzero submodule of an Artinian module contains a minimal submodule. (Dual of: Every proper submodule of a Noetherian module is contained in a maximal submodule.) Examples. (1) For R a K-algebra, any module M which is finite dimensional as K-vector space is Artinian. (2) Z is Noetherian but not Artinian. (3) Z[1=p]=Z is an Artinian Z-module which is not Noetherian. Semi-simple modules Definition. A f.g. module M is semi-simple if it satisfies any of the following equivalent conditions. (1) M is a direct sum of finitely many simple modules. (1') M is a direct sum of simple modules. (2) M is a sum of simple modules. (2') M is a sum of finitely many simple modules. (3) Every submodule of M is a direct summand. Definition. The length `(M) of a semi-simple module M is the number of simple direct summands. M = S1 ⊕ S2 ⊕ · · · ⊕ Sn ) `(M) = n Corollary. (since `(M) is well-defined) semi-simple ) Artinian and Noetherian. Radical of a module Definition. The radical rM of a module M is the intersection of all maximal proper submodules. Theorem 2.23. Let M be an Artinian module. (1) M=rM is semi-simple (2) M is semi-simple iff rM = 0. non-example. rZ = 0 but Z is not semisimple since Z is not Artinian. Radical of a ring Definition. The radical rR of a ring R is the intersection of its maximal right ideals. (i.e., rR = r(RR ).) Definition. A ring R is semisimple if every finitely generated right R-module is semisimple. (Equivalently, RR is semi-simple.) Corollary. If R is a right Artinian ring then R is semi-simple , rR = 0 Proof: By Thm 2.23: RR is semi-simple , rRR = 0 Product of rings Lemma 3.10. A module M over a product of rings R × S is the direct sum M = A ⊕ B where AR is an R-module and BS is an S-module. If M is f.g., so are A and B. By induction on n, a module M over R1 × · · · × Rn is a direct sum M = M1 ⊕ · · · ⊕ Mn where Mi is an Ri -module. Example. A module over Z × R × C is A ⊕ B ⊕ C where A is an additive group, B is a real vector space and C is a complex vector space. Wedderburn Stucture Theorem Lemma 3.12. If R; S are semi-simple rings then so is R × S. ∼ Lemma 3.13. EndR (ni Si ) = Matni (Di ). Wedderburn Theorem. A ring R is semi-simple if and only if it is a finite product of matrix rings over division rings: ∼ Y R = Matni (Di ) L where Di = EndR (Si ) and RR = ni Si . ∼ L Proof: If R is semisimple ) RR = ni Si ) (by Lemma 3.13) ∼ Y ∼ Y R = EndR (RR ) = EndR (ni Si ) = Matni (Di ) Q Conversely, Lemma 3.12 ) Matni (Di ) is semisimple. Over an algebraically closed field Theorem. The only finite dimensional division algebras over an algebraically closed field K = K is K itself. Corollary. A finite dimensional algebra R over C is semisimple iff it is a product of matrix rings over C: ∼ Y R = Matni (C): Part D: The group ring CG of a finite group G is semisimple. We will use this to study representations of finite groups..
Recommended publications
  • Right Ideals of a Ring and Sublanguages of Science
    RIGHT IDEALS OF A RING AND SUBLANGUAGES OF SCIENCE Javier Arias Navarro Ph.D. In General Linguistics and Spanish Language http://www.javierarias.info/ Abstract Among Zellig Harris’s numerous contributions to linguistics his theory of the sublanguages of science probably ranks among the most underrated. However, not only has this theory led to some exhaustive and meaningful applications in the study of the grammar of immunology language and its changes over time, but it also illustrates the nature of mathematical relations between chunks or subsets of a grammar and the language as a whole. This becomes most clear when dealing with the connection between metalanguage and language, as well as when reflecting on operators. This paper tries to justify the claim that the sublanguages of science stand in a particular algebraic relation to the rest of the language they are embedded in, namely, that of right ideals in a ring. Keywords: Zellig Sabbetai Harris, Information Structure of Language, Sublanguages of Science, Ideal Numbers, Ernst Kummer, Ideals, Richard Dedekind, Ring Theory, Right Ideals, Emmy Noether, Order Theory, Marshall Harvey Stone. §1. Preliminary Word In recent work (Arias 2015)1 a line of research has been outlined in which the basic tenets underpinning the algebraic treatment of language are explored. The claim was there made that the concept of ideal in a ring could account for the structure of so- called sublanguages of science in a very precise way. The present text is based on that work, by exploring in some detail the consequences of such statement. §2. Introduction Zellig Harris (1909-1992) contributions to the field of linguistics were manifold and in many respects of utmost significance.
