Non-Random Seed Dispersal by Lemur Frugivores

Total Page:16

File Type:pdf, Size:1020Kb

Non-Random Seed Dispersal by Lemur Frugivores RICE UNIVERSITY Nonrandom Seed Dispersal by Lemur Frugivores: Mechanism, Patterns and Impacts by Onja Harinala F.E. Razafindratsima A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Doctor of Philosophy APPROVED, THESIS COMMITTEE: ArnyU! Dunham, Chair Assistant Professor of BioScienees Volker H. Associate Professor of BioScienees Evan Siemann Harry C. and Olga K. Wiess Professor of BioScienees Caroline A. Masiello Associate Professor of Earth Science _ Elizabeth M. Erhart Department Chair and Associate Professor of Anthropology TSU San Marcos HOUSTON, TEXAS March 2015 ABSTRACT Nonrandom Seed Dispersal by Lemur Frugivores: Mechanism, Patterns and Impacts by Onja Harinala F.E. Razafindratsima Frugivores act as seed-dispersal agents in many ecosystems. Thus, understanding the roles and impacts of frugivore-mediated seed dispersal on plant spatial structure and plant-plant associations is important to understand the structure of plant communities. Frugivore-mediated seed dispersal is behaviorally driven, generating nonrandom patterns of seed dispersion; but, we know relatively little about how this might affect plant populations or communities. I examined how frugivores affected plants from the individual level to the population and community levels. I used modeling, trait-based and phylogenetic approaches combined with field observations and experiments, focusing on seed dispersal by three frugivorous lemur species in the biodiverse rainforest of Ranomafana National Park, Madagascar. An analysis of traits suggested that 84% of trees in Ranomafana are adapted for animal dispersal, of which 74% are dispersed by these three lemur species, indicating their role as generalist dispersers. The distribution of fruit and seed size of bird-dispersed species was nested within the wide spectrum of size distribution associated with lemur dispersal. Nonrandom seed dispersal by these three frugivores increased per capita recruitment of the seeds of a long-lived canopy tree, Cryptocarya crassifolia, by four-fold compared with no dispersal, even though it was not an overall advantage compared to random dispersal. The three frugivores not only iii dispersed seeds away from parent and conspecific adult-trees, but also biased seed dispersal toward certain microhabitats. By using fruiting trees as seed dispersal foci, lemur frugivores structure the spatial associations between dispersed seeds and adult- trees nonrandomly, in terms of fruiting time, dispersal mode and phylogenetic relatedness. However, lemur-dispersed tree species were not more likely to be each other’s neighbors as adults. Interestingly, co-fruiting neighboring trees sharing lemur dispersers were more phylogenetically distant than expected by chance despite a phylogenetic signal in lemur dispersal mode, although there was no phylogenetic signal in the timing of fruiting among lemur-dispersed tree species. Results suggest an important link between frugivore foraging behavior and the spatial, temporal and phylogenetic patterning of seed dispersal. The important role of frugivores in structuring seed dispersion and seed-adult plant associations has critical implications for plant-plant interactions, biodiversity patterns and community structure. iv Acknowledgments First of all, I would like to express my gratitude to my advisor, Amy Dunham, for being an excellent mentor. Her wisdom, intelligence, guidance, support, encouragement, enthusiasm, and patience have tremendously helped me grow professionally and personally over the years. Thank you in particular for accepting me to work in your lab, letting me explore my passion for lemur ecology, pushing me to think outside the box and be better in everything I do, working closely with me to publish my research findings and to