Arctic Marine Phytobenthos of Northern Baffin Island1

Total Page:16

File Type:pdf, Size:1020Kb

Arctic Marine Phytobenthos of Northern Baffin Island1 J. Phycol. 52, 532–549 (2016) © 2016 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution ARCTIC MARINE PHYTOBENTHOS OF NORTHERN BAFFIN ISLAND1 Frithjof C. Kupper€ 2 Scottish Association for Marine Science, Dunbeg, Oban, Argyll PA37 1QA, UK Oceanlab, University of Aberdeen, Main Street, Newburgh AB41 6AA, UK Akira F. Peters BEZHIN ROSKO, 40 rue des pecheurs,^ 29250 Santec, France Dawn M. Shewring Oceanlab, University of Aberdeen, Main Street, Newburgh AB41 6AA, UK Martin D. J. Sayer UK National Facility for Scientific Diving, Scottish Association for Marine Science, Dunbeg, Oban, Argyll PA37 1QA, UK Alexandra Mystikou Oceanlab, University of Aberdeen, Main Street, Newburgh AB41 6AA, UK Hugh Brown, Elaine Azzopardi UK National Facility for Scientific Diving, Scottish Association for Marine Science, Dunbeg, Oban, Argyll PA37 1QA, UK Olivier Dargent Centre International de Valbonne, 190 rue Fred eric Mistral, 06560 Valbonne, France Martina Strittmatter, Debra Brennan Scottish Association for Marine Science, Dunbeg, Oban, Argyll PA37 1QA, UK Aldo O. Asensi 15, rue Lamblardie, F-75012 Paris, France Pieter van West Institute of Medical Sciences, College of Life Sciences and Medicine, Aberdeen Oomycete Laboratory, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK and Robert T. Wilce Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA Global climate change is expected to alter the polar documentation of the phytobenthos of the American bioregions faster than any other marine environment. Arctic. Molecular barcoding of isolates raised from This study assesses the biodiversity of seaweeds and incubated substratum samples revealed the presence associated eukaryotic pathogens of an established of 20 species of brown seaweeds, including study site in northern Baffin Island (72° N), providing gametophytes of kelp and of a previously a baseline inventory for future work assessing impacts unsequenced Desmarestia closely related to D. viridis, of the currently ongoing changes in the Arctic marine two species of Pylaiella, the kelp endophyte environment. A total of 33 Phaeophyceae, 24 Laminariocolax aecidioides and 11 previously Rhodophyceae, 2 Chlorophyceae, 12 Ulvophyceae, 1 unsequenced species of the Ectocarpales, Trebouxiophyceae, and 1 Dinophyceae are reported, highlighting the necessity to include molecular based on collections of an expedition to the area in techniques for fully unraveling cryptic algal diversity. 2009, complemented by unpublished records of This study also includes the first records of Robert T. Wilce and the first-ever photographic Eurychasma dicksonii, a eukaryotic pathogen affecting seaweeds, from the American Arctic. Overall, this 1Received 18 November 2015. Accepted 19 February 2016. study provides both the most accurate inventory of 2 Author for correspondence: e-mail [email protected]. seaweed diversity of the northern Baffin Island Editorial Responsibility: C. Lane (Associate Editor) 532 PHYTOBENTHOS OF NORTHERN BAFFIN ISLAND 533 region to date and can be used as an important basis The exploration of Arctic seaweeds was pioneered to understand diversity changes with climate change. by Kjellman (1883). His “The Algae of the Arctic Sea” was the first – and until now only – work taking Key index words: COI; cox3; Desmarestia; germling a holistic view of the Arctic phytobenthos. The his- emergence; macroalgae; molecular barcoding; Phaeo- tory of Arctic seaweed exploration and the issue of phyceae; Pylaiella describing the genuinely “Arctic” features of the sea- Abbreviations: COI, cytochrome c oxidase subunit I; weed biodiversity has been reviewed by Wilce ML, maximum likelihood; NJ, neighbor-joining (2015). Lee (1980) published the first checklist for the region; however, this includes many records from sub-Arctic (boreal) rather than genuinely