Nuclear Receptor Coregulators in Cancer Biology Bert W

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Receptor Coregulators in Cancer Biology Bert W Published OnlineFirst October 20, 2009; DOI: 10.1158/0008-5472.CAN-09-2223 Review Nuclear Receptor Coregulators in Cancer Biology Bert W. O'Malley1 and Rakesh Kumar2 1Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas and 2Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, George Washington University Medical Center, Washington, District of Columbia Abstract Coactivator Mechanisms Coregulators (coactivators and corepressors) occupy the In the steady-state cell, coregulators exist and function in large driving seat for actions of all nuclear receptors, and conse- multiprotein complexes (3). For example, coactivator complexes quently, selective receptor modulator drugs. The potency are recruited by NRs to target genes in an ordered sequence to pro- and selectivity for subreactions of transcription reside in vide the many enzyme capacities required for transcription (5). the coactivators, and thus, they are critically important for Subreactions of transcription mediated by coactivator complexes tissue-selective gene function. Each tissue has a “quantitative include chromatin modification and remodeling, initiation of tran- finger print” of coactivators based on its relative inherited scription, elongation of RNA chains, mRNA splicing, and even, pro- concentrations of these molecules. When the cellular concen- teolyic termination of the transcriptional response. Surprisingly, tration of a coactivator is altered, genetic dysfunction usually recent reports show that coactivators can influence cellular reac- leads to a pathologic outcome. For example, many cancers tions outside the nucleus such as mRNA translation, mitochondrial overexpress “growth coactivators.” In this way, the cancer function, and motility (6). The expanding importance of coactiva- cell can hijack these coactivator molecules to drive prolifer- tors (and corepressors) to mammalian cancer merits reflection on ation and metastasis. The present review contains summaries selected historical advances that have promoted the development of selective coactivators and corepressors that have been of this field. In the following mini-review, there is insufficient space demonstrated to play important roles in the malignant pro- to discuss all of the numerous excellent studies that substantiate cess and emphasizes their importance for future therapeutic the importance of coregulators to cancer, so only a limited number interventions. [Cancer Res 2009;69(21):8217–22] of selected cases will be used to illustrate their relevance to cancer biology. It has been only 12 years since the first nuclear receptor coacti- When considering the plethora of functions that NRs play in tis- vator, SRC-1, was cloned and discovered to be a new form of tran- sues such as breast, ovary, prostate, intestine, pancreas, and lungs, scription factor (TF) that, rather than binding to DNA, binds to and the interest in the cancers of these organs, we anticipate a rel- nuclear receptors (NR) and mediates the transcriptional potency atively large number of coregulators to be involved in cancer. How- of NRs (1, 2). The NR coactivators belong to a class of molecules ever, this spectrum of tissues indicates that the oncogenic or generally termed coregulators (2). We define coactivators as mole- tumor suppressive activities of coregulators play key roles in di- cules that are recruited by DNA-binding TFs to enhance transcrip- verse tissues, well beyond the classic endocrine targets of NRs. tion, and corepressors as molecules that are recruited by TFs to The concentrations of coactivators and corepressors in cells are repress transcription. Current evidence indicates that this opera- critical to their functional potential. Indeed, the cellular levels of coac- tional definition can be modified by gene and cell and signaling tivators are frequently regulated by altering their post-translational context for any one coregulator. Our current understanding is that degradation rates (7). A high cellular concentration of a coactivator NRs search out the target genes to be regulated by binding to spe- will lead to an amplified signal within a downstream TF action cific DNA sequences (or other TFs at such sequences) termed pathway, as well as a more rapid response to environmental sig- NR-response elements; the second job of NRs is to recruit the core- nals. However, available data from our laboratories and a variety gulators that carry out all of the subsequent biochemical reactions of other sources suggest that the key to understanding the true required for induction or repression of gene transcriptions. In fact, diversity of coregulator functions lies in first understanding the most coregulators are either enzymes needed for gene expression, or surprisingly extensive “post-translational coding” that has been they regulate the enzymatic activities of other co-coregulators that discovered to exist in the coregulator proteins (8). In the case of a are present in the high molecular weight transcriptional complexes coregulator, it has been observed that a combination of such post- at the gene. Over the past decade, the mechanistic importance of translational modifications (PTM) can lead to functionally distinct coregulators has expanded logarithmically, and we now realize that activities for the same primary sequence protein. The “differential- they