prepare proposals for grants and fellowships, providing me with an excellent atmosphere and guidance for doing research, always making the time for me, and for being my “hiking buddy” along the crazy path of Ranomafana terrain. I have learned a lot from you. I am also thankful to my committee, Evan Siemann, Volker Rudolf, Elizabeth Erhart and Caroline Masiello for their guidance and advice throughout my study, and for their substantial comments and insights on my field research plans and analyses. Thanks also to Thomas Jones for his help with analyzing lemur movement, and for discussions about statistics. I am also grateful to Jean Aroom for her helpful assistance with the use of GIS and associated programs. I have also benefited from advice and assistance from other faculty outside of Rice, including Kenneth Whitney, Clive Nuttman, Joerg Ganzhorn, Andrea Baden, Jonah Ratsimbazafy and Kerry Brown. I am grateful to Barbara Martinez, Nirilanto Ramamonjisoa, Haldre Rogers and Patricia Wright for being such great role models and mentors. Your words of encouragements and wisdom, your friendship and your support have helped me a lot; in many ways, you have been great examples to me of successful women researchers. v My PhD studies and field research would not have been possible without the generous financial support of Philanthropic Educational Organization (International Peace Scholarship), The Leakey Foundation (Franklin Mosher Baldwin Fellowship), Schlumberger Foundation (Faculty For The Future fellowship), Garden Club of America Award in Tropical Botany, International Foundation for Science (grant no. D/4985-1 and D/4985-2), The Rufford Foundation (grant no. 5748-1, 11288-2, and 13874-B), Primate Conservation Inc. (No. 908), The Explorers Club Exploration Fund, Idea Wild, Primate Society of Great Britain, Centre ValBio, and Rice University including the Nettie S. Autrey Fellowship, Wagoner Foreign Study Fellowship and Rice Centennial Award. MICET (Madagascar Institut pour la Conservation des Ecosystèmes Tropicaux) and Centre ValBio were extremely helpful with logistics while I was in Antananarivo and in Ranomafana. I would like to thank all of their staff for making my field experience smooth and for going above and beyond in helping me and my research team. Special thanks to Eileen Larney, John Caddle, Prisca Andriambinintsoa, Pascal Rabeson, Desiré Randrianarisata, Jean de Dieu Ramanantsoa, Paul Rakotonirina, Jean-Claude Razafimahaimodison, Benjamin Andriamiahaja, Benjamin Randrianambinina, Jean Rakotoarison, and Tiana Razafindratsita. I would also like to thank Madagascar National Parks and the Malagasy Ministry of Forest and Water for research permission. Thanks also to the Missouri Botanical Garden in St-Louis for access to their herbarium collections, and to the “Parc Botanique et Zoologique de Tsimbazaza” in Antananarivo for help with plant species identifications. Thanks also to Coke Smith, Stacey Tecot, Noel Rowe and Volker Rudolf for providing awesome lemur pictures. vi I could not have completed my fieldwork without the support and assistance of many people, including field technicians, local villagers, and undergraduates. I am grateful to Jean-Claude Ramanandraibe, Nerée Beson, Paul Rasabo, Justin Solo, Georges Razafindrakoto, Auguste Pela, Armand Razafitsiafajato, Jocelyn Mamiharilala, Victor Rasendry, Marolahy, Leroa, Velomaro, and Letsara for their valuable assistance with fieldwork. Your amazing knowledge of the fauna and flora in Ranomafana has been extremely valuable for my research, and your help greatly improved my skills in botanical identifications and lemur observations. Thanks also for showing me all the wonders of Ranomafana forest and its surroundings, and for teaching me how to survive in the forest. I enjoyed very much your company in the field and learning about your culture. I would also like to thank the undergraduates who