Phytotherapeutic Potential of Bi-Herbal Extract of Cinnamon and Turmeric: in Vivo Antidiabetic Studies R

Total Page:16

File Type:pdf, Size:1020Kb

Phytotherapeutic Potential of Bi-Herbal Extract of Cinnamon and Turmeric: in Vivo Antidiabetic Studies R Sivaranjani et al. Clinical Phytoscience (2021) 7:38 https://doi.org/10.1186/s40816-021-00275-3 ORIGINAL CONTRIBUTION Open Access Phytotherapeutic potential of bi-herbal extract of cinnamon and turmeric: in vivo antidiabetic studies R. Sivaranjani*, T. John Zachariah and N. K. Leela Abstract Background: The spices, cinnamon and turmeric have both culinary and pharmaceutical applications. Earlier studies proved their effect on reducing the symptoms associated with type 2 diabetes, a major lifestyle disease affecting millions world over. In our work, we prepared a bi-herbal extract of cinnamon and turmeric and studied its effect to alleviate the symptoms of type 2 diabetes in rat model. Method: The phenolic rich bi-herbal extract was given to diabetes induced male wistar rats for 28 days at two different concentrations (50 and 150 mg/Kg bwt.). The changes in blood glucose level were monitored at weekly interval. At the end of the experiment, blood serum was collected and used for the estimation of lipid profile, Glucose, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), Total Protein (TP), Albumin, Urea and Creatinine levels. Result: The serum analysis revealed that administration of the bi-herbal extract at 150 mg/Kg bwt. significantly reduced the blood glucose level (152.60 ± 40.2 mg/dL; p < 0.05) of diabetic animals as compared to diabetic control (335.40 ± 67.3 mg/dL; p < 0.05) at the end of 4 weeks. The treatment also resulted in the reduction of total cholesterol and LDL-cholestrol levels as compared to diabetic control animals. The histopathological examination of tissues showed the improvement in pancreatic architecture and restoration of tissue integrity in liver and kidney. Conclusion: The study concludes that methanol extract of combination of cinnamon and turmeric has good hypoglycemic, hypolipidemic and organ protective potential in diabetic rats which could be developed into functional food supplementation for the prevention of type 2 diabetes. Keywords: Cinnamon, Turmeric, Streptozotocin, Antidiabetic, Wistar rats Background insulin injection throughout their life, whereas incidence Non-Insulin Dependent Diabetes Mellitus (NIDDM) of NIDDM can be reduced through changes in food popularly known as Type-2 diabetes is a biochemical habits and lifestyle [3]. Since NIDDM is a complex metabolic disorder wherein the ability of cells to utilize metabolic disorder, single drug treatment options are blood glucose is reduced leads to metabolic abnormal- found to be not effective; moreover prolonged use of ities [1]. By 2025, around 300 million people were esti- synthetic drugs could lead to adverse health impacts. mated to be affected by diabetes mellitus [2]. People Hence, the search for new phytotherapeutic agents from with Insulin-Dependent Diabetes Mellitus (IDDM), natural sources in the form of bioactive compounds has otherwise known as Type-1 diabetes have to rely on assumed global significance [4]. In this regard, herbs and spices are emerged as panacea for many ailments occur- ring due to lifestyle modifications. * Correspondence: [email protected] True Cinnamon, scientifically known as Cinnamomum Division of Crop Production and Post-Harvest Technology, ICAR – Indian Institute of Spices Research, Kozhikode, Kerala 673012, India zeylenium or Cinnamomum verum is reported to have © The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Sivaranjani et al. Clinical Phytoscience (2021) 7:38 Page 2 of 9 numerous biological activities including antifungal, anti- extract (hereafter mentioned as CTE) has the highest