Arc- In the Arctic and Antarctic bioregions, average tic locations, shifting the focus from a strictly Arctic temperatures are expected to rise by as much as 5°C flora towards a wider boreal, North American flora. until the end of the 21st century, twice more than Nevertheless, knowledge of the American Arctic’s the global mean (IPCC 2014). Recent decades have seaweeds is, at best, sketchy – in particular, in terms seen massive loss of Arctic sea ice, combined with of their biodiversity, ecology, biomass and contribu- rising sea surface temperature in the ice-free areas tions to biogeochemical cycles of the Arctic. There in the summer – accelerating over the last decade is a pressing need for an inventory of seaweeds of to a loss exceeding 2 million km2 with a new mini- the American High Arctic considering that it would mum reached in 2012 (Parkinson and Comiso 2013, constitute an important baseline dataset, which Kwok 2015) which is unprecedented for the last needs to be completed prior to the major environ- 1,450 years at least (Kinnard et al. 2011). The disap- mental changes that have started in recent years. A pearance of Arctic summer sea ice is considered a recent study (Saunders and McDevit 2013) has high- critical tipping element for the global environment lighted the need of complementing morphology- (Lenton et al. 2008) and contrasts the development based identifications of macroalgae by DNA barcod- in the Antarctic (Turner and Overland 2009). The ing and that much of the current data, at least for transition from a high-albedo sea ice surface to an the Canadian Arctic, should be used with caution – open sea, absorbing most of the solar irradiance, is also because purely morphological approaches may also a major factor amplifying warming in the Arctic miss part of the actual diversity. DNA barcoding is (Serreze and Barry 2011). A recent study (Halfar widely considered a suitable approach for identify- et al. 2013) provided a high-resolution, multi-cen- ing marine taxa due to lack of reliable morphologi- tury time series documenting the decline of Arctic cal features for diagnosis (Radulovici et al. 2010). sea ice, using the buildup of coralline red algae as The scope of this study was to conduct a state-of- proxy. This development may have far-reaching the-art identification of the macroalgal flora of the environmental, political, and socio-economic northern Baffin Island region for establishing a spe- impacts for the Arctic and the entire world (Hassol cies checklist, based upon an expedition in summer 2004), including the opening of new, trans-Arctic 2009 (led by FCK) and unpublished materials from shipping routes (Smith and Stephenson 2013) and previous expeditions (led by RTW). A major driver major ecological consequences both in the sea and was the consideration that there is an urgent need on land (Post et al. 2013). Sea ice (with variable for such a survey for establishing an important snow cover) creates a spatially and seasonally very knowledge base to understand diversity changes heterogeneous light environment for the light-lim- with the rapid climate change in the region. Our ited Arctic shallow benthic ecosystems at the under- 2009 expedition aimed to complement collections side of the ice (Glud et al. 2007). of several decades, enhanced by the availability of Seaweeds are major primary producers and consti- DNA barcoding (Saunders and McDevit 2013) and tute significant standing stock in Arctic inshore algal culturing based on the Germling Emergence waters. In Young Sound, a study site in NE Green- Method (Peters et al. 2015). The chosen study site land, comparable to those in northern Baffin Island at Cape Hatt and Ragged Channel had been the site discussed here, macroalgae accounted for 23% of of a major investigation about the effects of an oil the fjord’s primary production, compared to 16% spill in the Arctic marine environment, the Baffin for benthic diatoms and 60% for phytoplankton Island