helped me in collecting data both in field and in lab: Miora Andriamalala, Raoby Solohely, Parfait Rafalinirina, Savina Venkova, Syia Mehtani, Zo Andriampenomanana and Jake Krauss. Thank you for your valuable contribution. Thanks also to Irene Tomaschewski for help with the biochemical analyses. I am also thankful to all the local villagers in Ranomafana who helped my research team as porters, cooks and messengers during our field expeditions. Thanks also to Dave, José, Claude, Tahiana, Adafi and Sitraka for being great drivers for my team and my humongous field gears making the 11-hours difficult ride to/from Ranomafana less painful, and for being patient with my multiple stops. Thanks also to Franck Rabenahy and the other undergraduate and graduate students working at Centre ValBio for making my stay in Ranomafana a memorable and pleasant one, and for making me laugh during the difficult times of fieldwork. vii I would also like to thank the graduate students and post-docs, in the Ecology and Evolutionary Biology program at Rice University, with whom I have interacted for the past 6 years. Thanks to Brian Maitner, Ben van Allen, Andrew Bibian, Scott Chamberlain, and Patrick Clay for helpful discussions with data analyses. Thanks also to Maria Meza-Lopez, Chris Roy, Ching-Hua Shih, Therese Lamperty, Nick Rasmussen, Chris Dibble, and all the other graduate students in the EEB program for making my experience at Rice enjoyable. I am also thankful to Rice Office of International Students and Scholars for keeping me on the right and legal path from the start of my stay in the US; and to Laura Gibson, Diane Hatton, Lauren Hanson and Andrea Zorbas of the EEB program at Rice University for their logistical and administrative support. The support of my family and friends has also been great through these years. I am so grateful to my husband,
Recommended publications
  • Observations of Pallas's Long-Tongued Bat, Glossophaga Soricina
    Copyright© nov 2017- fev 2018 do(s) autor(es). Publicado pela ESFA [on line] http://www.naturezaonline.com.br Silva SSP, Guedes PG, Fagundes TMC e Silva AF. Observations of Pallas’s long-tongued bat, Glossophaga soricina (Pallas, 1766) (Chiroptera, Glossopha- ginae), visiting Dracaena reflexa Lam (Aspargaceae) flowers in an urban area of Rio de Janeiro (Brazil) Natureza online 15 (3): 007-013 Submetido em: 13/12/2016 Revisado em: 21/02/2017 Aceito em: 28/06/2017 Observations of Pallas’s long-tongued bat, Glossophaga soricina (Pallas, 1766) (Chiroptera, Glossophaginae), visiting Dracaena reflexa Lam (Aspargaceae) flowers in an urban area of Rio de Janeiro (Brazil) Observações do morcego beija-flor, Glossophaga soricina (Pallas, 1766) (Chiroptera, Glossophaginae), visitando flores de Dracaena reflexa Lam (Aspargaceae) numa área urbana do Rio de Janeiro (Brasil) Shirley Seixas Pereira da Silva1*, Patrícia Gonçalves Guedes1,3, Tatiana Maria Costa Fagundes2 e Ademar Ferreira da Silva2 1 Instituto Resgatando o Verde, Rua Tirol, 536, sala 609, Jacarepaguá, Rio de Janeiro, RJ, 22750-009. 2 Fundação Téc- nico-Educacional Souza Marques, Rio de Janeiro, RJ. 3 Departamento de Vertebrados, Museu Nacional - UFRJ, Rio de Janeiro, RJ. * Autor para correspondência: [email protected] Resumo O Gênero Dracaena reúne 40 espécies de ár- morcegos visitantes das flores, foram estendidas re- vores e arbustos, nativos da África, Madagascar, Ilhas des de neblina próximas aos vegetais em floração. Maurício, sul da Ásia e América Central. Dracaena Isto resultou na captura de oito espécimes de Glosso- reflexa Lam é uma espécie exótica arbórea nativa de phaga soricina (Pallas, 1766). Esses Glossophaginae Madagascar e ilhas próximas, com aproximadamente abordaram as flores por meio de breves voos, quando quatro a seis metros de altura, amplamente utilizada no tocaram os órgãos reprodutivos das flores com a por- paisagismo urbano e decoração de interiores.
