Crop Nutrition FACT SHEET
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Micronutrient Management
MICRONUTRIENT PRINCIPLES MGGA Convention Great Falls December 1, 2015 Clain Jones [email protected] 994-6076 MSU Soil Fertility Extension Clickers are better than cell phones because: A. You don’t listen to Siri 25% 25% 25% 25% giving you wrong directions B. They don’t need to be turned off during a presentation C. They screen calls from telemarketers D. They make your dog obey Response A. B. C. D. Counter Goals Today • Define micronutrients and their role in plants • Illustrate micronutrient deficiency symptoms • Discuss soil testing for micronutrients • Explain which micronutrients may be deficient in MT soils and why Your experience with micro deficiencies (select all that apply) A. I don’t think I’ve seen any 20% B. I’ve suspected micro deficiencies 20% based on symptoms, but didn’t verify with tissue testing C. I’ve verified micro deficiencies 20% through tissue testing D. I’ve verified micro deficiencies 20% through fertilizer trials E. Other 20% Response Counter Of which micronutrients do you think you’ve seen deficiencies? Select all that apply A. Boron (B) 14% 14% 14% 14% 14% 14% 14% B. Chloride (Cl) C. Copper (Cu) D. Iron (Fe) E. Manganese (Mn) F. Zinc (Zn) G. Don’t know Iron (Fe) Boron (B) Zinc (Zn) Response Chloride (Cl)Copper (Cu) Don’t know Counter Manganese (Mn) For which micronutrients have you applied fertilizer? Select all that apply. A. Boron (B) 14% 14% 14% 14% 14% 14% 14% B. Chloride (Cl) C. Copper (Cu) D. Iron (Fe) E. Manganese (Mn) F. Zinc (Zn) G. Ask my crop adviser Boron (B) Iron (Fe) Zinc (Zn) Chloride (Cl)Copper (Cu) Manganese (Mn) Response Ask my crop adviser Counter Nutrient amounts in dried plant material 5% Macro N, P, K, S 1% Micro Ca, Mg .05 to 250 ppm B, Cu, Fe, 94% C, H, O each Mn, Mo, Ni, Zn H2O Cl 0.05 to 0.5% CO2 1 ppm ≈ 1 tsp of water in an Olympic sized swimming pool The micronutrients are simply needed in smaller amounts by the plant than the macronutrients. -
Micronutrients and the Nutrient Status of Soils: a Global Study
FAO SOILS BULLETIN 48 micron utrients and the nutrient status of SOUS: a global study by mikko sillanpAl FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS FAO SOILS BULLETIN 48 micronutrients and the nutrient status of soils: a global study by mikko sillanpäd sponsored by the government of finland executed at the institute of soil science agricultural research centre jokioinen, finland and soil resources, management and conservation service land and water development division FAO FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIO-NS Rome 1982 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization oftheUnitedNations concerningthelegal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-52 ISBN 92-5-101193-1 Allrights reserved. No part ofthispublication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,mechanical, photocopyingor otherwise, without theprior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Via delle Terme diCaracalla, 00100 Rome, Italy. C) FAO 1982 Printed in Finland by Werner Söderström Osakeyhtiö. Foreword During the last two decades, the increasing use of mineral fertilizers and organic manures of different types has led to impressive yield incrcases in developing countries. Major emphasis was given to the supply of the main macronutrients, nitrogen, phosphate and potash. -
Growth and Micronutrient Needs of Adolescents
European Journal of Clinical Nutrition (2000) 54, Suppl 1, S11±S15 ß 2000 Macmillan Publishers Ltd All rights reserved 0954±3007/00 $15.00 www.nature.com/ejcn Growth and micronutrient needs of adolescents B Olmedilla* and F Granado Servicio de NutricioÂn, Unidad de Vitaminas, ClõÂnica Puerta de Hierro, 28035-Madrid, Spain Objective: This paper focuses on micronutrients in relation to needs throughout adolescence, a period which involved growth and development that occur through a complex interaction of genetic instructions, hormones and environmental in¯uences, many of them of dietary origin. In the context of micronutrient `needs' it is of special importance to differentiate between the `nutritional needs' and `metabolic needs'. Two main questions arise in relation to the micronutrient needs: (1) why are micronutrients necessary? and (2) how are their needs assessed? Results: The `necessary' amount will differ according to the objectives pursued: (a) to achieve a satisfactory rate of growth and development; and (b) to maintain `optimal health'. The assesment of micronutrient needs and status has proved to be dif®cult, but when elucidating and establishing them, it is imperative to arrive at the estimates in the light of their interdependent role in metabolism and functions. The knowledge of micronutrient metabolic needs can be approached through epidemiological observations, bioavailability studies and clinical trials. However, there is a nearly total absence of reports on the particular metabolic and dietary needs of adolescents. Conclusion: Thus more studies are required in relation to the effect of features associated with adolescence on `needs', evaluating their impact on bioavailablility and turnover (storage and losses), and the interactions among micronutrients in the assessment of metabolic and nutritional needs. -
Guidelines on Food Fortification with Micronutrients