microbial, antioxidant, anticancerous, antiviral, antidia- total phenolic content and showed highest antioxidant betic and immunomodulatory activities, to name a few activity (previously published work from our laboratory) [5–8] validated through both in vitro and in vivo assays. [22], were taken for the present study. The suspension Few clinical studies in humans also proved its effect of the extract was prepared by dissolving it in 5% against type 2 diabetes [9, 10]. Hayward et al. [11] com- DMSO, a universally accepted vehicle in oral feeding pared the anti-hyperglycaemic properties of the four studies. major commercial cinnamon types used around the world namely Cinnamomum cassia (Chinese cinnamon), HPLC quantification of curcuminoids and cinnamic acid in C. burmanii (Indonesian cinnamon), C. loureirii CTE (Vietnamese cinnamon) and C. zeylanicum (Ceylon cin- CTE was dissolved completely in HPLC grade methanol namon). Among them, C. zeylanicum showed the great- in the concentration of 1 mg/mL and filtered using est potential to inhibit the formation of advanced 0.45 μm filter before injecting into HPLC. The separ- glycation end products (AGEs) during digestion thus ation of curcuminoids was achieved in Purospher™ RP proved its antihyperglycemic activity. Cinnamon con- C18 column with the dimension of 150 × 4.6 mm, 5 μm tains numerous bioactive compounds of phenolics and (Merck, Germany) using a shimadzu LC-20 HPLC sys- flavonoids category which individually or synergistically tem (Shimadzu, Kyoto, Japan) consists of a binary pump- found to have antidiabetic properties [8]. ing system and photodiode array (PDA) detector. The Like cinnamon, the golden spice turmeric is also re- mobile phase used was Acetonitrile and 0.1% orthophos- ported to have multifaceted biological activities includ- phoric acid (50:50) and eluted at a flow rate of 1 mL/min ing antidiabetic potential [12]. The mode of action of in an isocratic mode. The resulting chromatogram data curcumin, the phytocompound of interest from turmeric was processed using shimaduz LC solution 3.6 software. against diabetic signalling pathway was well-worked out Elution of the compounds was monitored at 425 nm for in the past decade [13–16]. curcuminoids and 274 nm for cinnamic acid and con- Few reports are available on the synergistic activity of centration of these compounds were calculated by com- plant based phenolics among themselves and also with paring the peak area of the standards. The CTE did not other oral antidiabetic drugs for diabetes treatment [17– contain cinnamaldehyde. We hypothesized that the 21]. Yet, it is quite difficult to pinpoint the cause and ef- rigorous process involved in the extract preparation fect relationship of individual phenolic compounds in led to the loss of cinnamaldehyde in it. the extract of combined spices on any disease models. The question of which spices to select for combination Experimental animals poses barriers which could be overcome by careful lit- The experiment was undertaken at animal house facility erature survey and associated traditional knowledge on of CARe – Keralam Ltd., Thrissur, Kerala following use of those spices. Though individual extract of tur- guidelines of Institute Animal Ethics Committee (CKL/ meric and cinnamon in reducing the effect of diabetes in TOX/IAEC/2017–3/95). Thirty albino male wistar rats experimental animals have established with numerous were utilized in this study. Animals were maintained work, the combination of these two spices to that effect under standard laboratory conditions (22 ± 3 °C room has not been tried so far. With this background, the temperature and 50–60% humidity) with alternating present study was undertaken to study the effect of light and dark cycles of 12 h. The rats were fed with pel- phenolic rich bi-herbal extract of cinnamon and tur- let diet ad libitum and