    [Show full text]
  • Ornamental Garden Plants of the Guianas, Part 3
    ; Fig. 170. Solandra longiflora (Solanaceae). 7. Solanum Linnaeus Annual or perennial, armed or unarmed herbs, shrubs, vines or trees. Leaves alternate, simple or compound, sessile or petiolate. Inflorescence an axillary, extra-axillary or terminal raceme, cyme, corymb or panicle. Flowers regular, or sometimes irregular; calyx (4-) 5 (-10)- toothed; corolla rotate, 5 (-6)-lobed. Stamens 5, exserted; anthers united over the style, dehiscing by 2 apical pores. Fruit a 2-celled berry; seeds numerous, reniform. Key to Species 1. Trees or shrubs; stems armed with spines; leaves simple or lobed, not pinnately compound; inflorescence a raceme 1. S. macranthum 1. Vines; stems unarmed; leaves pinnately compound; inflorescence a panicle 2. S. seaforthianum 1. Solanum macranthum Dunal, Solanorum Generumque Affinium Synopsis 43 (1816). AARDAPPELBOOM (Surinam); POTATO TREE. Shrub or tree to 9 m; stems and leaves spiny, pubescent. Leaves simple, toothed or up to 10-lobed, to 40 cm. Inflorescence a 7- to 12-flowered raceme. Corolla 5- or 6-lobed, bluish-purple, to 6.3 cm wide. Range: Brazil. Grown as an ornamental in Surinam (Ostendorf, 1962). 2. Solanum seaforthianum Andrews, Botanists Repository 8(104): t.504 (1808). POTATO CREEPER. Vine to 6 m, with petiole-tendrils; stems and leaves unarmed, glabrous. Leaves pinnately compound with 3-9 leaflets, to 20 cm. Inflorescence a many- flowered panicle. Corolla 5-lobed, blue, purple or pinkish, to 5 cm wide. Range:South America. Grown as an ornamental in Surinam (Ostendorf, 1962). Sterculiaceae Monoecious, dioecious or polygamous trees and shrubs. Leaves alternate, simple to palmately compound, petiolate. Inflorescence an axillary panicle, raceme, cyme or thyrse.
    [Show full text]
  • Isolation and Identification of Cyclic Polyketides From
    ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS Mohamad Nurul Azmi Mohamad Taib, Yvan Six, Marc Litaudon, Khalijah Awang To cite this version: Mohamad Nurul Azmi Mohamad Taib, Yvan Six, Marc Litaudon, Khalijah Awang. ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS . Chemical Sciences. Ecole Doctorale Polytechnique; Laboratoires de Synthase Organique (LSO), 2015. English. tel-01260359 HAL Id: tel-01260359 https://pastel.archives-ouvertes.fr/tel-01260359 Submitted on 22 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS MOHAMAD NURUL AZMI BIN MOHAMAD TAIB FACULTY OF SCIENCE UNIVERSITY
    [Show full text]
  • Interdependence of Biodiversity and Development Under Global Change
    Secretariat of the CBD Technical Series No. 54 Convention on Biological Diversity 54 Interdependence of Biodiversity and Development Under Global Change CBD Technical Series No. 54 Interdependence of Biodiversity and Development Under Global Change Published by the Secretariat of the Convention on Biological Diversity ISBN: 92-9225-296-8 Copyright © 2010, Secretariat of the Convention on Biological Diversity The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the Convention on Biological Diversity concern- ing the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views reported in this publication do not necessarily represent those of the Convention on Biological Diversity. This publication may be reproduced for educational or non-profit purposes without special permission from the copyright holders, provided acknowledgement of the source is made. The Secretariat of the Convention would appreciate receiving a copy of any publications that use this document as a source. Citation Ibisch, P.L. & A. Vega E., T.M. Herrmann (eds.) 2010. Interdependence of biodiversity and development under global change. Technical Series No. 54. Secretariat of the Convention on Biological Diversity, Montreal (second corrected edition). Financial support has been provided by the German Federal Ministry for Economic Cooperation and Development For further information, please contact: Secretariat of the Convention on Biological Diversity World Trade Centre 413 St. Jacques Street, Suite 800 Montreal, Quebec, Canada H2Y 1N9 Phone: +1 514 288 2220 Fax: +1 514 288 6588 Email: [email protected] Website: www.cbd.int Typesetting: Em Dash Design Cover photos (top to bottom): Agro-ecosystem used for thousands of years in the vicinities of the Mycenae palace (located about 90 km south-west of Athens, in the north-eastern Peloponnese, Greece).