GUIDELINES ON FOOD FORTIFICATION FORTIFICATION FOOD ON GUIDELINES Interest in micronutrient malnutrition has increased greatly over the last few MICRONUTRIENTS WITH years. One of the main reasons is the realization that micronutrient malnutrition contributes substantially to the global burden of disease. Furthermore, although micronutrient malnutrition is more frequent and severe in the developing world and among disadvantaged populations, it also represents a public health problem in some industrialized countries. Measures to correct micronutrient deficiencies aim at ensuring consumption of a balanced diet that is adequate in every nutrient. Unfortunately, this is far from being achieved everywhere since it requires universal access to adequate food and appropriate dietary habits. Food fortification has the dual advantage of being able to deliver nutrients to large segments of the population without requiring radical changes in food consumption patterns. Drawing on several recent high quality publications and programme experience on the subject, information on food fortification has been critically analysed and then translated into scientifically sound guidelines for application in the field. The main purpose of these guidelines is to assist countries in the design and implementation of appropriate food fortification programmes. They are intended to be a resource for governments and agencies that are currently implementing or considering food fortification, and a source of information for scientists, technologists and the food industry. The guidelines are written from a nutrition and public health perspective, to provide practical guidance on how food fortification should be implemented, monitored and evaluated. They are primarily intended for nutrition-related public health programme managers, but should also be useful to all those working to control micronutrient malnutrition, including the food industry. -
Vitamin and Mineral Requirements in Human Nutrition
P000i-00xx 3/12/05 8:54 PM Page i Vitamin and mineral requirements in human nutrition Second edition VITPR 3/12/05 16:50 Page ii WHO Library Cataloguing-in-Publication Data Joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements (1998 : Bangkok, Thailand). Vitamin and mineral requirements in human nutrition : report of a joint FAO/WHO expert consultation, Bangkok, Thailand, 21–30 September 1998. 1.Vitamins — standards 2.Micronutrients — standards 3.Trace elements — standards 4.Deficiency diseases — diet therapy 5.Nutritional requirements I.Title. ISBN 92 4 154612 3 (LC/NLM Classification: QU 145) © World Health Organization and Food and Agriculture Organization of the United Nations 2004 All rights reserved. Publications of the World Health Organization can be obtained from Market- ing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permis- sion to reproduce or translate WHO publications — whether for sale or for noncommercial distri- bution — should be addressed to Publications, at the above address (fax: +41 22 791 4806; e-mail: [email protected]), or to Chief, Publishing and Multimedia Service, Information Division, Food and Agriculture Organization of the United Nations, 00100 Rome, Italy. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization and the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Micronutrient Management in Nebraska Bijesh Maharjan, Tim M
NebGuide Nebraska Extension Research-Based Information That You Can Use G1830MR · Index: Crops, Soil Management Revised February 2018 Micronutrient Management in Nebraska Bijesh Maharjan, Tim M. Shaver, Charles S. Wortmann, Charles A. Shapiro, Richard B. Ferguson, Brian T. Krienke, and Zachary P. Stewart Extension Soils Specialists This NebGuide addresses issues of micronutrient fertilizer use Table 1. Estimates of micronutrient uptake (whole plant) by with a focus on zinc and iron. crops. Of the 17 elements known to be essential for plant Micronutrient 200 Bu Corn 60 Bu Soybean 6 Ton Alfalfa growth, eight are used in very small amounts and, with the lb/acre lb/acre lb/acre exception of iron, have an uptake of less than 1 pound per Iron 2.4 1.7 1.8 acre per year (Table 1). These elements are classified as mi- Manganese 0.4 0.6 0.6 cronutrients and include zinc (Zn), iron (Fe), manganese Zinc 0.4 0.2 0.2 (Mn), copper (Cu), boron (B), molybdenum (Mo), chlo- Boron 0.2 0.1 0.3 rine (Cl), and nickel (Ni). Interest in micronutrients has Copper 0.1 0.1 0.06 Molybdenum 0.01 0.01 0.02 increased because of accelerated rates of nutrient removal Nickel 0.01 0.01 0.01 due to greater yields and the availability of alternative mi- Adapted from: Role of Micronutrients in Efficient Crop Production, D.B. Mengel, Purdue cronutrient products. University AY- 239. https:// www .extension .purdue .edu /extmedia /AY /AY - 239 .html Micronutrient Availability Some micronutrients are supplied to plants when 1). -
Zinc, Copper and Selenium