Oil Spill (BIOS) project (Snow et al. 1987) (Glud et al. 2002). At the same site, foliose macroal- which included a preliminary survey of the site’s gae occurred in the depth range of 2–25 m. They dominant seaweed species (Cross et al. 1987). Given contributed markedly to primary production in shal- that our data were generated in the Eclipse Sound/ low water but became insignificant at water depths Ragged Channel area of northern Baffin Island, it is >15 m, while benthic diatoms contributed most to at present not clear to what extent they will be rele- primary production at intermediate water depths vant to the wider Canadian Archipelago also consid- (Krause-Jensen et al. 2007). Here, at water depths ering that studies on macrofauna in the region greater than 30 m, only coralline algae occurred (Cusson et al. 2007, Piepenburg et al. 2011, Gold- (Roberts et al. 2002, Krause-Jensen et al. 2007). smit et al. 2014) have shown considerable diversity even at small spatial scales. 534 FRITHJOF C. KUPPER€ ET AL. Also, the approach applied in this study is unprece- (Muller€ and Ramırez 1994). Where appropriate, algal speci- dented for the Arctic as a whole in that it combines mens were investigated in the field with a small compound 9 9 9 an array of complementary techniques. The isolation microscope with 25 , 100 and 750 magnification. During the dives and where appropriate (e.g., to assess coverage or of algal cultures from sediment and other benthic canopy composition), biomass estimates were made by visual substratum samples is particularly suitable for study- assessment in rough classes (no vegetation, partial cover, or ing the algal flora of remote locations (Muller€ and complete cover, respectively – not shown). Ramırez 1994), complementing the collection of Diving also enabled the collection of sediment and benthic herbarium specimens on-site, documentation by substratum samples in sterile 15 or 50 mL FalconTM tubes. underwater photography and filming and the evalua- Samples were collected between 21 and 30 August 2009 in tion of historic herbarium records, in order to cap- order to cover all types of substratum occurring in the study region.
Recommended publications
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • M., 2012. Brown Algae from Chaojing, Keelung City, Taiwan. Memoirs Of
    ῒῐΐ ῌ (48), pp. 149ῌ157, 2012 ῕ 3 ῑ 28 ῔ Mem. Natl. Mus. Nat. Sci., Tokyo, (48), pp. 149ῌ157, March28, 2012 Brown Algae from Chaojing, Keelung City, Taiwan Taiju Kitayama1, ῍ and Showe-Mei Lin2 1 Department of Botany, National Museum of Nature and Science, 4ῌ1ῌ1 Amakubo, Tsukuba, Ibaraki 305ῌ0005, Japan 2 Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China ῍ E-mail: [email protected] Abstract. Sixteen species of brown algae (Phaeophyceae) were reported from the shore of Chaojing, Keelung, Taiwan. Among them eight species belong to the Dictyotales and two to the Fucales. Consequently, the seaweed community of Chaojing is considered as typical of subtropical one, while it has also several temperate species together. Spatoglossum asperum, Ralfsia verrucosa, Feldmannia irregularis and Scytosiphon gracilis are new records for Taiwan. Key words: brown algae, Feldmannia irregularis, flora, Keelung, Phaeophyceae, Spatoglossum asperum, Taiwan. brown algae. Introduction Brown algae (Phaeophyceae, Ochrophyta, Materials and Methods kingdom Chromista) are most important bo- tanical components of coastal marine com- The collections of brown algae were carried munities, in terms of productivity and biomass. out at the coast of Chaojing, Keelung City, In Taiwan the marine macro-algal flora has Taiwan (33῍07῎49῏N, 139῍48῎24῏E) on been well investigated and published numerous March 2, March 3, May 25, May 27 in 2010. reports by many algologists since Martens The samples were collected from both inter- (1868) and there had been recorded over 500 tidal zone and subtidal zone by walking and species of marine algae from the coasts and snorkeling.