    [Show full text]
  • Modules with Artinian Prime Factors
    PROCEEDINGS of the AMERICAN MATHEMATICAL SOCIETY Volume 78, Number 3. March 1980 MODULES WITH ARTINIAN PRIME FACTORS EFRAIM P. ARMENDARIZ Abstract. An R -module M has Artinian prime factors if M/PM is an Artinian module for each prime ideal P of R. For commutative rings R it is shown that Noetherian modules with Artinian prime factors are Artinian. If R is either commutative or a von Neumann regular K-rmg then the endomorphism ring of a module with Artinian prime factors is a strongly ir-regular ring. A ring R with 1 is left ir-regular if for each a G R there is an integer n > 1 and b G R such that a" = an+lb. Right w-regular is defined in the obvious way, however a recent result of F. Dischinger [5] asserts the equivalence of the two concepts. A ring R is ir-regular if for any a G R there is an integer n > 1 and b G R such that a" = a"ba". Any left 7r-regular ring is 77-regular but not con- versely. Because of this, we say that R is strongly ir-regular if it is left (or right) w-regular. In [2, Theorem 2.5] it was established that if R is a (von Neumann) regular ring whose primitive factor rings are Artinian and if M is a finitely generated R-module then the endomorphism ring EndÄ(Af ) of M is a strongly 77-regular ring. Curiously enough, the same is not true for finitely generated modules over strongly w-regular rings, as Example 3.1 of [2] shows.
    [Show full text]
  • Gsm073-Endmatter.Pdf
    http://dx.doi.org/10.1090/gsm/073 Graduat e Algebra : Commutativ e Vie w This page intentionally left blank Graduat e Algebra : Commutativ e View Louis Halle Rowen Graduate Studies in Mathematics Volum e 73 KHSS^ K l|y|^| America n Mathematica l Societ y iSyiiU ^ Providence , Rhod e Islan d Contents Introduction xi List of symbols xv Chapter 0. Introduction and Prerequisites 1 Groups 2 Rings 6 Polynomials 9 Structure theories 12 Vector spaces and linear algebra 13 Bilinear forms and inner products 15 Appendix 0A: Quadratic Forms 18 Appendix OB: Ordered Monoids 23 Exercises - Chapter 0 25 Appendix 0A 28 Appendix OB 31 Part I. Modules Chapter 1. Introduction to Modules and their Structure Theory 35 Maps of modules 38 The lattice of submodules of a module 42 Appendix 1A: Categories 44 VI Contents Chapter 2. Finitely Generated Modules 51 Cyclic modules 51 Generating sets 52 Direct sums of two modules 53 The direct sum of any set of modules 54 Bases and free modules 56 Matrices over commutative rings 58 Torsion 61 The structure of finitely generated modules over a PID 62 The theory of a single linear transformation 71 Application to Abelian groups 77 Appendix 2A: Arithmetic Lattices 77 Chapter 3. Simple Modules and Composition Series 81 Simple modules 81 Composition series 82 A group-theoretic version of composition series 87 Exercises — Part I 89 Chapter 1 89 Appendix 1A 90 Chapter 2 94 Chapter 3 96 Part II. AfRne Algebras and Noetherian Rings Introduction to Part II 99 Chapter 4. Galois Theory of Fields 101 Field extensions 102 Adjoining
    [Show full text]
  • Math 250A: Groups, Rings, and Fields. H. W. Lenstra Jr. 1. Prerequisites