were acclimatized to laboratory meric on STZ induced diabetes in wistar rats. conditions for 7 days prior to the experiment. Induction of diabetes was done using single intraperitoneal injec- Materials and methods tion of 30 mg/kg bwt. of streptozotocin (STZ) dissolved Plant collection and preparation in freshly prepared citrate buffer (0.1 M, pH 4.5). Ani- Turmeric variety, IISR Prathibha with high curcumin mals with fasting blood glucose over 200 mg/dL, 3 days content (~ 5%) released from ICAR - IISR and dried bark after STZ administration were considered diabetic and of true cinnamon, Cinnamomum zeylenicum collected they were divided into five groups of 6 rats each for CTE from Alakkode (Kannur) estate of Plantation Corpor- treatment. ation of Kerala Limited were used in the study. The sam- ples were identified and authenticated by the Institute’s Treatment details taxonomist. The dried samples of cinnamon and tur- meric were coarsely ground and mixed in 2:1 ratio and Group 1: Normal control were used in the preparation of sequential extracts Group II: Diabetic control through soxhlet apparatus. Among them, methanol Group III: CTE I (50 mg/kg bwt.) Sivaranjani et al. Clinical Phytoscience (2021) 7:38 Page 3 of 9 Group IV: CTE II (150 mg/kg bwt.) sacrificed at scheduled termination. Histopathological Group V: Glibenclamide positive control (5 mg/kg analysis of the stained tissue samples was done using bwt.) light microscope. The acute oral toxicity study of the extract in female wistar rats at 2000 mg/kg bwt. did not reveal any clinical Statistical analysis signs, mortalities and gross pathological changes due to All the results were expressed as mean ± SEM. The data toxicity (data not shown). Since the IAEC suggested analysis were performed using statistical software pack- using minimum animals, one lower dose and one higher age SPSS version 16 to determine the significant differ- dose was taken based on acute oral toxicity study.
Recommended publications
  • Potential Control of Postharvest Gray Mold of Pomegranate Fruits Caused by Botrytis Cinerea
    11 Env. Biodiv. Soil Security Vol.1, pp. 145- 156 (2017) Potential Control of Postharvest Gray Mold of Pomegranate Fruits Caused by Botrytis Cinerea Samar A. Allam1, Gabr A. Elkot2, Abdelnaser A. Elzaawely1* and Hassan M. El-Zahaby1 1*Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, and 2Department of Agricultural Botany, Faculty of Agriculture, Kafr Elsheikh University, Kafr El Sheikh, Egypt . RAY mold rot, caused by Botrytis cinerea, is one of the most economically significant Gpostharvest diseases in pomegranate fruits. The aim of the current study is to evaluate Mangifera indica, Thymus vulgaris, Origanum majorana, Salix mucronata, Cinnamomum cassia and Zingiber officinale extracts and biocontrol agents for controlling gray mold disease on pomegranate. In vitro results showed that T. vulgaris (T.v), C. cassia (C.c) and Z. officinale (Z.o) extracts possessed highly significant antifungal activities as they completely inhibited the radial growth of B. cinerea at the concentrations of 30000, 20000 and 30000 ppm, respectively. The combination of the aforementioned plant extracts and fungicide Flusilazole (Flu) overcomes the potency of Flu or the plant extracts alone specially C.c+Flu at the rate of (2:1; v/v) since it inhibited the radial growth of B. cinerea with 89.6% inhibition compared to the control. The study also proved that using the aforementioned plant extracts alone or in combination with Flu as well as the bacterial antagonists (Bacillus subtilis or Pseudomonas fluorescens) significantly reduced the loss in fruit weight. Furthermore, they also prolonged the storage period of pomegranate fruits and maintained high-quality parameters including soluble solids content and titratable acidity after cold storage at 5±1°C and 90% RH.