    [Show full text]
  • Essential Oils Used in Aromatherapy: a Systemic Review
    Asian Pac J Trop Biomed 2015; ▪(▪): 1–11 1 HOSTED BY Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Biomedicine journal homepage: www.elsevier.com/locate/apjtb Review article http://dx.doi.org/10.1016/j.apjtb.2015.05.007 Essential oils used in aromatherapy: A systemic review Babar Ali1, Naser Ali Al-Wabel1, Saiba Shams2, Aftab Ahamad3*, Shah Alam Khan4, Firoz Anwar5* 1College of Pharmacy and Dentistry, Buraydah Colleges, Buraydah, Al-Qassim, P.O. 31717, Saudi Arabia 2Siddhartha Institute of Pharmacy, Dehradun 248001, Uttarakhand, India 3Health Information Technology Department, Jeddah Community College, King Abdulaziz University, Jeddah 21589, Saudi Arabia 4Department of Pharmacy, Oman Medical College, Muscat, Oman 5Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia ARTICLE INFO ABSTRACT Article history: Nowadays, use of alternative and complementary therapies with mainstream medicine has Received 12 Mar 2015 gained the momentum. Aromatherapy is one of the complementary therapies which use Received in revised form essential oils as the major therapeutic agents to treat several diseases. The essential or 4 May, 2nd revised form 8 May 2015 volatile oils are extracted from the flowers, barks, stem, leaves, roots, fruits and other parts Accepted 15 May 2015 of the plant by various methods. It came into existence after the scientists deciphered the Available online xxx antiseptic and skin permeability properties of essential oils. Inhalation, local application and baths are the major methods used in aromatherapy that utilize these oils to penetrate the human skin surface with marked aura. Once the oils are in the system, they remodulate Keywords: themselves and work in a friendly manner at the site of malfunction or at the affected area.
    [Show full text]
  • Echter's 2007 Indoor Plant List
    Echter's Indoor Plant List ABUTILON ASSORTED ABUTILON ASSORTED PATIO TREE ACALYPHA CHENILLE BASKET ACALYPHA CHENILLE HB ACALYPHA FIRE DRAGON ACALYPHA TRICOLOR ADENIUM OBESUM ADENIUM OBESUM DESERT ROSE AEONIUM BLACK ROSE AEONIUM VARIEGATED AESCHYNANTHUS LIPSTICK AFRICAN VIOLET AGAPANTHUS ALBUS AGAPANTHUS MIDNIGHT BLUE AGAPANTHUS PETER PAN AGAPANTHUS QUEEN ANNE AGAPANTHUS STORM CLOUD AGAPANTHUS STREAMLINE AGAPANTHUS SUMMER GOLD AGLAONEMA ABIDJAN AGLAONEMA ASSORTED AGLAONEMA BAY ASSORTED AGLAONEMA CECILIA AGLAONEMA COSMOS AGLAONEMA CRISTINA AGLAONEMA DIAMOND BAY AGLAONEMA EMERALD BAY AGLAONEMA EMERALD BEAUTY AGLAONEMA GOLDEN MADONNA AGLAONEMA HYBRID AGLAONEMA JEWEL OF INDIA AGLAONEMA JUBILEE AGLAONEMA MARIA CHRISTINE AGLAONEMA MARY LOU AGLAONEMA PAINTED PRINCESS Call for daily availability or to special order a particular variety not on this list. Echter's Indoor Plant List AGLAONEMA SAN REMO AGLAONEMA SILVER BAY AGLAONEMA SILVER MOON AGLAONEMA SILVER QUEEN AGLAONEMA SILVERADO AGLAONEMA STARS AGLAONEMA STRIPES ALLAMANDA BROWN BUD TRELLIS ALLAMANDA CHERRY JUBILEE TRELLIS ALLAMANDA YELLOW ALOCASIA BLACK VELVET ALOCASIA POLLY ALOE VERA ALSTROEMERIA ASSORTED ALYOGYNE PURPLE DELIGHT TREE AMARANTH HOPI RED DYE AMARYLLIS ASST. ANGELICA ASSORTED ANIGOZANTHUS KANGAROO PAW ANISE HYSSOP ANISODONTIA ELEGANT LADY ANNUAL ASSORTED ANNUAL RED HOT POT ANTHURIUM ASSORTED APHELANDRA WHITE CLOUD APHELANDRA ZEBRA APHELANDRA ZEBRA PLANT APPLE GOLDEN SENTINEL APPLE SCARLET SENTINEL ARABICA COFFEE PLANT ARABICA COFFEE TREE ARALIA ASSORTED ARALIA BALFOUR ARALIA BALFOURIANA ARALIA BIANCA Call for daily availability or to special order a particular variety not on this list. Echter's Indoor Plant List ARALIA BLACK ARALIA CASTOR ARALIA CELERY LEAF ARALIA CHICKEN GIZZARD ARALIA CHINENSIS ARALIA ELEGANTISSIMA ARALIA FABIAN ARALIA FALSE ARALIA LEMON ARALIA MING ARALIA MING CANE ARALIA ROBIE ARAUCARIA NORFOLK ISL.