are responsible for virtually “all” of the reactions needed for ly coded” coactivator is now predisposed to form different multi- control of TF-dependent gene expression (3, 4). meric coactivator complexes, and thereby, to interact with distinct genes and to do different compartmental functions in a cell. For example, more than 40 separate modifications of the SRC-3 coactivator have been determined to date (9). These include phosphorylations, methylations, acetylations, ubiquitinations, and SUMOylations. This plethora of 40 PTMs creates an enormous “ ” 40 Requests for reprints: Bert W. O'Malley, BCM502, Room M613, One Baylor Plaza, combinatorial potential of (2) (9). The vast majority of this PTM Houston, TX 77030; or Rakesh Kumar, 2300 Eye Street, NW, Suite 530, Washington, DC potential complexity likely is never actually used in a given cell. 20037. ©2009 American Association for Cancer Research. Nevertheless, because every single PTM can result in a protein doi:10.1158/0008-5472.CAN-09-2223 with some altered function, it is an inescapable conclusion that www.aacrjournals.org 8217 Cancer Res 2009;69: (21). November 1, 2009 Downloaded from cancerres.aacrjournals.org on October 1, 2021. © 2009 American Association for Cancer Research. Published OnlineFirst October 20, 2009; DOI: 10.1158/0008-5472.CAN-09-2223 Cancer Research multiple combinations of PTMs can bestow a huge array of dis- Because the course of polyubiquitinylation is processive during tinct functions to any one coregulator protein. the transcriptional activation of TFs, this phosphorylation- dependent ubiquitinylation functions as a transcriptional time clock to first initiate coactivator activation, and then ultimately, SRC-3 Coactivator Is an Oncogene and a Target for to limit the lifetime of the PTM-activated coactivator (28). Epigenetic Signals PTMs of SRC-3 influence its structural association dynamics SRC-3/AIB1/ACTR/pCIP/RAC3/TRAM1/NCOA3 is the third with other co-coactivators. CARM1 methylates SRC-3 and dissoci- member of the SRC/p160 coactivator family, and because it is ates it from its active coactivator complex (6). Peptidyl-prolyl isom- the most studied of NR coactivators, it serves as a prototype exam- erase 1 (Pin1) catalyzes the cis-trans isomerization of proline ple for defining the range of mechanisms and functions of such residues adjacent to phosphorylated serine/threonine-P bonds to molecules. This gene was characterized as AIB1 (Amplified in induce conformational changes in the SRC-3 protein and enhance breast cancer-1) and originally reported to be amplified in approx- the interactions between SRC-3 and other coactivators such as imately 10% and overexpressed in 64% of primary breast tumor CBP/p300 (29, 30). Experimentally induced down-regulation of cells (10). It was subsequently found to be amplified and over- Pin1 in breast cancer cells was shown to reduce ligand-dependent expressed in numerous other human cancers such as bladder, na- transcription by NRs and Pin1 overexpression has been implicated sopharyngeal, endometrial, prostate, etc. Clinical studies in breast in oncogenesis (31). cancer patients show that overexpression of SRC-3 correlates with tamoxifen resistance, p53- and HER2-expression status, and leads to markedly negative clinical outcomes (11–15). Metastatic Tumor Antigen 1: A Coregulator with Dual The oncogenic potential for SRC-3 is substantiated by studies in Function transgenic mice that overexpress SRC-3 and develop spontaneous −/− Metastatic tumor antigen 1 (MTA1) was initially identified as an malignant mammary tumors (16). In contrast, SRC-3 mice are upregulated gene through differential screening of a cDNA library resistant to chemical carcinogen-induced and viral-induced mam- −/− from rat metastatic breast tumors (32). Subsequent studies found a mary tumorigenesis (17, 18). SRC-3 mice also show resistance to widespread upregulation of MTA1 in multiple human tumors, in- induced prostate cancer progression (19). These results are consis- cluding breast, prostate, colorectal, gastric, esophageal, ovarian, tent with the idea that SRC-3 is a potentially powerful oncogene. In pancreatic, non-small
Recommended publications
  • Longitudinal Study of Leukocyte DNA Methylation and Biomarkers for Cancer Risk in Older Adults
    bioRxiv preprint doi: https://doi.org/10.1101/597666; this version posted April 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Longitudinal Study of Leukocyte DNA Methylation and 2 Biomarkers for Cancer Risk in Older Adults 3 Alexandra H. Bartlett1, Jane W Liang1, Jose Vladimir Sandoval-Sierra1, Jay H 4 Fowke 1, Eleanor M Simonsick2, Karen C Johnson1, Khyobeni Mozhui1* 5 1Department of Preventive Medicine, University of Tennessee Health Science 6 Center, Memphis, Tennessee, USA 7 2Intramural Research Program, National Institute on Aging, Baltimore Maryland, 8 USA 9 AHB: [email protected]; JWL: [email protected]; JVSS: 10 [email protected]; JHF: [email protected]; EMS: [email protected]; 11 KCJ: [email protected]; KM: [email protected] 12 *Corresponding author: Khyobeni Mozhui 13 14 15 16 17 18 1 bioRxiv preprint doi: https://doi.org/10.1101/597666; this version posted April 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 19 Abstract 20 Background: Changes in DNA methylation over the course of life may provide 21 an indicator of risk for cancer. We explored longitudinal changes in CpG 22 methylation from blood leukocytes, and likelihood of a future cancer diagnosis.