    [Show full text]
  • (Cinnamomum Zeylanicum Blume.) & Naluka/Cassia
    International Journal of Research in Pharmacy and Biosciences Volume 2, Issue 2, February 2015, PP 1-4 ISSN 2394-5885 (Print) & ISSN 2394-5893 (Online) Identification of Adulterants by Pharmacognostical Evaluation: Tvak (Cinnamomum Zeylanicum Blume.) & Naluka/Cassia [Cinnamomum Cassia (Nees & T.Nees.) J.Presl] Nanda Amalesh1, Paul Nirankush1, Gupta Amartya Kumar1, Ganguly Partha*1, Banerjee Dipankar1, Singh Rahul1, Katiyar Chandrakant1 1R&D Healthcare Division, Emami Ltd., 13 B.T. Road, Belghoria, Kolkata-700 056, India ABSTRACT Traditional medical systems remain important resources of healthcare worldwide that are reported to be safe and produce minimum side effects compared to synthetic medicines. At present deforestation and extinction of many species and incorrect identification of many plants has resulted in adulteration of raw drugs which results in lesser efficacy of the finished formulations? This article throws light on the concepts of adulteration of Naluka/Cassia (Cinnamomum cassia) with Tvak (Cinnamomum zeylanicum). Morphologically near about same, and Tvak is typically more expensive than the Naluka, so it is easy to adulterate Tvak with inferior variety of Naluka to reduce the cost. But there is no instantaneous ready method available to distinguish between Tvak and Naluka. A rough distinction can be made between Tvak and Naluka depending upon the Coumarin content [1] which requires sophisticated analytical technique which involves both time and cost. In the present study, an easy attempt has been made to distinguish between Tvak and Naluka using simple pharmacognostical evaluation.These simple microscopic and macroscopic characters can be used as an effective tool for the identification of true Tvak sample which will help to maintain the quality of herbal drugs by avoiding adulteration of Naluka.
    [Show full text]
  • View Essential Oils Product List
    Essential Oils Common Name Botanical Name AMYRIS OIL PURE & NATURAL Amyris balsamifera L. ANGELICA ROOT OIL PURE & NATURAL Angelica archangelica L. ANISE OIL SPANISH PURE & NATURAL Pimpinella anisum L ANISE STAR OIL PURE & NATURAL Illicium verum Hook, F. ARMOISE OIL PURE & NATURAL Artemisia herba-alba Asso BASIL OIL SWEET LINALOOL TYPE ARTIFICIAL BASIL OIL SWEET LINALOOL TYPE PURE & NATURAL Ocimum basilicum L. BASIL OIL SWEET LINALOOL TYPE WONF BASIL OIL SWEET METHYL CHAVICOL TYPE ARTIFICIAL BASIL OIL SWEET METHYL CHAVICOL TYPE PURE & NATURAL Ocimum basilicum L. BASIL OIL SWEET METHYL CHAVICOL TYPE WONF BAY OIL PURE & NATURAL Pimenta racemosa (Mill.) J.W. Moore BAY OIL TERPENELESS Pimenta racemosa (Mill.) J.W. Moore BAY OIL WONF BERGAMOT OIL ARTIFICIAL BERGAMOT OIL BERGAPTENE FREE PURE & NATURAL Citrus aurantium bergamia BERGAMOT OIL COLD-PRESSED PURE & NATURAL Citrus aurantium bergamia BERGAMOT OIL COLD-PRESSED WONF BERGAMOT OIL FUROCOUMARIN-FREE PURE & NATURAL Citrus bergamia BERGAMOT OIL FUROCOUMARIN-FREE WONF BERGAMOT OIL ORGANIC Citrus bergamia BERGAMOT OIL RECTIFIED PURE & NATURAL Citrus aurantium bergamia BERGAMOT RECTIFIED WONF BOIS DE ROSE OIL ARTIFICIAL BOIS DE ROSE OIL PURE & NATURAL Aniba rosaeodora (Ducke) var amazonica BOIS DE ROSE OIL WONF CABREUVA OIL PURE & NATURAL Myrocarpus frondosus CADE OIL Juniperus oxycedrus L. CAMPHOR OIL WHITE ARTIFICIAL CAMPHOR OIL WHITE PURE & NATURAL (Cinnamomum camphora (L.) Nees et Eberm.) CAMPHOR OIL WHITE WONF CANANGA OIL PURE & NATURAL Cananga odorata (Lam.) Hook. f. & Thomson CARAWAY OIL PURE & NATURAL Carum carvi L. (Umbelliferae) CARDAMOM OIL PURE & NATURAL Elettaria cardamomum (L.) Maton CARDAMOM OIL WONF CARROT HEART OIL PURE & NATURAL Daucus carota L. CARROT SEED OIL PURE & NATURAL Daucus carota L.
