in Correlated Systems, Weizmann Institute Jan 6-11 2008

Cold atoms as “driven open” UNIVERSITY OF INNSBRUCK quantum optical systems

quantum noise cold atoms IQOQI AUSTRIAN ACADEMY OF SCIENCES

SFB Coherent Control of Quantum Peter Zoller Systems €U networks

A. Micheli, S. Diehl, A. Kantian, HP. Büchler, and PZ, in preparation Quantum State Engineering (in Many Body Systems)

• thermodynamic equilibrium - standard scenario of cond mat & cold atom physics

T 0 ✓interesting ground states H/kB T → H Eg = Eg Eg ρ e− Eg Eg quantum phases | ! | ! ∼ −−−→ | $ % | ✓ ✓excitations Hamiltonian (many body) cooling to ground state

driven / dissipative dynamical equilibrium • drive - quantum optics system bath

dρ t = i [H, ρ] + ρ ρ(t) →∞ ρ mixed state dt − L −−−→ ss !? competing dynamics = D D pure state (“dark states”) | # $ | master equation steady state

✓many body pure states / driven quantum phases ✓mixed states ~ “finite temperature” Outline

• Quantum noise & quantum optics introduction & review: - master equation, continuous measurement etc. “photon bath”

• Dark states in quantum optics - examples: quantum state engineering / cooling

• Cold atom mixtures as open dissipative quantum system “Bogoliubov bath” • Dissipatively driven BECs atoms in an optical lattice: - “BEC” 1d/2d/3d dissipative coupling to a “current” - η-condensate local dissipation

A. Micheli, S. Diehl, A. Kantian, HP. Büchler, and PZ Quantum Noise & Quantum Optics

• open quantum systems • dark states Quantum Optics: Open Quantum Systems

• open quantum system

drive system environment / bath

role of the environment: • noise / dissipation (decoherence) • quantum optics … tool: state preparation - e.g. cooling, optical pumping

bath / reservoir: harmonic oscillators • quantum optics - radiation field, [spin bath] - here: bath of Bogoliubov excitations Quantum Optics: Open Quantum Systems

• open quantum system

time drive out system in environment click ~ quantum jump

role of the environment: • continuous observation

quantum optical tools and techniques:

• Quantum Markov processes • master equation • stochastic Schrödinger equation Quantum Optics: Open Quantum Systems

H = Hsys + HB + Hint environment / system HB = dωωb† bω bath of oscillators bath ω ! bω,b† = δ(ω ω!) ω! − ! "

Example: spontaneous emission H = i dωκ(ω) b† c b c† int ω − ω from TLS ! " # e | !  Rotating wave approximation ! ! photon  Markov / white noise g | ! photodetector

c = g e σ− | !" | ≡ Quantum Optics: Open Quantum Systems

H = Hsys + HB + Hint environment / system HB = dωωb† bω bath of oscillators bath ω ! bω,b† = δ(ω ω!) ω! − ! "

H = i dωκ(ω) b† c b c† int ω − ω ! " #

 Rotating wave approximation system frequency  Markov / white noise

reservoir bandwidth Time evolution of system + environment e | ! ! ! photon

… time g | ! photodetector Time evolution of system + environment e | ! ! ! photon

time g | ! photodetector

system + reservoir Time evolution of system + environment e | ! ! ! photon

time g | ! photodetector

one photon

nonhermitian system time Hamiltonian no photon

time photon emission

 system wave function for count click: trajectory t , t , etc. 1 2 “quantum jump” = effect of  gives photon count statistics detecting a photon on system

can be simulated as a stochastic no click: c-number Schrödinger equation Time evolution of system + environment e | ! ! ! photon

g | ! photodetector Fig.: typical quantum trajectory: upper state population

Rabi oscillations

quantum jump: electron returns to the ground state (prepares the system) Quantum Optics: Open Quantum Systems

• open quantum system

drive out we do not read system the measurements in

master equation: quantum Markov processes

dρ = i [H, ρ] + ρ quantum jump operators dt − L Nc ρ κ 2c ρc† c† c ρ ρc† c L ≡ α α α − α α − α α α=1 ! " # Lindblad Dark States as Pure Steady States