    Math 250A: Groups, rings, and fields. H. W. Lenstra jr. 1. Prerequisites This section consists of an enumeration of terms from elementary set theory and algebra. You are supposed to be familiar with their definitions and basic properties. Set theory. Sets, subsets, the empty set , operations on sets (union, intersection, ; product), maps, composition of maps, injective maps, surjective maps, bijective maps, the identity map 1X of a set X, inverses of maps. Relations, equivalence relations, equivalence classes, partial and total orderings, the cardinality #X of a set X. The principle of math- ematical induction. Zorn's lemma will be assumed in a number of exercises. Later in the course the terminology and a few basic results from point set topology may come in useful. Group theory. Groups, multiplicative and additive notation, the unit element 1 (or the zero element 0), abelian groups, cyclic groups, the order of a group or of an element, Fermat's little theorem, products of groups, subgroups, generators for subgroups, left cosets aH, right cosets, the coset spaces G=H and H G, the index (G : H), the theorem of n Lagrange, group homomorphisms, isomorphisms, automorphisms, normal subgroups, the factor group G=N and the canonical map G G=N, homomorphism theorems, the Jordan- ! H¨older theorem (see Exercise 1.4), the commutator subgroup [G; G], the center Z(G) (see Exercise 1.12), the group Aut G of automorphisms of G, inner automorphisms. Examples of groups: the group Sym X of permutations of a set X, the symmetric group S = Sym 1; 2; : : : ; n , cycles of permutations, even and odd permutations, the alternating n f g group A , the dihedral group D = (1 2 : : : n); (1 n 1)(2 n 2) : : : , the Klein four group n n h − − i V , the quaternion group Q = 1; i; j; ij (with ii = jj = 1, ji = ij) of order 4 8 { g − − 8, additive groups of rings, the group Gl(n; R) of invertible n n-matrices over a ring R.
    [Show full text]
  • Arxiv:Math/0310146V1 [Math.AT] 10 Oct 2003 Usinis: Question Fr Most Aut the the of Algebra”
    MORITA THEORY IN ABELIAN, DERIVED AND STABLE MODEL CATEGORIES STEFAN SCHWEDE These notes are based on lectures given at the Workshop on Structured ring spectra and their applications. This workshop took place January 21-25, 2002, at the University of Glasgow and was organized by Andy Baker and Birgit Richter. Contents 1. Introduction 1 2. Morita theory in abelian categories 2 3. Morita theory in derived categories 6 3.1. The derived category 6 3.2. Derived equivalences after Rickard and Keller 14 3.3. Examples 19 4. Morita theory in stable model categories 21 4.1. Stable model categories 22 4.2. Symmetric ring and module spectra 25 4.3. Characterizing module categories over ring spectra 32 4.4. Morita context for ring spectra 35 4.5. Examples 38 References 42 1. Introduction The paper [Mo58] by Kiiti Morita seems to be the first systematic study of equivalences between module categories. Morita treats both contravariant equivalences (which he calls arXiv:math/0310146v1 [math.AT] 10 Oct 2003 dualities of module categories) and covariant equivalences (which he calls isomorphisms of module categories) and shows that they always arise from suitable bimodules, either via contravariant hom functors (for ‘dualities’) or via covariant hom functors and tensor products (for ‘isomorphisms’). The term ‘Morita theory’ is now used for results concerning equivalences of various kinds of module categories. The authors of the obituary article [AGH] consider Morita’s theorem “probably one of the most frequently used single results in modern algebra”. In this survey article, we focus on the covariant form of Morita theory, so our basic question is: When do two ‘rings’ have ‘equivalent’ module categories ? We discuss this question in different contexts: • (Classical) When are the module categories of two rings equivalent as categories ? Date: February 1, 2008.