    [Show full text]
  • Pressurized Hot Water Extraction and Capillary Electrophoresis for Green and Fast Analysis of Useful Metabolites in Plants
    molecules Article Pressurized Hot Water Extraction and Capillary Electrophoresis for Green and Fast Analysis of Useful Metabolites in Plants Kurt Debruille 1,2, Jason A. Smith 3 and Joselito P. Quirino 1,* 1 Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, 7001 Tasmania, Australia 2 Department of Chemistry, Faculty of Science, University of Mons, 20 Place du Parc, 7000 Mons, Belgium 3 School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, 7001 Tasmania, Australia * Correspondence: [email protected] or [email protected] Received: 13 June 2019; Accepted: 25 June 2019; Published: 26 June 2019 Abstract: The search for useful compounds from plants is an important research area. Traditional screening that involves isolation and identification/quantitation is tedious, time consuming, and generates a significant amount of chemical waste. Here, we present a simple, fast, and green strategy to assess 0.1% wt/wt quantities of useful compounds in plants/spices using pressurized hot ≥ water extraction using a household espresso machine followed by chemical analysis using capillary electrophoresis. Three demonstrations with polygodial, cinnamaldehyde, coumarin, and shikimic acid as target metabolites are shown. Direct analysis of extracts was by the developed micellar electrokinetic chromatography and capillary zone electrophoresis methods. The approach, which can be implemented in less developed countries, can process many samples within a day, much faster than traditional techniques that would normally take at least a day. Finally, 0.8–1.1% wt/wt levels of shikimic acid were found in Tasmanian-pepperberry and Tasmanian-fuschia leaves via the approach.
    [Show full text]
  • Cinnamomum Cassia Bark Produced by Solid‑State Fermentation with Phellinus Baumii Has the Potential to Alleviate Atopic Dermatitis‑Related Symptoms
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 35: 187-194, 2015 Cinnamomum cassia bark produced by solid‑state fermentation with Phellinus baumii has the potential to alleviate atopic dermatitis‑related symptoms YONG‑KYU SHIN1,2, HYEONG‑U SON3, JONG-MYUNG KIM2, JIN‑CHUL HEO4, SANG‑HAN LEE3,4 and JONG-GUK KIM1 1Department of Microbiology, Kyungpook National University; 2Farmbios Co. Ltd., Techno Building; 3Department of Food Science and Biotechnology; 4Food and Bio‑Industry Research Institute, Kyungpook National University, Daegu 702‑701, Republic of Korea Received July 25, 2014; Accepted November 14, 2014 DOI: 10.3892/ijmm.2014.2006 Abstract. In order to evaluate whether the aqueous fraction of C. cassia have not been fully elucidated using in vivo animal of Cinnamomum cassia produced by solid-state fermentation models. The dried bark of C. cassia is used not only as a preven- with Phellinus baumii (afCc/Pb) inhibits atopic symptoms tive/therapeutic agent for various diseases, but as a flavoring or in vivo, its efficacy was evaluated in an animal model of seasoning in various foods (2). The bark of the tree is known 2,4‑dinitrofluorobenzene (DNFB)‑induced atopic dermatitis. as cinnamon, which is rich in essential oils and tannins, and Immune‑related cells were quantified using hematoxylin and inhibits the growth of several types of microbes (3). eosin staining, and phenotypic cytokines, enzymes and the Allergy is a symptom that develops in response to invasion expression of other proteins in the animal model were evalu- of antigens in the human body (4). During allergic inflam- ated. The data revealed that afCc/Pb (100 µg/ml) exhibited mation, mast cells produce immunoglobulin E (IgE), which strong anti‑atopic activity, causing a significant 40% reduction attaches to the mast cells within the tissues and is combined in immune response, as shown by the extent of ear swelling, with IgE of the mast cells.