    [Show full text]
  • PAX5 Expression in Acute Leukemias: Higher B-Lineage Specificity Than Cd79a and Selective Association with T(8;21)-Acute Myelogenous Leukemia
    [CANCER RESEARCH 64, 7399–7404, October 15, 2004] PAX5 Expression in Acute Leukemias: Higher B-Lineage Specificity Than CD79a and Selective Association with t(8;21)-Acute Myelogenous Leukemia Enrico Tiacci,1 Stefano Pileri,2 Annette Orleth,1 Roberta Pacini,1 Alessia Tabarrini,1 Federica Frenguelli,1 Arcangelo Liso,3 Daniela Diverio,4 Francesco Lo-Coco,5 and Brunangelo Falini1 1Institutes of Hematology and Internal Medicine, University of Perugia, Perugia, Italy; 2Unit of Hematopathology, University of Bologne, Bologne, Italy; 3Section of Hematology, University of Foggia, Foggia, Italy; 4Department of Cellular Biotechnologies and Hematology, University La Sapienza of Rome, Rome, Italy; and 5Department of Biopathology, University Tor Vergata of Rome, Rome, Italy ABSTRACT (13, 16). PAX5 expression also occurs in the adult testis and in the mesencephalon and spinal cord during embryogenesis (17), suggesting an The transcription factor PAX5 plays a key role in the commitment of important role in the development of these tissues. hematopoietic precursors to the B-cell lineage, but its expression in acute Rearrangement of the PAX5 gene through reciprocal chromosomal leukemias has not been thoroughly investigated. Hereby, we analyzed routine biopsies from 360 acute leukemias of lymphoid (ALLs) and mye- translocations has been described in different types of B-cell malig- loid (AMLs) origin with a specific anti-PAX5 monoclonal antibody. Blasts nancies (18–23), and, more recently, PAX5 has also been shown to be from 150 B-cell ALLs showed strong PAX5 nuclear expression, paralleling targeted by aberrant hypermutation in Ͼ50% of diffuse large B-cell that of CD79a in the cytoplasm. Conversely, PAX5 was not detected in 50 lymphomas (24).
    [Show full text]
  • Further Delineation of Chromosomal Consensus Regions in Primary
    Leukemia (2007) 21, 2463–2469 & 2007 Nature Publishing Group All rights reserved 0887-6924/07 $30.00 www.nature.com/leu ORIGINAL ARTICLE Further delineation of chromosomal consensus regions in primary mediastinal B-cell lymphomas: an analysis of 37 tumor samples using high-resolution genomic profiling (array-CGH) S Wessendorf1,6, TFE Barth2,6, A Viardot1, A Mueller3, HA Kestler3, H Kohlhammer1, P Lichter4, M Bentz5,HDo¨hner1,PMo¨ller2 and C Schwaenen1 1Klinik fu¨r Innere Medizin III, Zentrum fu¨r Innere Medizin der Universita¨t Ulm, Ulm, Germany; 2Institut fu¨r Pathologie, Universita¨t Ulm, Ulm, Germany; 3Forschungsdozentur Bioinformatik, Universita¨t Ulm, Ulm, Germany; 4Abt. Molekulare Genetik, Deutsches Krebsforschungszentrum, Heidelberg, Germany and 5Sta¨dtisches Klinikum Karlsruhe, Karlsruhe, Germany Primary mediastinal B-cell lymphoma (PMBL) is an aggressive the expression of BSAP, BOB1, OCT2, PAX5 and PU1 was extranodal B-cell non-Hodgkin’s lymphoma with specific clin- added to the spectrum typical of PMBL features.9 ical, histopathological and genomic features. To characterize Genetically, a pattern of highly recurrent karyotype alterations further the genotype of PMBL, we analyzed 37 tumor samples and PMBL cell lines Med-B1 and Karpas1106P using array- with the hallmark of chromosomal gains of the subtelomeric based comparative genomic hybridization (matrix- or array- region of chromosome 9 supported the concept of a unique CGH) to a 2.8k genomic microarray. Due to a higher genomic disease entity that distinguishes PMBL from other B-cell non- resolution, we identified altered chromosomal regions in much Hodgkin’s lymphomas.10,11 Together with less specific gains on higher frequencies compared with standard CGH: for example, 2p15 and frequent mutations of the SOCS1 gene, a notable þ 9p24 (68%), þ 2p15 (51%), þ 7q22 (32%), þ 9q34 (32%), genomic similarity to classical Hodgkin’s lymphoma was þ 11q23 (18%), þ 12q (30%) and þ 18q21 (24%).