• master equation dρ = i [H, ρ] + ρ quantum jump operators dt − L Nc Lindblad ρ κ 2c ρc† c† c ρ ρc† c L ≡ α α α − α α − α α α=1 ! " #

• dark states as pure steady states: eigenstates of the quantum jump operators

t sufficient α cα D = 0 ρ(t) →∞ ρss D D ✓ ∀ | " −−−→ ≡ | $ % | ✓conditions for uniqueness ... (H = 0, or D eigenstate of H) | ! Example 1: Dark States & Λ-Systems

• 3-level systems

dark state bright state internal states

Aspects: D Ω2 g 1 Ω1 g+1 | ! ∼ | − ! − | ! ✓coherent: STIRAP B Ω1 g 1 + Ω2 g+1 ✓incoherent: optical pumping into dark | ! ∼ | − ! | ! state t ρ(t) →∞ D D Applications: −−−→ | # $ | ✓EIT / slow light / quantum memory... ✓sub recoil laser cooling steady state as pure “dark state” ✓... Application: sub-recoil laser cooling

• Laser cooling: VSCPT (Cohen-Tannoudji et al., see also: Kasevich & Chu)

dark state D, p g 1, p !k + g+1, p + !k | ! ∼ | − − ! | ! bright state B, p g 1, p !k g+1, p + !k | ! ∼ | − − ! − | ! momentum distribution

t ρ(t) →∞ D, p = 0 D, p = 0 −−−→ | # $ |

Levy flights single p particle Example 2: Squeezed State of Motion as a Dark State

• squeezed states of the harmonic oscillator

(µa + νa†) squeezed state = 0 | ! c ~ quantum jump operator ! ≡ quadrature operators • example: cooling of trapped ions / cantilevers …

we "cool" to a squeezed state of motion … I. Cirac & PZ 2000 P. Rabl, A. Shnirman & PZ PRB 2006

• master equation: in rotating frame with respect to H = νa†a

dρ t = κ 2cρc† c†cρ ρc†c ρ(t) →∞ squeezed squeezed dt − − −−−→ | # $ | ! " Cold Atoms & Bath of Bogoliubov Excitations

• dissipative Hubbard models • … as a quantum optical system A. Griessner, A. Daley et al. PRL 2006; NJP 2007 (noninteracting atom) Driven Dissipative Hubbard Dynamics (Many Body)

• BEC as a “phonon reservoir” - quantum reservoir engineering

BEC

• master equation - reduced system dynamics - Quantum Markov process ‣ validity (as in quantum optics)

dρ ✓ interband transitions = i [Hsys, ρ] + ρ ✓ RWA + Born + Markov dt − L ✓ when is a reservoir a reservoir?

2 band Hubbard model BEC phonons “think quantum optics” • driven two-level atom + spontaneous • trapped atom in a BEC reservoir emission

e energy scale! | ! optical 1 ! ! photon | ! 0 g BEC | ! | ! “phonon” (cycling transition) laser atom photon laser assisted atom + BEC collision

• reservoir: vacuum modes of the • reservoir: Bogoliubov excitations of the radiation field (T=0) BEC (@ temperature T)

? cold atoms / many body / Quantum optics ideas / techniques non-equilibrium situation i ρ˙ = [H,ρ] + L ρ −h¯