    [Show full text]
  • BROWN ALGAE [147 Species] (
    CHECKLIST of the SEAWEEDS OF IRELAND: BROWN ALGAE [147 species] (http://seaweed.ucg.ie/Ireland/Check-listPhIre.html) PHAEOPHYTA: PHAEOPHYCEAE ECTOCARPALES Ectocarpaceae Acinetospora Bornet Acinetospora crinita (Carmichael ex Harvey) Kornmann Dichosporangium Hauck Dichosporangium chordariae Wollny Ectocarpus Lyngbye Ectocarpus fasciculatus Harvey Ectocarpus siliculosus (Dillwyn) Lyngbye Feldmannia Hamel Feldmannia globifera (Kützing) Hamel Feldmannia simplex (P Crouan et H Crouan) Hamel Hincksia J E Gray - Formerly Giffordia; see Silva in Silva et al. (1987) Hincksia granulosa (J E Smith) P C Silva - Synonym: Giffordia granulosa (J E Smith) Hamel Hincksia hincksiae (Harvey) P C Silva - Synonym: Giffordia hincksiae (Harvey) Hamel Hincksia mitchelliae (Harvey) P C Silva - Synonym: Giffordia mitchelliae (Harvey) Hamel Hincksia ovata (Kjellman) P C Silva - Synonym: Giffordia ovata (Kjellman) Kylin - See Morton (1994, p.32) Hincksia sandriana (Zanardini) P C Silva - Synonym: Giffordia sandriana (Zanardini) Hamel - Only known from Co. Down; see Morton (1994, p.32) Hincksia secunda (Kützing) P C Silva - Synonym: Giffordia secunda (Kützing) Batters Herponema J Agardh Herponema solitarium (Sauvageau) Hamel Herponema velutinum (Greville) J Agardh Kuetzingiella Kornmann Kuetzingiella battersii (Bornet) Kornmann Kuetzingiella holmesii (Batters) Russell Laminariocolax Kylin Laminariocolax tomentosoides (Farlow) Kylin Mikrosyphar Kuckuck Mikrosyphar polysiphoniae Kuckuck Mikrosyphar porphyrae Kuckuck Phaeostroma Kuckuck Phaeostroma pustulosum Kuckuck
    [Show full text]
  • Laminaria Saccharina, L
    Vol. 26(2):121-132 Ocean and Polar Research June 2004 Article ÊB:ê ÊbFƶR Êbºö ª~º .~~ 7.³ ³ê n*ÁR\.Áæ;Á;^9ÁBæ\ ]·\ö ¦J æ\² (425-600) ãVê nÖ nÖÖÚ] ÒB 29^ Metal Concentrations in Some Brown Seaweeds from Kongsfjorden on Spitsbergen, Svalbard Islands In-Young Ahn*, Heeseon J. Choi, Jungyoun Ji, Hosung Chung, and Ji Hee Kim Korea Polar Research Institute, KORDI Ansan P.O. Box 29, Seoul 425-600, Korea Abstract : Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn were determined in four arctic brown algae (Laminaria saccharina, L. digitata, Alaria esculenta, Desmarestia aculeata) in an attempt to examine for their metal accumulation capacity and also to assess their contamination levels. Macroalgae were collected from shallow subtidal waters (<20 m) of Kongsfjorden (Kings Bay) on Spitsbergen during the period of the late July to early August 2003. Metal concentrations highly varied between sampling sites, species and tissue parts. Input of melt-water laden with terrigenous sediment particles seemed to have a large influence on baseline accumulations of some metals (Al, Fe, Mn, Pb etc.) in the macroalgae, causing a significant spatial variation. There were also significant concentration differences between the young and old tissue parts in L. saccharina, L. digitata and A. esculenta. While Al, Fe, Mn, Pb were higher in the perennial parts below meristematic region (excluding holdfast), Cd and As concentrations were significantly higher in the young blades above the meristematic region. Zn and Cr, on the other hand, showed little differences between the tissue parts. The highest metal concentrations were found in D.
    [Show full text]
  • New Records of Benthic Brown Algae (Ochrophyta) from Hainan Island (1990 - 2016)
    Titlyanova TV et al. Ochrophyta from Hainan Data Paper New records of benthic brown algae (Ochrophyta) from Hainan Island (1990 - 2016) Tamara V. Titlyanova1, Eduard A. Titlyanov1, Li Xiubao2, Bangmei Xia3, Inka Bartsch4 1National Scientific Centre of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevskogo 17, Vladivostok, 690041, Russia; 2Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 3Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, PR China; 4Alfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany Corresponding author: E Titlyanov, e-mail: [email protected] Abstract This study reports on the intertidal and shallow subtidal brown algal flora from Hainan Island in the South China Sea, based on extensive sample collection conducted in 1990, 1992 and 2008−2016. The analysis revealed 27 new records of brown algae for Hainan Island, including 5 species which also constitute new records for China. 21 of these species are de- scribed with photographs and an annotated list of all species with information on life forms, habitat (localities and tidal zones) and their geographical distribution is provided. Keywords: Hainan Island, new records, seaweeds, brown algae Introduction et al. 1994; Hodgson & Yau 1997; Tadashi et al. 2008). Overall, algal species richness also changed. Hainan Island is located on the subtropical northern Partial inventory of the benthic flora of Hainan has periphery of the Pacific Ocean in the South China Sea already been carried out (Titlyanov et al. 2011a, 2015, 2016; (18˚10′-20˚9′ N, 108˚37′-111˚1′ E).