    [Show full text]
  • Lectures on Non-Commutative Rings
    Lectures on Non-Commutative Rings by Frank W. Anderson Mathematics 681 University of Oregon Fall, 2002 This material is free. However, we retain the copyright. You may not charge to redistribute this material, in whole or part, without written permission from the author. Preface. This document is a somewhat extended record of the material covered in the Fall 2002 seminar Math 681 on non-commutative ring theory. This does not include material from the informal discussion of the representation theory of algebras that we had during the last couple of lectures. On the other hand this does include expanded versions of some items that were not covered explicitly in the lectures. The latter mostly deals with material that is prerequisite for the later topics and may very well have been covered in earlier courses. For the most part this is simply a cleaned up version of the notes that were prepared for the class during the term. In this we have attempted to correct all of the many mathematical errors, typos, and sloppy writing that we could nd or that have been pointed out to us. Experience has convinced us, though, that we have almost certainly not come close to catching all of the goofs. So we welcome any feedback from the readers on how this can be cleaned up even more. One aspect of these notes that you should understand is that a lot of the substantive material, particularly some of the technical stu, will be presented as exercises. Thus, to get the most from this you should probably read the statements of the exercises and at least think through what they are trying to address.
    [Show full text]
  • Lectures on Local Cohomology
    Contemporary Mathematics Lectures on Local Cohomology Craig Huneke and Appendix 1 by Amelia Taylor Abstract. This article is based on five lectures the author gave during the summer school, In- teractions between Homotopy Theory and Algebra, from July 26–August 6, 2004, held at the University of Chicago, organized by Lucho Avramov, Dan Christensen, Bill Dwyer, Mike Mandell, and Brooke Shipley. These notes introduce basic concepts concerning local cohomology, and use them to build a proof of a theorem Grothendieck concerning the connectedness of the spectrum of certain rings. Several applications are given, including a theorem of Fulton and Hansen concern- ing the connectedness of intersections of algebraic varieties. In an appendix written by Amelia Taylor, an another application is given to prove a theorem of Kalkbrenner and Sturmfels about the reduced initial ideals of prime ideals. Contents 1. Introduction 1 2. Local Cohomology 3 3. Injective Modules over Noetherian Rings and Matlis Duality 10 4. Cohen-Macaulay and Gorenstein rings 16 d 5. Vanishing Theorems and the Structure of Hm(R) 22 6. Vanishing Theorems II 26 7. Appendix 1: Using local cohomology to prove a result of Kalkbrenner and Sturmfels 32 8. Appendix 2: Bass numbers and Gorenstein Rings 37 References 41 1. Introduction Local cohomology was introduced by Grothendieck in the early 1960s, in part to answer a conjecture of Pierre Samuel about when certain types of commutative rings are unique factorization 2000 Mathematics Subject Classification. Primary 13C11, 13D45, 13H10. Key words and phrases. local cohomology, Gorenstein ring, initial ideal. The first author was supported in part by a grant from the National Science Foundation, DMS-0244405.