† † † i L ρ !γα 2cα ρcα cα cα ρ ρcα cα ρ˙ = [H,ρ] + L ρ ≡ α − − −h¯ ! " 2 2 † h¯ " † † ˆ 3 3† † † HBEC = ψˆ b(r) ψˆ b(r)d r + gbb ψˆ b(r)Lψˆ bρ(r)ψˆ b(γr)ψˆ 2b(cr)ρdcr c c ρ ρc c − 2mb ! α α α α α α α # $ % # ≡ α − − † ! " E0 + ε(k)bˆ bˆk 2 2 ! k † h¯ " 3 † † 3 → k=Hˆ0BEC = ψˆ (r) ψˆ (r)d r + gbb ψˆ (r)ψˆ (r)ψˆ (r)ψˆ (r)d r $ b − 2m b b b b b # $ b % # Hˆ = E + (k)bˆ†bˆ (1) BEC 0 ! ε k k † k=0 E0 + ε(k)bˆ bˆk $ ! k → k=0 where $ ˆ† ˆ ˆ† ˆ bk HBEC = E0 + ! ε(k)bkbk (1) k=0 and $ wherebˆ k ˆ† bk h¯k and ε(k) bˆk ˆ † † 3 hk Hint = gab ψˆ a(r)ψˆ a(r)ψˆ b(r)ψˆ b(r)d r ¯ (2) # 2 ε(k) gab = 4πh¯ aab/(2mr) Hˆ = g ˆ †(r) ˆ (r) ˆ †(r) ˆ (r)d3r (2) mr = (mamb)/(ma + mb) int ab ψa ψa ψb ψb # ˆ ˆ 2 ψb = √ρ0 + δψb gab = 4πh¯ aab/(2mr) 1 ˆ ik.r ˆ† ik.r mr = (mamb)/(ma + mb) δψˆ b = ! ukbke + vkbke− , (3) √V k & ' ψˆ b = √ρ0 + δψˆ b L 1 u = k , v = 1 (4) k k ˆ ˆ ik.r ˆ† ik.r 1 L2 1 L2 δψb = ! ukbke + vkbke− , (3) k k √V k − − & ' ( 2 ( 2 εk (hk¯ ) /(2m) mc Lk 1 Lk = − − . uk = , vk =(5) (4) mc2 2 2 1 Lk 1 Lk 2 2 4 2 1/2 − − εk = [c (hk¯ ) + (hk¯ ) /(2mb) ] ( (6)(spectrum of ε (hk¯ )2/(2m) mc2 k Bogoliubov excitations “Spontaneous Emission” Lk = − 2 − . (5) c = gbbρ0/mb mc ( ε = [c2(hk¯ )2 + (hk¯ )4/(2m )2]1/2 (6) gbb = 4πha¯ bb/mb 1 k b | ! ρ0 ˆ ik.r ˆ† ik.r c = gbbρ0/mb δρˆ = ! (uk + vk)bke + (uk + vk)bke− . V k ( ) & BEC 0 ' gbb = 4πha¯ bb/mb | !2 S(k,ω) = (uk + vk) ρ0 ik.r † ik.r δρˆ = (u + v )bˆ eE =+ (u c+2kv2 +)bˆke4−/(2m .)2 1/2 V ! k k k k k k k b S(k,ω) ) k & ! ' ˆ 1/2 ik.r ˆ 2 Hint gab BEC!S( kreservoir,ω) w1 e w0 bk 1 0 + h.c. Sinteraction:(k,ω) = (uk inter+ vkband) 0 - 1 ∼ • k ' | | ( | (' | • 1/2 ˆ ˆ ˆ S(k,ω) 1/2 Hb = Ekbk† bk Hˆ g S(k, ω) 1 0 ˆb + h.c. spontaneous emission rate collision ∼ ab | " # | k k Hˆ g S(k, )1/2 w eik.r wk bˆ 1 0 + h.c. a!s = 100a0 int ab ! ω 1 !0 k Bogoliubov ∼ k '“spontaneous| | ( emission”| (' | 14 3 n = 5 10 cm− × “spontaneousspontaneous emissionemission rate” rate • ω = 2π 100 KHz × as = 100a0 scattering length 14 3 # = 2π 1.1 KHz ρ = 5 10 cm− density × 0 × weak coupling2 tunable ! # ρ0as √ω ω = 2π 100 KHz trap frequency ∼ × # = 2π 1.1 KHz [tayloring the reservoir, e.g. phononic band gap]× • # ρ a2√ω ∼ 0 s A. Griessner, A. Daley et al. PRL 2006; NJP 2007 Application: Raman Cooling within a Blochband

step 2: (dissipative) step 1: (coherent) • • decay to ground band quasimomentum selective excitation

~ subrecoil Raman cooling by Kasevich and Chu (also VSCPT: Cohen et al.) A. Griessner, A. Daley et al. PRL 2006; NJP 2007 Raman Cooling within a Blochband