    [Show full text]
  • Biomechanics of Selected Arborescent and Shrubby Monocotyledons
    Biomechanics of selected arborescent and shrubby monocotyledons Tom Masselter*, Tobias Haushahn, Samuel Fink and Thomas Speck Full Research Paper Open Access Address: Beilstein J. Nanotechnol. 2016, 7, 1602–1619. Plant Biomechanics Group, Botanic Garden, Faculty of Biology, doi:10.3762/bjnano.7.154 University of Freiburg, Schänzlestraße 1, D-79104 Freiburg im Breisgau, Germany Received: 01 June 2016 Accepted: 01 October 2016 Email: Published: 07 November 2016 Tom Masselter* - [email protected] This article is part of the Thematic Series "Biological and biomimetic * Corresponding author materials and surfaces". Keywords: Guest Editor: S. N. Gorb arborescent monocotyledons; biomechanics; biomimetics; Dracaena; functional morphology © 2016 Masselter et al.; licensee Beilstein-Institut. License and terms: see end of document. Abstract Main aims of the study are a deepened understanding of the mechanically relevant (ultra-)structures and the mechanical behaviour of various arborescent and shrubby monocotyledons and obtaining the structure–function relationships of different structurally conspicuous parts in Dracaena marginata stems. The stems of five different “woody” monocotyledon species were dissected and the mechanical properties of the most noticeable tissues in the five monocotyledons and, additionally, of individual vascular bundles in D. marginata, were tested under tensile stress. Results for Young’s moduli and density of these tissues were assessed as well as the area, critical strain, Young’s modulus and tensile strength of the vascular bundles in Dracaena marginata. These analyses allowed for generating a model for the mechanical interaction of tissues and vascular bundles of the stem in D. marginata as well as filling major “white spots” in property charts for biological materials.
    [Show full text]
  • The Genera of Lauraceae in Madagascar with Nomenclatural Novelties in Cryptocarya
    Notes on the flora of Madagascar, 48 The genera of Lauraceae in Madagascar with nomenclatural novelties in Cryptocarya Henk van der Werff Abstract VAN DER WERFF, H. (2017). The genera of Lauraceae in Madagascar with nomenclatural novelties in Cryptocarya.Candollea 72 : 323-328. In English, English and French abstracts. DOI: http://dx.doi.org/10.15553/c2017v722a8 Two identification keys to the genera of Lauraceae in Madagascar based on or fruiting specimens are provided. For each genus diagnostic characters, estimates of species numbers, recent literature and additional notes are included. Eight species of Ravensara Sonn. are transferred to Cryptocarya R. Br., resulting in five new combinations and three new names. A lectotype is designated for Ravensara affinis Kosterm. ([ Cryptocarya petiolata van der Werff). Résumé VAN DER WERFF, H. (2017). Les genres de Lauraceae à Madagascar, avec des nouveautés nomenclaturales dans le genre Cryptocarya. Candollea 72 : 323-328. En anglais, résumés anglais et français. DOI: http://dx.doi.org/10.15553/c2017v722a8 Deux clés d’identification des genres de Lauraceae à Madagascar basées sur des spécimens en fleur ou en fruit sont fournies. Pour chaque genre, les caractères diagnostiques, l’estimation de son nombre d’espèces, la littérature récente le concernant et des notes supplémentaires sont fournies. Huit espèces de Ravensara Sonn. sont transférées à Cryptocarya R. Br., par cinq nouvelles combinaisons et trois noms nouveaux. Un lectotype est désigné pour Ravensara affinis Kosterm. ([ Cryptocarya petiolata van der Werff). Keywords LAURACEAE – Cryptocarya – Ravensara – Madagascar – identification key - new combinations - new names Address of the author : Missouri Botanical Garden, P.O. Box 299, St.