    [Show full text]
  • Certain Artinian Rings Are Noetherian
    Can. J. Math., Vol. XXIV, No. 4, 1972, pp. 553-556 CERTAIN ARTINIAN RINGS ARE NOETHERIAN ROBERT C. SHOCK 1. Introduction. Throughout this paper the word "ring" will mean an associative ring which need not have an identity element. There are Artinian rings which are not Noetherian, for example C(pco) with zero multiplication. These are the only such rings in that an Artinian ring R is Noetherian if and only if R contains no subgroups of type C(pœ) [1, p. 285]. However, a certain class of Artinian rings is Noetherian. A famous theorem of C. Hopkins states that an Artinian ring with an identity element is Noetherian [3, p. 69]. The proofs of these theorems involve the method of "factoring through the nilpotent Jacobson radical of the ring". In this paper we state necessary and sufficient conditions for an Artinian ring (and an Artinian module) to be Noetherian. Our proof avoids the concept of the Jacobson radical and depends primarily upon the concept of the length of a composition series. As a corollary we obtain the result of Hopkins. All conditions are on the right, that is, an Artinian ring means a right Artinian ring, etc. We say a module A is embeddable in a module B provided that A is isomorphic to some submodule of B. Our Theorem 3 states that an Artinian ring R is Noetherian if and only if a cyclic Noetherian submodule ofR is embeddable in some Noetherian factor module of R. An example in the paper shows that in an Artinian ring R which is also Noetherian, a cyclic submodule need not be isomorphic to some factor module of R.
    [Show full text]
  • Artinian Modules and Modules of Which All Proper Submodules Are Finitely Generated
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 95, 201-216 (1985) Artinian Modules and Modules of Which All Proper Submodules Are Finitely Generated WILLIAM HEINZER Purdue University, West Lafayette, Indiana 47907 AND DAVID LANTZ Purdue University, West Lafayette, Indiana 47907, and Colgate University, Hamilton, New York 13346 Communicated by I. N. Herstein Received September 5, 1983 1. INTRODUCTION William D. Weakley, in [Wl], studied modules (unitary, over a com- mutative ring with unity) which are not finitely generated but all of whose proper submodules are finitely generated. Weakley called such modules “almost finitely generated” (a.f.g.). He noted that an a.f.g. module has prime annihilator and that, as a faithful module over a domain, it is either torsion or torsion-free. If torsion-free, it is isomorphic as a module to the domain’s quotient field. If torsion, it is Artinian, so Weakley was led to the tools of study of Artinian modules developed by Matlis [Ml, M23 and Vamos [V]. These tools include, for a quasilocal ring (R, M), the injective envelope E,(R/M) of the residue field R/M. The purpose of the present paper is to combine results of [Wl] and [GH2] to characterize the form of a.f.g. modules and the rings which admit such modules, and to describe the a.f.g. submodules of E,(R/M). In Section 2, we refine a result of [ Wl ] to conclude that, if R is a domain and (F’, P) is a discrete rank one valuation domain between R and its quotient field K, then K/V is an a.f.g.
    [Show full text]
  • Arxiv:Math/0505004V2
    CENTRALIZERS AND INVERSES TO INDUCTION AS EQUIVALENCE OF CATEGORIES LARS KADISON Abstract. Given a ring homomorphism B → A, consider its centralizer B R = A , bimodule endomorphism ring S = End BAB and sub-tensor-square B ring T = (A ⊗B A) . Nonassociative tensoring by the cyclic modules RT or S R leads to an equivalence of categories inverse to the functors of induction of restricted A-modules or restricted coinduction of B-modules in case A | B is separable, H-separable, split or left depth two (D2). If RT or S R are projec- tive, this property characterizes separability or splitness for a ring extension. Only in the case of H-separability is RT a progenerator, which replaces the key module AAe for an Azumaya algebra A. After establishing these char- acterizations, we characterize left D2 extensions in terms of the module TR, and ask whether a weak generator condition on RT might characterize left D2 extensions as well, possibly a problem in σ(M)-categories or its generaliza- tions. We also show that the centralizer of a depth two extension is a normal subring in the sense of Rieffel and pre-braided commutative. For example, its normality yields a Hopf subalgebra analogue of a factoid for subgroups and their centralizers, and a special case of a conjecture that D2 Hopf subalgebras are normal. 1. Introduction and Preliminaries Given a ring homomorphism B → A, we pass to its induced bimodule BAB and B define its centralizer R = A , bimodule endomorphism ring S = End BAB and B sub-tensor-square ring T = (A ⊗B A) .