    [Show full text]
  • Looking at Herbs and Spices
    OEB 59 – Plants and Human Affairs Lab 5: Spices and Essential Oils Objectives of this lab: 1) Connect commonly used herbs and spices to the plants and plant parts from which they are derived 2) Compare Old World versus New World herbs and spices 3) Learn about fun facts about allspice, peppercorns, cinnamon, mace, and nutmeg 4) Compare the aromas and therapeutic uses of essential oils from different species Part I: Looking at herbs and spices Herbs are usually aromatic leaves from temperate plants, while spices are aromatic fruits, flowers, bark, or other plant parts of tropical origin. Both are associated with mainly cooking, but also in medicine, as natural dyes, and in the perfume and cosmetic industries. Old World versus New World Herbs and spices from the Old World include: cloves, nutmeg, mace, peppercorns (green, black and white), mustards, cardamon, cinnamon, star anise, turmeric, dill, chervil, celery seed, caraway, cumin, anise, peppermint, spearmint, marjoram, oregano, and thyme. Herbs and spices from the New World include: vanilla, allspice, pink pepper, and chili pepper. TO DO: What part of the plant do particular herbs and spices come from? Take a look at the herbs and spices on display, and answer the following four questions: (1) Name four herbs or spices derived from flowers, seeds, or fruits (2) Name two herbs or spices derived from leaves (3) Name one herb or spice derived from bark (4) Name one herb or spice derived from roots (5) What part of which plant species is used to obtain ginger? History of spices "No evidence is available of how primitive humans actually discovered herbs and spices, but we can assume that they were attracted to some of the pleasant aromas of these plants and found different uses for them.
    [Show full text]
  • Investigations Into the Effects of Turmeric, Cinnamon and Green Tea on Glycaemic Control and Liver Enzymes
    Investigations into the Effects of Turmeric, Cinnamon and Green Tea on Glycaemic Control and Liver Enzymes Wickenberg, Jennie 2015 Link to publication Citation for published version (APA): Wickenberg, J. (2015). Investigations into the Effects of Turmeric, Cinnamon and Green Tea on Glycaemic Control and Liver Enzymes. Department of Clinical Sciences, Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Printed by Media-Tryck, Lund University 2015 JENNIE WICKENBERG JENNIE InvestigationsTurmeric, into the EffectsTeaon CinnamonGlycaemic of Control and
    [Show full text]
  • Antifungal Compounds from Turmeric and Nutmeg with Activity Against Plant Pathogens
    Fitoterapia 99 (2014) 341–346 Contents lists available at ScienceDirect Fitoterapia journal homepage: www.elsevier.com/locate/fitote Antifungal compounds from turmeric and nutmeg with activity against plant pathogens Mohamed M. Radwan a, Nurhayat Tabanca a, David E. Wedge b, Amer H. Tarawneh c, Stephen J. Cutler a,c,⁎ a National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA b United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, The University of Mississippi, University, MS 38677, USA c Department of Medicinal Chemistry, School of Pharmacy, The University of Mississippi, University, MS 38677, USA article info abstract Article history: The antifungal activity of twenty-two common spices was evaluated against plant pathogens using Received 25 June 2014 direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, Accepted in revised form 19 August 2014 cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the Accepted 21 August 2014 plant pathogens Colletotrichum acutatum, Colletotrichum fragariae,andColletotrichum gloeosporioides. Available online 27 August 2014 Among the active extracts, turmeric and nutmeg were the most active and were chosen for further investigation. The bioassay-guided fractionation led to the isolation of three compounds from Keywords: turmeric (1–3) and three compounds from nutmeg (4–6). Their chemical structures were elucidated Spices by spectroscopic analysis including HR-MS, 1D, and 2D NMR as curcumin (1), demethoxycurcumin Antifungal (2) and bisdemethoxy-curcumin (3), erythro-(7R,8R)-Δ8′-4,7-dihydroxy-3,3′,5′-trimethoxy-8-O-4′- Turmeric neolignan (4), erythro-(7R,8R)-Δ8′-7-acetoxy-3,4,3′,5′-tetra-methoxy-8-O-4′-neolignan (5), and Curcuminoids Nutmeg 5-hydroxy-eugenol (6).