Temperature: k T=2J0(Δ q)2 ✓ no heating / cooling due to B intraband transitions Levy flights ✓ We can cool to temperatures lower than the BEC “think quantum optics”

• Λ-system

three electronic levels dark state bright state • N atom on M sites

t ρ(t) →∞ BEC BEC −−−→ | # $ | driven dissipative BEC

cond mat: ~ spatial array of dissipative Josephson junctions quantum optics: spatial chain of Λ-systems “think quantum optics”

• Λ-system

dark state bright state • 1 atom on 2 sites

1 2 (a† + a†) vac (a† a†) vac 1 2 | ! 1 − 2 | " symmetric anti-symmetric J “in-phase” “out-of-phase”

~ dissipative Josephson junction pumping into symmetric state “phase locking” 2 2 N (non-) interacting atoms on 2 sites H = J a†a + U a† a • − i j i i i ! !

U

1 2 N BEC (a† + a†) vac | ! ∼ 1 2 | ! J

- every “spontaneous emission event” associated with quantum jump

ψ (a† + a†)(a a ) ψ c ψ quantum jump operator | c! → 1 2 1 − 2 | ! ≡ 12 | c! - master equation dρ = i [H, ρ] + κ 2c ρc† c† c ρ ρc† c Lindblad form dt − 12 12 − 12 12 − 12 12 ! " - steady state c12 BEC = 0 | ! ✓BEC as a “dark state” t ρ(t) →∞ BEC BEC ✓compatible with H for U=0 −−−→ | # $ | ✓unique A. Micheli, H.P. Büchler, Driven Dissipative BEC: lattice with many sites S. Diehl

• Setup local dissipation

2 2 H = J a†a + U a† a − i j i i i ! ! • quantum jumps

pairs i, j ψ (a† + a†)(a a ) ψ c ψ ∀ " # | c# → i j i − j | # ≡ ij | c#

• strong driving: driven dissipative BEC κ U 0 ! → N BEC (a† ) vac | ! ∼ q=0 | ! t M ρ(t) →∞ BEC BEC −−−→ | # $ | with aq†=0 = ai† i=1 long range order by local dissipation ! < i, j > (a a ) BEC = 0 ∀ i − j | # • time evolution of the correlation functions

spatial correlation function momentum correlation function

a†a a†aq ! i j" ! q ! "

off-diagonal long range order macroscopic occupation of q=0 What happens for finite interactions U?

• master equation

d ρ = i [H, ρ]+κ 2c ρc† c† c ρ ρc† c dt − ij ij − ij ij − ij ij ij !! " " #

interaction wants to squeeze: dissipation wants to pump into ~ Bogoliubov “BEC”

mixed (“finite temperature”) squeezed state

• 3D: condensate = long range order @ finite temperature - Bogoliubov

linearized • 1D/2D: phase fluctuations theory - phase / amplitude First, a simplified problem ... Two Sites: Dissipation vs. Interactions

dρ = i [H, ρ] + κ 2c ρc† c† c ρ ρc† c dt − 12 12 − 12 12 − 12 12 ! " interaction vs. dissipation

two sites Bloch sphere

1 2

Hamiltonian 2 1 2 2 H = J(a†a + h.c.) + U a† a − 1 2 2 i i i=1 quantum jump operator !

c = a† + a† a a 1 2 1 − 2 ! " ! " Two Sites: Dissipation vs. Interactions

dρ = i [H, ρ] + κ 2c ρc† c† c ρ ρc† c dt − 12 12 − 12 12 − 12 12 ! " interaction vs. dissipation

two sites Bloch sphere

1 2

Schwinger representation 1 S = a†a + a†a angular momentum x 2 1 2 1 2 1 ! " [Sx, Sy] = iSz etc. Sy = a†a2 a†a1 2 2 − 1 1 i ! " ∆Sx∆Sy Sz S = a†a a†a ≥ 2 |" #| z 2 1 2 − 2 1 ! " Two Sites: Dissipation vs. Interactions

dρ = i [H, ρ] + κ 2c ρc† c† c ρ ρc† c dt − 12 12 − 12 12 − 12 12 ! " interaction vs. dissipation

two sites Bloch sphere

1 2

Hamiltonian

H = US2 2JS z − x quantum jump operator raising operator c = [S ] S + iS + x ≡ y z • steady state: no interaction U=0 - dark state (BEC): P N Q-distribution [S+]x S, S = 0 with S = | !x 2 max angular momentum eigenstate X