    [Show full text]
  • Longitudinal Study of Leukocyte DNA Methylation and Biomarkers for Cancer Risk in Older Adults Alexandra H
    Bartlett et al. Biomarker Research (2019) 7:10 https://doi.org/10.1186/s40364-019-0161-3 RESEARCH Open Access Longitudinal study of leukocyte DNA methylation and biomarkers for cancer risk in older adults Alexandra H. Bartlett1, Jane W. Liang1, Jose Vladimir Sandoval-Sierra1, Jay H. Fowke1, Eleanor M. Simonsick2, Karen C. Johnson1 and Khyobeni Mozhui1* Abstract Background: Changes in DNA methylation over the course of life may provide an indicator of risk for cancer. We explored longitudinal changes in CpG methylation from blood leukocytes, and likelihood of future cancer diagnosis. Methods: Peripheral blood samples were obtained at baseline and at follow-up visit from 20 participants in the Health, Aging and Body Composition prospective cohort study. Genome-wide CpG methylation was assayed using the Illumina Infinium Human MethylationEPIC (HM850K) microarray. Results: Global patterns in DNA methylation from CpG-based analyses showed extensive changes in cell composition over time in participants who developed cancer. By visit year 6, the proportion of CD8+ T-cells decreased (p-value = 0. 02), while granulocytes cell levels increased (p-value = 0.04) among participants diagnosed with cancer compared to those who remained cancer-free (cancer-free vs. cancer-present: 0.03 ± 0.02 vs. 0.003 ± 0.005 for CD8+ T-cells; 0.52 ± 0. 14 vs. 0.66 ± 0.09 for granulocytes). Epigenome-wide analysis identified three CpGs with suggestive p-values ≤10− 5 for differential methylation between cancer-free and cancer-present groups, including a CpG located in MTA3, agene linked with metastasis. At a lenient statistical threshold (p-value ≤3×10− 5), the top 10 cancer-associated CpGs included a site near RPTOR that is involved in the mTOR pathway, and the candidate tumor suppressor genes REC8, KCNQ1,andZSWIM5.