    [Show full text]
  • Le Modèle Algue Brune Pour L'analyse Fonctionnelle Et Évolutive Du
    Le modèle algue brune pour l’analyse fonctionnelle et évolutive du déterminisme sexuel Alexandre Cormier To cite this version: Alexandre Cormier. Le modèle algue brune pour l’analyse fonctionnelle et évolutive du déterminisme sexuel. Bio-informatique [q-bio.QM]. Université Pierre et Marie Curie - Paris VI, 2015. Français. NNT : 2015PA066646. tel-01360550 HAL Id: tel-01360550 https://tel.archives-ouvertes.fr/tel-01360550 Submitted on 6 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie Ecole doctorale Complexité du vivant (ED 515) Laboratoire de Biologie Intégrative des Modèles Marins UMR 8227 Equipe de Génétique des algues, Station Biologique de Roscoff Le modèle algue brune pour l’analyse fonctionnelle et évolutive du déterminisme sexuel Par Alexandre Cormier Thèse de doctorat en Bio-informatique Dirigée par Susana Coelho et Mark Cock Présentée et soutenue publiquement le 16 novembre 2015 Devant le jury composé de : Dr. Leroy Philipe (INRA, Clermont-Ferrand) Rapporteur Dr. Renou Jean-Pierre (INRA, Angers) : Rapporteur Pr. Carbone Alessandra (UPMC, Paris) : Examinatrice Dr. Brunaud Véronique (INRA, Orsay) : Examinatrice Dr. Le Roux Frédérique (Ifremer, Roscoff) : Représentante ED 515 Dr. Coelho Susana (CNRS-UPMC, Roscoff): Directrice de thèse Dr.
    [Show full text]
  • New Records of Marine Algae from the 1974 R /V Dobbin Cruise to the Gulf of California
    SMITHSONIAN CONTRIBUTIONS TO BOTANY NUMBER 34 New Records of Marine Algae from the 1974 R /V Dobbin Cruise to the Gulf of California James N. Norris and Xatina E. Bucher SMITHSONIAN INSTITUTION PRESS City of Washington 1976 ABSTRACT Norris, J. N., and K. E. Bucher. New Records of Marine Algae from the 1974 R/V Dolphin Cruise to the Gulf of California. Smithsonian Contributions to Botany, number 34, 22 pages, 13 figures, 1976.-Six species of benthic marine algae (one Chlorophyta, two Phaeophyta, and three Rhodophyta) are newly reported from the Gulf of California, hfexico. Species of Halicystis, Sporochnus, Bonnemaisonia, Dudresnnya, and Sebdenia represent genera new to the Gulf, with the last being new to North America. The distribu~ionof twelve other species is extended. Two new nomenclatural combinations, Dasya bailloziviana var. nudicaulus and Dasya baillouviana var, stanfordiana, are proposed. The morphological variation of some species is discussed. Spermatangia of Dudresnnya colombiana, and tetrasporangia and spermatangia of Kallymenia pertusa are re- ported and described for the first time. OFFICIALPUBLICATION DATE is handstam ed in a limited number of initial copies and is recorded in the Institution's annual report, Srnit!sonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllum japonicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Norris, James N. New records of marine algae from the 1974 R/V Dolphin cruise to the Gulf of California. (Smithsonian contributions to botany ; no. 34) Bibliography: p. 1. Marine algae-California, Gulf of. 2. R/V Dolphin (Ship) I. Bucher, Katina E., joint author. 11. Title 111.
    [Show full text]
  • SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
    PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017.