    [Show full text]
  • In Madagascar and the Comoro Islands
    A revision of the genus Ocotea Aubl. (Lauraceae) in Madagascar and the Comoro Islands Henk VAN DER WERFF Missouri Botanical Garden, P.O. Box 299, St. Louis, MO, 63166 (USA) [email protected] Werff H. van der 2013. — A revision of the genus Ocotea Aubl. (Lauraceae) in Madagascar and the Comoro Islands. Adansonia, sér. 3, 35 (2): 235-279. http://dx.doi.org/10.5252/a2013n2a5 KEY WORDS ABSTRACT Madagascar, A revision of the genus Ocotea Aubl. in Madagascar and the Comoro Islands Comoro Islands, is presented. 35 species are recognized, all endemic to the region. Five species revision, Exsiccatae, are described as new. A key to the species, descriptions, distribution maps and new species. a list of specimens studied are presented. RÉSUMÉ Révision du genre Ocotea Aubl. (Lauraceae) de Madagascar et des Comores. Le genre Ocotea Aubl. est revu pour Madagascar et les Comores, on y reconnaît 35 espèces, toutes endémiques de cette région. Parmi elles, cinq espèces nou- velles sont ici décrites comme nouvelles : O. ambrensis van der Werff, sp. nov., O. glaberrima van der Werff, sp. nov., O. ivohibensis van der Werff, sp. nov., O. spanantha van der Werff, sp. nov. et O. zahamenensis van der Werff, sp. nov. MOTS CLÉS En raison d’un manque d’informations complémentaires, O. macrorhiza Kosterm. Madagascar, est considéré comme incomplètement connu, tandis que deux autres espèces Comores, demeurent provisionnelles. Une clé de détermination (avec une bifurcation évi- révision, Exsiccatae, tant l’emploi parfois délicat du type de nervation), des descriptions, des cartes espèces nouvelles. de répartition et une liste des spécimens étudiés sont fournies.
    [Show full text]
  • Pharmacognostic and Antioxidant Properties of Dracaena Sanderiana Leaves
    antioxidants Article Pharmacognostic and Antioxidant Properties of Dracaena sanderiana Leaves Mei Gee Ong 1, Siti Nur Aishah Mat Yusuf 2 and Vuanghao Lim 2,* 1 School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; [email protected] 2 Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +60-4-562-2427; Fax: +60-4-562-2349 Academic Editors: Farid Chemat and Maryline Abert-Vian Received: 11 July 2016; Accepted: 16 August 2016; Published: 20 August 2016 Abstract: Endogenous and exogenous antioxidants are used to neutralise free radicals and protect the body from free radicals by maintaining the redox balance. The antioxidant properties of Dracaena sanderiana leaves were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and the total phenolic and flavonoid contents were measured. The classes of secondary metabolites were evaluated through pharmacognostic studies, and active compounds were identified by gas chromatography mass-spectrometry (GC-MS). All ethanol-water extracts and D. sanderiana leaf powder were positive for tannins, saponins, terpenoids, cardiac glycosides, and quinones. Flavonoids were present in 100%, 80%, 60%, and 40% ethanol extracts (E100, E80, E60, and E40). E100 showed the highest total flavonoid content, whereas E60 extract showed the highest antioxidant activity and total phenolic content. GC-MS revealed the presence of glycerol, 2,3-dihydro-3,5-dihydroxy-6-methyl-(4H)-pyran-4-one, n-dodecanoic acid, tetradecanoid acid, (n-) hexadecanoid acid, and n-octadecanoic acid in the E60 extract. Keywords: Dracaena sanderiana; antioxidant; DPPH; Total phenolic content (TPC); Total flavonoid content (TFC) 1.