    [Show full text]
  • On the Noetherian Dimension of Artinian Modules*
    Vietnam Journal o! Mathematics3O:2 (2002) 121-130 V [,e r[rma nm _J[o,rurrrrm a l[ olP Mt,A.]f lHI]EMt,A.]f ]IC S O NCST2OO2 On the Noetherian Dimension of Artinian Modules* Nguyen T\r Cuong and Le Thanh Nhan Institute of Mathemati,cs.P. O. Bor 631, Bo Ho, Hanoi, V'ietnam ReceivedJuly L4, 2000 Abstract. Somenew resultsof Noetheriandimension of Artinian modulesare given and severalproperties of Noetherian dimension of local cohomologymodules of finitely generatedmodules are shown. After giving an exampleof an Artinian module ,4 which has Krull dimension strictly larger than its Noetherian dimension, we present some sufficient conditions on Artinian modules .A such that the both notions of dimension of ,4 are the same. 1".Introduction The concept of Krull dimension for Artinian modules was introduced by Roberts lI2]. Kirby [7] changed the terminology of Roberts and referred to Noethe- rian dimension (N-dim) to avoid any confusion with Krull dimension defined for finitely generated modules. In this note we use the terminology of Kirby [7]. Many properties of Noetherian dimension of Artinian modules have been given in [3,7, L2,l7l. The purpose of this note is to study Noetherian dimension of Artinian modules. Expecially, we prove some results on Noetherian dimension of local cohomology modules when these modules are Artinian. This paper is divided into 4 sections. In Sec.2 we will give some preliminary results on Noetherian dimension of Artinian modules. Let R be a commuta- tive Noetherian ring, A an Artinian rR-module and M a finitely generated R- module.
    [Show full text]
  • Commutative Algebra
    Version of September 3, 2012 A Term of Commutative Algebra By Allen ALTMAN and Steven KLEIMAN Contents Preface . iii 1. Rings and Ideals ................... 1 2. Prime Ideals .................... 6 3. Radicals ...................... 10 4. Modules ...................... 14 5. Exact Sequences ................... 20 6. Direct Limits .................... 26 7. Filtered Direct Limits . 33 8. Tensor Products ................... 37 9. Flatness ...................... 43 10. Cayley{Hamilton Theorem . 49 11. Localization of Rings . 55 12. Localization of Modules . 61 13. Support ..................... 66 14. Krull{Cohen{Seidenberg Theory . 71 15. Noether Normalization . 75 Appendix: Jacobson Rings . 80 16. Chain Conditions . 82 17. Associated Primes . 87 18. Primary Decomposition . 91 19. Length ...................... 97 20. Hilbert Functions . 101 Appendix: Homogeneity . 107 21. Dimension . 109 22. Completion . 115 23. Discrete Valuation Rings . 122 24. Dedekind Domains . 127 25. Fractional Ideals . 131 26. Arbitrary Valuation Rings . 136 Solutions . 141 1. Rings and Ideals . 141 2. Prime Ideals . 143 3. Radicals . 145 4. Modules . 148 5. Exact Sequences . 149 i 6. Direct Limits . 153 7. Filtered direct limits . 156 8. Tensor Products . 158 9. Flatness . 159 10. Cayley{Hamilton Theorem . 161 11. Localization of Rings . 164 12. Localization of Modules . 167 13. Support . 168 14. Krull{Cohen{Seidenberg Theory . 171 15. Noether Normalization . 174 16. Chain Conditions . 177 17. Associated Primes . 179 18. Primary Decomposition . 180 19. Length . 183 20. Hilbert Functions . 185 21. Dimension . 188 22. Completion . 190 23. Discrete Valuation Rings . 193 24. Dedekind Domains . 197 25. Fractional Ideals . 199 26. Arbitrary Valuation Rings . 200 References . 202 Index . 203 ii Preface There is no shortage of books on Commutative Algebra, but the present book is different.
    [Show full text]