S N ∆Sy = ∆Sz √N (SQL) ! x" ∼ ∼ 1 P ∆X = ∆P = √ - for states near the BEC: linearize 2

angular momentum [S , S ] = iS N/2 y z x → X

harmonic oscillator [X, P ] = i dissipation wants to pump into pure

BEC vac | ! ∼ | ! • Interaction vs. Dissipation

dρ = i [H, ρ] + κ 2c ρc† c† c ρ ρc† c dt − 12 12 − 12 12 − 12 12 ! "

interaction (Hamiltonian) dissipation P 2 H = US2 “free particle” 1 z → 2M ∆X = ∆P = P P P √2

evolution

X X X

Hamiltonian wants to squeeze dissipation wants to pump into pure ~ Bogoliubov BEC vac | ! ∼ | !

Teff U/κ ρ exp ( H /k T ) ∼ ss ∼ − Bog B eff • steady state: numerical results no interaction interaction: squeezing

» 4 entropy squeezing N=2 S 1 1.2 N=26 1.1 N=28 1 SQL 0.5 0.9

0.8 (J =0)

0 0.7 “effective −2 −1 0 1 2 0.010.1 110 100 10 10 10 10 10 U/κ U/· temperature” What happens for finite interactions U?

• master equation

d ρ = i [H, ρ]+κ 2c ρc† c† c ρ ρc† c dt − ij ij − ij ij − ij ij ij !! " " #

interaction wants to squeeze: dissipation wants to pump into ~ Bogoliubov “BEC”

mixed (“finite temperature”) squeezed state

• 3D: condensate = long range order @ finite temperature - Bogoliubov

linearized • 1D/2D: phase fluctuations theory - phase / amplitude H.P. Büchler, S. Diehl 3D: Bogoliubov !e iθ 2 • We replace the condensate by a c-number a0 = √N0e Hamiltonian (momentum space) • !e1

1 2iθ 2iθ H = !q aq† aq + a† qa q + µ e aq† a† q + e− aqa q 2 − − − − q=0 !! " # " # 2 qeλ !q = 4J sin µ = UN/V Un] 2 ≡ !λ " # • quantum jump operators (momentum space) qe iθ iqeλ 2 λ c = √Ne− 2 1 e a q=0 is “dark” κq = κ 16n sin q,λ − q 2 λ ! " ! " # • master equation d ρ = i [H, ρ]+ κ 2a ρa† a† a ρ ρa† a dt − q q q − q q − q q q=0 !! " # • Exact timedependent solution as Gaussian Density operator ☺ H.P. Büchler, S. Diehl 1D/2D: phase fluctuations

• phase amplitude modes

iφi ai = √n + Πie− with [φi, Πi] = i

Hamiltonian φq =i U/2Eq(dq d† q) • − − U ! H = (n!qφ qφq + Π qΠq) Πq = Eq/2U(dq + d† q) − 2 − − q ! ! Eq = 2Un!q • quantum jump operators (momentum space) !

iqa c =2√n(1 e− )a q − q • master equation d ρ = i E [d† d , ρ]+ κ (2(a ρa† a† a ρ ρa† a ) dt − q q q q q q − q q − q q q q ! !