    [Show full text]
  • Dracaena Reflexa „Variegata‟
    Int.J.Curr.Microbiol.App.Sci (2019) 8(2): 3394-3400 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 02 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.802.395 Studies on the Effect of Alternate Media on Growth of “Dracaena reflexa „Variegata‟ M.V. Kavipriya1, A. Sankari1* and D. Jegadeswari2 1Department of Floriculture and Landscaping, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India 2Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India *Corresponding author ABSTRACT K e yw or ds Investigation was carried out during 2017 - 18 to study the effect of alternate media on “Dracaena reflexa growth of “Dracaena reflexa ‘Variegata’ at Department of Floriculture and Landscaping, ‘Variegata’, Coimbatore. The pot experiment was laid out under shade net condition, with eight set of Growing media, treatments comprising various combinations of soil, sand, vermicompost, coco peat, rice coco peat, husk, biochar, perlite and microbial consortia. From the media combinations studied, the Vermicompost treatment involving soil (25%) + coco peat (50%) + vermicompost (15%) + sand (10%) was found to be best consortia for number of leaves, leaf length, leaf width, leaf area, Article Info chlorophyll content at 150 days after planting. Medium containing coco peat (75%) + rice Accepted: husk (10%) + vermicompost (15%) was found to be best with respect to root length, root 22 January 2019 spread and number of primary roots respectively. Available Online: 10 February 2019 Introduction potted ornamental plants significantly (Vendrame et al., 2005). Though garden soil Dracaena reflexa ‘Variegata’ is widely grown is the most readily available growing medium, ornamental potted plant under subtropical and owing to its bulkiness and competency from tropical climates throughout the world.
    [Show full text]
  • Adansonia 30
    A new species and new combinations in Cryptocarya from Madagascar Henk VAN DER WERFF Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299 (USA) [email protected] Van der Werff H. 2008. — A new species and new combinations in Cryptocarya from Mada- gascar. Adansonia, sér. 3, 30 (1) : 41-46. ABSTRACT A new species, Cryptocarya glabrifl ora, is described and illustrated. It diff ers KEY WORDS Lauraceae, from other Malagasy species of Cryptocarya in being entirely glabrous, in its Cryptocarya, coriaceous, obovate or obovate-elliptic leaves with a rounded apex and in its Ravensara, infl orescences being 3.5 to 9 cm long. Eight species of Ravensara, now consid- Madagascar, new species, ered a synonym of Cryptocarya, are transferred to Cryptocarya. New names are new combinations. proposed for six of these eight species. RÉSUMÉ Une nouvelle espèce et des combinaisons nouvelles de Cryptocarya de Madagascar. Une nouvelle espèce, Cryptocarya glabrifl ora, est décrite et illustrée. Elle se dis- MOTS CLÉS Lauraceae, tingue des autres espèces malgaches par son état entièrement glabre, ses feuilles Cryptocarya, coriaces, obovées ou obovées-elliptiques à apex arrondi, et son infl orescence Ravensara, de 3,5 à 9 cm de long. Huit espèces de Ravensara, genre dorénavant considéré Madagascar, espèce nouvelle, comme synonyme de Cryptocarya, sont transférées dans ce dernier ; de nouveaux combinaisons nouvelles. noms sont proposés pour six d’entre elles. ADANSONIA, sér. 3 • 2008 • 30 (1) © Publications Scientifi ques du Muséum national d’Histoire naturelle, Paris. www.adansonia.com 41 Van der Werff H. INTRODUCTION TYPUS. — Madagascar. Toamasina, Vatomandry, Com- mune Ambalabe, W of Sahamahirana stream,19°09’33’’S, Th e genus Ravensara, endemic to Madagascar, was 48°34’40’’E, 21.XI.2004, A.
    [Show full text]