    [Show full text]
  • Effects of Cinnamon (Cinnamomum Spp.) in Dentistry
    molecules Review Effects of Cinnamon (Cinnamomum spp.) in Dentistry: A Review Spartak Yanakiev Medical College Y. Filaretova, Medical University—Sofia, Yordanka Filaretova Street 3, 1000 Sofia, Bulgaria; [email protected]fia.bg; Tel.: +35-98-8644-5108 Received: 26 July 2020; Accepted: 11 September 2020; Published: 12 September 2020 Abstract: Dental medicine is one of the fields of medicine where the most common pathologies are of bacterial and fungal origins. This review is mainly focused on the antimicrobial effects of cinnamon essential oil (EO), cinnamon extracts, and pure compounds against different oral pathogens and the oral biofilm and the possible effects on soft mouth tissue. Basic information is provided about cinnamon, as is a review of its antimicrobial properties against the most common microorganisms causing dental caries, endodontic and periodontal lesions, and candidiasis. Cinnamon EO, cinnamon extracts, and pure compounds show significant antimicrobial activities against oral pathogens and could be beneficial in caries and periodontal disease prevention, endodontics, and candidiasis treatment. Keywords: cinnamon essential oil; dentistry; oral pathogens; oral biofilm; candida; antimicrobial effect; dental caries; endopathogens; cinnamaldehyde; eugenol 1. Introduction Dental medicine is one of the fields of medicine where the most common pathologies are of bacterial and fungal origins. Widely spread diseases like dental caries, periodontal disease, and endodontic lesions are caused by well-known bacterial and fungal pathogens: Streptococcus mutans, Streptococcus salivarius, Streptococcus sanguinis, Porfiromonas gingivalis, Prevotella intermedia, Actinobacilus actinomycetemcomitans, Enterococcus faecalis, Candida albicans, etc. [1]. Preventive medicine relies mostly upon reducing the bacterial biofilm via oral hygiene. The most often used active ingredients in mouth rinses and toothpastes are chlorhexidine, hyaluronic acid, and fluorides.
    [Show full text]
  • Dynamic and Powerful 99 Year Life
    V.S. POWER / VACSU POWER (DYNAMIC AND POWERFUL 99 YEAR LIFE)- ginseng concentrated extracts liquid Mercylignt Disclaimer: This drug has not been found by FDA to be safe and effective, and this labeling has not been approved by FDA. For further information about unapproved drugs, click here. ---------- V.S. Power / Vacsu Power (Dynamic and Powerful 99 year life) Active ingredients: Ginseng Concentrated Extracts 2.5% (Total Rg1 and Rb1 more than 10mg/g) PURPOSE Stimulant Keep out of reach of children. Uses: Aids in recovery fatigue, enhances the immune system, antiaging, to help the treatment and prevention of prostate, erectile dysfunction and menopausal disorder. Warning: 1) Take check out the ingredients in the case of allergies, such as idiosyncratic. 2) Be careful with the intake when taking medicines (Diabetes and Blood anticoagulant). 3) Take enough to shake well if a precipitate that is produced such as plant extracts. There is no problem the quality of the product and function. 4) Take right after opening the product it may be altered. 5) Do not place to heat the entire pouch in the microwave. 6) Be careful when you drink the opening area it may roll sharp. Direction: Take 1 pouch, twice a day (30 minutes after breakfast and dinner) Other Information • Keep product out of direct sunlight, high temperature and humidity.• Store in a cool dry place. • Refrigerate or as soon as possible to take after opening. • Any items past the expiration date, spoiled, or damaged in transit can be exchanged where you originally purchased the item.