Bogoliubov type operators aq = uqdq vqd† q − − • Exact timedependent solution as Gaussian Density operator ☺ Gaussian model: decoupled modes

Gaussian model for decoupled modes: dq,σ =(dq + σd q) (σ = 1) • − ± d 2 ρ = iE[d†d, ρ] dt − 2 2 +κ(2(u d†ρd + v dρd† σuv(d†ρd† + dρd)) 2 2 − u d†d + v dd† σuv(d†d† + dd), ρ ) −{ − }

ansatz: Gaussian characteristic function χ(η, η∗)=tr(ρ exp(ηd† exp η∗d)) • − moment equation •

d 2 d†d = κ d†d + v κ, dt" # − " # d 1 d†d† = (κ iE) d†d† + σuvκ , dt" # 2 − − " # d 1! " dd = (κ +iE) dd + σuvκ dt" # 2 − " # ! " !q Eq fq κq uq,vq 2 2 iθ iqa 2 1 #q+Un0 1/2 d = 3 4J sin(qeλ/2) 2Un0!q + ! 2√n0e− (1 e− ) 16κn0 sin (qeλ/2) 1 q √2 Eq λ − λ ± " ! 2 iθ iqa ! 2 1 # Un 1 $Eq d =1, 2 Jq 2Un!q 2√ne− (1 e− )4κnq − √2 Eq ± 2 Un % #" " $ Results: steady state

excitations on top of the ground state d G =0 • | # 30 mixed state • no interactions: v2 0, no excitations • → - pure BEC finite interactions • - thermal state ∼ 1 equilibrium: d† d = (exp βE 1)− T/E & q q# q − ≈ q 2 here: d† d = v Un/(2E ) & q q# q ≈ q

Teff = Un/2

31 H.P. Büchler, S. Diehl Results for the steady state

• finite interactions as “finite temperature”

1 thermodynamic equilibrium: d† d = (exp βE 1)− T/E ! q q" q − ≈ q 2 here: d† d = v Un/(2E ) ! q q" q ≈ q

Teff = Un/2 effective temperature • 3D: depletion of the condensate

d3q 2 n0 = n aq† aq q 0 1 (Un) − (2π)3 " # a a → ! q† q 2 2 ! " −−−→ 2 Eq + κq low energy behavior

standard condensate S. Diehl

• 1D/2D dissipation of phase coherence

i(φ φ ) (φ φ )2 /2 a†a e i− 0 = e−" i− 0 # ! i 0" ∼ ! " d 2 d q iqxi (φi φ0) = 1 e φ qφq ! − # (2π)d − ! − # ! " # 2 q 0 U n → φ qφq 2 2 ! − " −−−→ Eq + κq

T eff x i(φ φ ) e− 8Jn (d = 1) e i− 0 Teff /4TKT with ! "∼ ! (x/x0)− (d = 2) Teff = Un/2

TKT = πJn Teff ! 1/2 x0 =2κn(Teff J)− S. Diehl Results: time dependence

• time dependent moments

κ t d† d d† d e− q ! q q"t −! q q"eq ∼ 1 (κ +iE )t d d d d e− 2 q q ! q q"t −! q q"eq ∼ • 3D depletion Un 1 n0,eq n0(t) − ∼ ! 8J 2κnt

• 1D/2D build up of phase correlations

ddq 1 d iφ(x) d φ qφq Ψ(t) d x e− t = e− (2π) " − # ∼ Ld " # R ! 1 U√κn √ 4√π J t Teff = Un/2 = e− (d = 1) Teff /8TKT " (t/t0)− (d = 2) TKT = πJn Teff ! compare Altman et al., Demler et al. Open Questions

• Phase transitions as a function of the “effective temperature” - non-equilibrium distribution

• imperfections - non-ideal realization of master equation / jump operators

• Which (other interesting) many body states can be engineered by (local) dissipation? - quantum info η-condensate A. Kantian “Cooling” to Excited (Metastable) States: η-Condensate

• Preparation of excited (metastable) states of Hubbard Hamiltonians • The η-state is an exact excited eigenstate of the two-species fermi Hubbard Hamiltonian in d-dimensions [Yang ʼ89, high-Tc ...]

† † † H = J cxσcx!σ + U cx cx cx cx − ↑ ↓ ↓ ↑ x,x ,σ x ! !!" !

D d=1 xd η† ( 1) cx† cx† ∼ − P ↑ ↓ !x η-particle

N N H(η†) 0 = NU(η†) 0 | ! | ! exact eigenstate: off-diagonal long range order

• The η-state is an exact and unique dark state of the jump operators

C = (η† η†)(η + η ) x,y x − y x y