    [Show full text]
  • The Classification of Lower Organisms
    The Classification of Lower Organisms Ernst Hkinrich Haickei, in 1874 From Rolschc (1906). By permission of Macrae Smith Company. C f3 The Classification of LOWER ORGANISMS By HERBERT FAULKNER COPELAND \ PACIFIC ^.,^,kfi^..^ BOOKS PALO ALTO, CALIFORNIA Copyright 1956 by Herbert F. Copeland Library of Congress Catalog Card Number 56-7944 Published by PACIFIC BOOKS Palo Alto, California Printed and bound in the United States of America CONTENTS Chapter Page I. Introduction 1 II. An Essay on Nomenclature 6 III. Kingdom Mychota 12 Phylum Archezoa 17 Class 1. Schizophyta 18 Order 1. Schizosporea 18 Order 2. Actinomycetalea 24 Order 3. Caulobacterialea 25 Class 2. Myxoschizomycetes 27 Order 1. Myxobactralea 27 Order 2. Spirochaetalea 28 Class 3. Archiplastidea 29 Order 1. Rhodobacteria 31 Order 2. Sphaerotilalea 33 Order 3. Coccogonea 33 Order 4. Gloiophycea 33 IV. Kingdom Protoctista 37 V. Phylum Rhodophyta 40 Class 1. Bangialea 41 Order Bangiacea 41 Class 2. Heterocarpea 44 Order 1. Cryptospermea 47 Order 2. Sphaerococcoidea 47 Order 3. Gelidialea 49 Order 4. Furccllariea 50 Order 5. Coeloblastea 51 Order 6. Floridea 51 VI. Phylum Phaeophyta 53 Class 1. Heterokonta 55 Order 1. Ochromonadalea 57 Order 2. Silicoflagellata 61 Order 3. Vaucheriacea 63 Order 4. Choanoflagellata 67 Order 5. Hyphochytrialea 69 Class 2. Bacillariacea 69 Order 1. Disciformia 73 Order 2. Diatomea 74 Class 3. Oomycetes 76 Order 1. Saprolegnina 77 Order 2. Peronosporina 80 Order 3. Lagenidialea 81 Class 4. Melanophycea 82 Order 1 . Phaeozoosporea 86 Order 2. Sphacelarialea 86 Order 3. Dictyotea 86 Order 4. Sporochnoidea 87 V ly Chapter Page Orders. Cutlerialea 88 Order 6.
    [Show full text]
  • Finding of Alien Brown Macroalgae Chorda Tomentosa Lyngb. in the Ukrainian Black Sea Coast
    J. Black Sea/Mediterranean Environment Vol. 21, No. 2: 227-231 (2015) SHORT COMMUNICATION Finding of alien brown macroalgae Chorda tomentosa Lyngb. in the Ukrainian Black Sea coast Galina Minicheva Institute of Marine Biology, National Academy of Sciences of Ukraine, 37 Pushkinskaya St., Odessa 65011, UKRAINE Corresponding author: [email protected] Abstract Brown algae Chorda tomentosa Lyngb. 1819, representative of order Laminariales Mig. 1909, was found in the north-western part of the Black Sea (Ukraine, Odessa Bay, Cape Bolshoi Fontan) in spring 2015. This is a new invasive species in the Black Sea ecosystem and the only representative of brown laminarian algae. Ecological activity of this species is 82.2±4.3 m2·kg-1, that corresponds to the nutrient level of the area where it was found. Keywords : Chorda tomentosa, alien (biological invasion, non-indigenous species), Black Sea, Ukraine Development of sporophytic phase of brown algae Chorda tomentosa (genus Chorda, family Chordaceae, order Laminariales, class Phaeophyceae, subclass Fucophycidae, division Ochrophyta) (http://www.algaebase.org) was found on April 30, 2015 in the Cape Bolshoi Fontan (north-western Black Sea, Ukraine, Odessa Bay: 46° 22.469 N, 30° 45.249 E) during underwater survey on the sandy and shelly substratum at the depth of 5–8 m and temperature of 9оС (Figure 1). Identification of the species was performed taking into account the fact that the genus Chorda contains only two species – C. filum (L.) Lam. and C. tomentosa Lyngb. (Boldumanu 1990). The first one has «naked» thallus, while C. tomentosa has much fibrils between one-celled sporothecae and paraphyses; the fibrils have the same diameter all along their lengths.