    [Show full text]
  • Genomic Profiling of Adult Acute Lymphoblastic Leukemia by Single
    SUPPLEMENTARY APPENDIX Genomic profiling of adult acute lymphoblastic leukemia by single nucleotide polymorphism oligonucleotide microarray and comparison to pediatric acute lymphoblastic leukemia Ryoko Okamoto,1 Seishi Ogawa,2 Daniel Nowak,1 Norihiko Kawamata,1 Tadayuki Akagi,1,3 Motohiro Kato,2 Masashi Sanada,2 Tamara Weiss,4 Claudia Haferlach,4 Martin Dugas,5 Christian Ruckert,5 Torsten Haferlach,4 and H. Phillip Koeffler1,6 1Division of Hematology and Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, USA; 2Cancer Genomics Project, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; 3Department of Stem Cell Biology, Graduate School of Medical Science, Kanazawa University 4MLL Munich Leukemia Laboratory, Munich, Germany; 5Department of Medical Informatics and Biomathematics, University of Münster, Münster, Germany; 6Cancer Science Institute of Singapore, National University of Singapore, Singapore Citation: Okamoto R, Ogawa S, Nowak D, Kawamata N, Akagi T, Kato M, Sanada M, Weiss T, Haferlach C, Dugas M, Ruckert C, Haferlach T, and Koeffler HP. Genomic profiling of adult acute lymphoblastic leukemia by single nucleotide polymorphism oligonu- cleotide microarray and comparison to pediatric acute lymphoblastic leukemia. Haematologica 2010;95(9):1481-1488. doi:10.3324/haematol.2009.011114 Online Supplementary Data ed by PCR of genomic DNA and subsequent direct sequencing of SNP in a region of CNN-LOH in an ALL sample versus the corresponding Design and Methods matched normal sample (Online Supplementary
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A PAX5-OCT4-PRDM1 Developmental Switch Specifies Human Primordial Germ Cells
    A PAX5-OCT4-PRDM1 Developmental Switch Specifies Human Primordial Germ Cells Fang Fang1,2, Benjamin Angulo1,2, Ninuo Xia1,2, Meena Sukhwani3, Zhengyuan Wang4, Charles C Carey5, Aurélien Mazurie5, Jun Cui1,2, Royce Wilkinson5, Blake Wiedenheft5, Naoko Irie6, M. Azim Surani6, Kyle E Orwig3, Renee A Reijo Pera1,2 1Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT 59717, USA 2Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA 3Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, School of Medicine; Magee Women’s Research Institute, Pittsburgh, PA, 15213, USA 4Genomic Medicine Division, Hematology Branch, NHLBI/NIH, MD 20850, USA 5Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA. 6Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QN, UK. Correspondence should be addressed to F.F. (e-mail: [email protected]) 1 Abstract Dysregulation of genetic pathways during human germ cell development leads to infertility. Here, we analyzed bona fide human primordial germ cells (hPGCs) to probe the developmental genetics of human germ cell specification and differentiation. We examined distribution of OCT4 occupancy in hPGCs relative to human embryonic stem cells (hESCs). We demonstrate that development, from pluripotent stem cells to germ cells, is driven by switching partners with OCT4 from SOX2 to PAX5 and PRDM1. Gain- and loss-of-function studies revealed that PAX5 encodes a critical regulator of hPGC development. Moreover, analysis of epistasis indicates that PAX5 acts upstream of OCT4 and PRDM1. The PAX5-OCT4-PRDM1 proteins form a core transcriptional network that activates germline and represses somatic programs during human germ cell differentiation.
    [Show full text]
  • Benefits of Cancerplex
    CancerPlexSM is a comprehensive genetic assessment of a patient’s tumor that guides oncologists towards effective treatment options. What is CancerPlex? CancerPlex is a next generation DNA sequencing test for solid SM tumors. The specific coding regions of over 400 known cancer Potential outcomes from CancerPlex genes are simultaneously determined using a small amount of Identification of variants associated with response or resis- DNA extracted from tumor samples, including formalin-fixed, tance to an FDA-approved therapy for the patient’s disease. paraffin-embedded (FFPE) tissue and cell blocks from fine-needle aspirates or effusions. This analysis is performed in a single assay, Identification of variants associated with response or resis- simplifying and streamlining the test ordering process, and eliminat- tance to a therapy associated with another clinical indication. ing time consuming serial testing. Clinically actionable information unique to each patient’s tumor is consolidated into a simple report. Identification of variants associated with a therapy(s) in CancerPlex reveals missense changes, insertions and deletions, clinical development. and previously described rearrangements of ALK, RET, and ROS. Benefits of CancerPlex: CancerPlex genes were selected because of their importance in tumor The average turn-around-time for CancerPlex is under 10 biology. Analyzing more genes increases the chance of discovering business days, dramatically shortening the waiting period for actionable findings that lead to more choices for treatment. Our initial the start of treatment. results indicate that CancerPlex analysis identifies actionable findings up to 20% more frequently than previously published studies. CancerPlex ordering is simple: KEW provides all necessary shipping materials, can facilitate tissue retrieval and return with Since knowledge of tumor biology changes rapidly, CancerPlex pathologists, and manages 3rd party payment for the test.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Contribution of Enhancer-Driven and Master-Regulator Genes to Autoimmune Disease Revealed Using Functionally Informed SNP-To-Gene Linking Strategies Kushal K
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.02.279059; this version posted March 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Contribution of enhancer-driven and master-regulator genes to autoimmune disease revealed using functionally informed SNP-to-gene linking strategies Kushal K. Dey1, Steven Gazal1, Bryce van de Geijn 1,3, Samuel Sungil Kim 1,4, Joseph Nasser5, Jesse M. Engreitz5, Alkes L. Price 1,2,5 1 Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA 2 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 3 Genentech, South San Francisco, CA 4 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 5 Broad Institute of MIT and Harvard, Cambridge, MA, USA Abstract Gene regulation is known to play a fundamental role in human disease, but mechanisms of regulation vary greatly across genes. Here, we explore the con- tributions to disease of two types of genes: genes whose regulation is driven by enhancer regions as opposed to promoter regions (Enhancer-driven) and genes that regulate many other genes in trans (Master-regulator). We link these genes to SNPs using a comprehensive set of SNP-to-gene (S2G) strategies and apply stratified LD score regression to the resulting SNP annotations to draw three main conclusions about 11 autoimmune diseases and blood cell traits (average Ncase=13K across 6 autoimmune diseases, average N=443K across 5 blood cell traits).