    [Show full text]
  • Essential Oil from Lauraceae and Rosaceae / Β-Cyclodextrin Complexes
    ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA 2006, Tome IV, Fascicole 3, (ISSN 1584 – 2673) FACULTY OF ENGINEERING HUNEDOARA, 5, REVOLUTIEI, 331128, HUNEDOARA ESSENTIAL OIL FROM LAURACEAE AND ROSACEAE / β-CYCLODEXTRIN COMPLEXES Nicoleta G. HĂDĂRUGĂ1, Daniel I. HĂDĂRUGĂ2, Virgil PĂUNESCU3, Călin TATU3, Valentin L. ORDODI3, Geza BANDUR2, Alfa X. LUPEA2 1 USAMVB TIMIŞOARA, FOOD QUALITY DEPARTMENT, ROMANIA 2 ”POLITEHNICA” UNIVERSITY OF TIMIŞOARA, FACULTY OF INDUSTRIAL CHEMISTRY, TIMIŞOARA, ROMANIA 3 IMMUNOLOGY AND TRANSPLANT CENTRE, TIMIŞOARA, ROMANIA ABSTRACT: The paper presents the synthesis and characterization of some essential oil from Lauraceae and Rosaceae botanical families / β-cyclodextrin complexes. Essential oils from Cinnamomum cassia L. from Lauraceae family and Rosa damascena L. from Rosaceae family were used for cyclodextrin complexation by using the crystallization from ethanol- water solution. The complexes were crystallized by a program temperature and the complexes were filtered, washed with ethanol and dried at room temperature. The yields of complex recovering were 67% and 72%, respectively. Cyclodextrin complexes were characterized by gas chromatography-mass spectrometry in order to identify and quantify the main volatile compounds from raw essential oil and from the essential oil recovered from the complex. The main compound from Cinnamomum essential oil was cinnamaldehyde, which was in a relative concentration of 62.3% in the raw oil and the ratio between the relative concentrations in recovered and raw essential oils was 1.1. The most important compound for the rose flavor was β-phenylethanol, which was identified in a concentration of 27.8% in the raw essential oil; the corresponding concentration ratio was 0.6. The formation of complexes was also demonstrated by thermogravimetric analysis; the mass loss in the Cinnamomum cassia and Rosa damascena essential oils/β-cyclodextrin complexes was 9.7% and 7.7%, respectively, while the commercial β-cyclodextrin reveals a mass loss of 14.1%.
    [Show full text]
  • Assessing the in Vitro Inhibitory Effects on Key Enzymes
    molecules Article Assessing the In Vitro Inhibitory Effects on Key Enzymes Linked to Type-2 Diabetes and Obesity and Protein Glycation by Phenolic Compounds of Lauraceae Plant Species Endemic to the Laurisilva Forest Vítor Spínola and Paula C. Castilho * CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +351-291-705-102 Abstract: Methanolic leaf extracts of four Lauraceae species endemic to Laurisilva forest (Apollonias barbujana, Laurus novocanariensis, Ocotea foetens and Persea indica) were investigated for the first time for their potential to inhibit key enzymes linked to type-2 diabetes (α-amylase, α-glucosidase, aldose reductase) and obesity (pancreatic lipase), and protein glycation. Lauraceae extracts revealed significant inhibitory activities in all assays, altough with different ability between species. In general, P. indica showed the most promissing results. In the protein glycation assay, all analysed extracts displayed a stronger effect than a reference compound: aminoguanidine (AMG). The in vitro anti- diabetic, anti-obesity and anti-glycation activities of analysed extracts showed correlation with their flavonols and flavan-3-ols (in particular, proanthocyanins) contents. These Lauraceae species Citation: Spínola, V.; Castilho, P.C. Assessing the In Vitro Inhibitory have the capacity to assist in adjuvant therapy of type-2 diabetes and associated complications, Effects on Key Enzymes Linked to through modulation of the activity of key metabolic enzymes and prevention of advanced glycation Type-2 Diabetes and Obesity and end-products (AGEs) formation. Protein Glycation by Phenolic Compounds of Lauraceae Plant Keywords: type-2 diabetes; Lauraceae; polyphenols; digestive enzymes inhibition; aldose reductase Species Endemic to the Laurisilva inhibition; protein glycation inhibition Forest.
    [Show full text]