    [Show full text]
  • Barcoding of Cryptic Stages of Marine Brown Algae Isolated from Incubated Substratum Reveals High Diversity in Acinetosporaceae (Ectocarpales, Phaeophyceae)1
    Cryptogamie, Algologie, 2015, 36 (1): 3-29 © 2015 Adac. Tous droits réservés Barcoding of cryptic stages of marine brown algae isolated from incubated substratum reveals high diversity in Acinetosporaceae (Ectocarpales, Phaeophyceae)1 Akira F. PETERS a*, Lucía COUCEIRO b, Konstantinos TSIAMIS c, Frithjof C. KÜPPER d & Myriam VALERO b aBezhin Rosko, 29250 Santec, France and FR2424, Station Biologique, 29682 Roscoff Cedex, France bUMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités UPMC, Station Biologique de Roscoff, 29688 Roscoff Cedex, France cHellenic Centre for Marine Research (HCMR), Institute of Oceanography, Anavyssos 19013, Attica, Greece dOceanlab, University of Aberdeen, Main Street, Newburgh AB41 6AA, Scotland, UK Abstract – To identify cryptic stages of marine brown macroalgae present in the “bank of microscopic forms”, we incubated natural substrata of different geographical origins and isolated emerging Phaeophyceae into clonal cultures. A total of 431 clones were subsequently identified by barcoding using 5’-COI. A proportion of 98% of the isolates belonged to the Ectocarpales. The distribution of pairwise genetic distances revealed a K2P divergence of 1.8% as species-level cut-off. Using this threshold, the samples were ascribed to 83 different species, 39 (47%) of which were identified through reference sequences or morphology. In the Ectocarpaceae, 16 lineages of Ectocarpus fulfilled the barcode criterion for different species, while three putative new species were detected. In the Chordariaceae, numerous microthalli were microstages of known macroscopic taxa. A separate cluster contained Hecatonema maculans and other microscopic species. Taxa traditionally classified in Acinetosporaceae were split in two species-rich groups containing Pylaiella and Hincksia in one and Acinetospora in the other.
    [Show full text]
  • Seaweeds of California Green Algae
    PDF version Remove references Seaweeds of California (draft: Sun Nov 24 15:32:39 2019) This page provides current names for California seaweed species, including those whose names have changed since the publication of Marine Algae of California (Abbott & Hollenberg 1976). Both former names (1976) and current names are provided. This list is organized by group (green, brown, red algae); within each group are genera and species in alphabetical order. California seaweeds discovered or described since 1976 are indicated by an asterisk. This is a draft of an on-going project. If you have questions or comments, please contact Kathy Ann Miller, University Herbarium, University of California at Berkeley. [email protected] Green Algae Blidingia minima (Nägeli ex Kützing) Kylin Blidingia minima var. vexata (Setchell & N.L. Gardner) J.N. Norris Former name: Blidingia minima var. subsalsa (Kjellman) R.F. Scagel Current name: Blidingia subsalsa (Kjellman) R.F. Scagel et al. Kornmann, P. & Sahling, P.H. 1978. Die Blidingia-Arten von Helgoland (Ulvales, Chlorophyta). Helgoländer Wissenschaftliche Meeresuntersuchungen 31: 391-413. Scagel, R.F., Gabrielson, P.W., Garbary, D.J., Golden, L., Hawkes, M.W., Lindstrom, S.C., Oliveira, J.C. & Widdowson, T.B. 1989. A synopsis of the benthic marine algae of British Columbia, southeast Alaska, Washington and Oregon. Phycological Contributions, University of British Columbia 3: vi + 532. Bolbocoleon piliferum Pringsheim Bryopsis corticulans Setchell Bryopsis hypnoides Lamouroux Former name: Bryopsis pennatula J. Agardh Current name: Bryopsis pennata var. minor J. Agardh Silva, P.C., Basson, P.W. & Moe, R.L. 1996. Catalogue of the benthic marine algae of the Indian Ocean.
    [Show full text]