    [Show full text]
  • Intrinsically Disordered Meningioma-1 Stabilizes the BAF Complex to Cause AML
    Article Intrinsically disordered Meningioma-1 stabilizes the BAF complex to cause AML Graphical abstract Authors Simone S. Riedel, Congcong Lu, Hongbo M. Xie, ..., Gerd A. Blobel, Benjamin A. Garcia, Kathrin M. Bernt Correspondence [email protected] In brief Meningioma-1 (MN1) translocations result in overexpression of MN1 through enhancer hijacking, or expression of an MN1 fusion protein. MN1 is an intrinsically disordered polyQ protein. MN1 overexpression is sufficient to cause malignant transformation via over- stabilization of the BAF complex at critical enhancers. Highlights d MN1 translocations in AML result in MN1 overexpression due to enhancer hijacking d MN1 interacts with the myeloid progenitor BAF complex d MN1 over-stabilizes the BAF complex at critical enhancers d Overexpression of the polyQ protein MN1 is sufficient to cause AML Riedel et al., 2021, Molecular Cell 81, 1–17 June 3, 2021 ª 2021 Elsevier Inc. https://doi.org/10.1016/j.molcel.2021.04.014 ll Please cite this article in press as: Riedel et al., Intrinsically disordered Meningioma-1 stabilizes the BAF complex to cause AML, Molecular Cell (2021), https://doi.org/10.1016/j.molcel.2021.04.014 ll Article Intrinsically disordered Meningioma-1 stabilizes the BAF complex to cause AML Simone S. Riedel,1 Congcong Lu,2 Hongbo M. Xie,3 Kevin Nestler,1 Marit W. Vermunt,4 Alexandra Lenard,1 Laura Bennett,5 Nancy A. Speck,5 Ichiro Hanamura,6 Julie A. Lessard,7 Gerd A. Blobel,4,8 Benjamin A. Garcia,2 and Kathrin M. Bernt1,8,9,* 1Division of Pediatric Oncology, Children’s Hospital
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE Investigations Into The
    UNIVERSITY OF CALIFORNIA RIVERSIDE Investigations into the Role of TAF1-mediated Phosphorylation in Gene Regulation A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Cell, Molecular and Developmental Biology by Brian James Gadd December 2012 Dissertation Committee: Dr. Xuan Liu, Chairperson Dr. Frank Sauer Dr. Frances M. Sladek Copyright by Brian James Gadd 2012 The Dissertation of Brian James Gadd is approved Committee Chairperson University of California, Riverside Acknowledgments I am thankful to Dr. Liu for her patience and support over the last eight years. I am deeply indebted to my committee members, Dr. Frank Sauer and Dr. Frances Sladek for the insightful comments on my research and this dissertation. Thanks goes out to CMDB, especially Dr. Bachant, Dr. Springer and Kathy Redd for their support. Thanks to all the members of the Liu lab both past and present. A very special thanks to the members of the Sauer lab, including Silvia, Stephane, David, Matt, Stephen, Ninuo, Toby, Josh, Alice, Alex and Flora. You have made all the years here fly by and made them so enjoyable. From the Sladek lab I want to thank Eugene, John, Linh and Karthi. Special thanks go out to all the friends I’ve made over the years here. Chris, Amber, Stephane and David, thank you so much for feeding me, encouraging me and keeping me sane. Thanks to the brothers for all your encouragement and prayers. To any I haven’t mentioned by name, I promise I haven’t forgotten all you’ve done for me during my graduate years.
    [Show full text]