pISSN: 2234-8646 eISSN: 2234-8840 http://dx.doi.org/10.5223/pghn.2012.15.3.145 Pediatric Gastroenterology, Hepatology & Nutrition 2012 September 15(3):145-150 Review Article PGHN Micronutrient Deficiency Syndrome: Zinc, Copper and Selenium Jee Hyun Lee, M.D. Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea Nutrients are defined as not only having nutritive values of participating in the metabolism and building the structures of cells but also being safe for human body. Nutrients are divided into two types, macronutrient and micronutrient, according to the proportion of the human body. Commonly, micronutrients include trace elements (trace mineral) and vitamins (complex organic molecules). It is difficult to demonstrate micronutrient deficiency because the symptoms are varied and laboratory analyses are limited. Since parenteral nutrition became an established therapy, micronutrient deficiency syndromes are being identified more frequently and emphasize the importance of a complete nutritional support. In this article, we review various specific trace element deficiency states such as zinc, copper, and selenium and briefly discuss the use of dietary supplements. (Pediatr Gastroenterol Hepatol Nutr 2012; 15: 145∼150) Key Words: Zinc, Copper, Selenium, Dietary supplements, Child INTRODUCTION cules). These micronutrients are necessary for the optimal utilization of the three macronutrients. Nutrients are defined as having nutritive values Trace elements contribute less than 0.01% to body (they participate in the metabolism building struc- weight and a human nutritional requirement has tures of cells) and being presumed to be safe to the been established for iron, iodine, zinc, copper, chro- human body also. Nutrients are classified into three mium, selenium, molybdenum, manganese, and co- macronutrients (carbohydrate, protein and fat) and balt [2]. -
Millets: a Solution to Agrarian and Nutritional Challenges Ashwani Kumar1,2* , Vidisha Tomer2, Amarjeet Kaur1, Vikas Kumar2 and Kritika Gupta2
Kumar et al. Agric & Food Secur (2018) 7:31 https://doi.org/10.1186/s40066-018-0183-3 Agriculture & Food Security REVIEW Open Access Millets: a solution to agrarian and nutritional challenges Ashwani Kumar1,2* , Vidisha Tomer2, Amarjeet Kaur1, Vikas Kumar2 and Kritika Gupta2 Abstract World is facing agrarian as well as nutritional challenges. Agricultural lands with irrigation facilities have been exploited to maximum, and hence we need to focus on dry lands to further increase grain production. Owing to low fertility, utilization of dry lands to produce sufcient quality grains is a big challenge. Millets as climate change compli- ant crops score highly over other grains like wheat and rice in terms of marginal growing conditions and high nutri- tional value. These nutri-cereals abode vitamins, minerals, essential fatty acids, phyto-chemicals and antioxidants that can help to eradicate the plethora of nutritional defciency diseases. Millets cultivation can keep dry lands productive and ensure future food and nutritional security. Keywords: Millets, Dry lands, Nutrition, Nutri-cereals, Micronutrient defciency Background up to 50–56% in 2100 AD, and 78% of dry land expan- Progress in scientifc knowledge and technological inno- sion is expected to occur in developing countries [2–4]. vations have led mankind into yet another stage of mod- According to the report of World Bank, hunger is a chal- ern civilization. Application of novel research strategies lenge for 815 million people worldwide [5]. Te spate of into fundamental and translational research has brought farmer’s suicides in an agriculture-based country like an all-round development. In agriculture, strategized India has reached to an average of 52 deaths/day, and technological innovations, viz. -
Visual Deficiency and Multi-Deficiency Symptoms of Macro and Micro Nutrients Element in Pistachio Seedling (Pistacia Vera)
Visual deficiency and multi-deficiency symptoms of macro and micro nutrients element in pistachio seedling (Pistacia vera) Afrousheh M., Ardalan M., Hokmabadi H. in Zakynthinos G. (ed.). XIV GREMPA Meeting on Pistachios and Almonds Zaragoza : CIHEAM / FAO / AUA / TEI Kalamatas / NAGREF Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 94 2010 pages 37-52 Article available on line / Article disponible en ligne à l’adresse : -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://om.ciheam.org/article.php?IDPDF=801283 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- To cite this article / Pour citer cet article -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Afrousheh M., Ardalan M., Hokmabadi H. Visual deficiency and multi-deficiency symptoms of macro and micro nutrients element in pistachio seedling (Pistacia vera). In : Zakynthinos G. (ed.). XIV GREMPA Meeting on Pistachios and Almonds. Zaragoza : CIHEAM / FAO / AUA / TEI Kalamatas / NAGREF, 2010. p. 37-52 (Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 94) -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- -
Role of Micronutrient in Rice Cultivation and Management Strategy in Organic Agriculture—A Reappraisal
Agricultural Sciences, 2014, 5, 765-769 Published Online July 2014 in SciRes. http://www.scirp.org/journal/as http://dx.doi.org/10.4236/as.2014.59080 Role of Micronutrient in Rice Cultivation and Management Strategy in Organic Agriculture—A Reappraisal Shaon Kumar Das ICAR Research Complex for NEH Region, Sikkim Centre, Tadong, Sikkim Email: [email protected] Received 25 April 2014; revised 23 June 2014; accepted 9 July 2014 Copyright © 2014 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Micronutrient refers to the relative quantity of a nutrient that is required for plant growth. It takes part in metabolic activities, enzymatic process/catalysts etc. Thus these all directly and in- directly help in plant growth and development. There are 8 essential plant nutrient elements de- fined as micronutrients like boron (B), zinc (Zn), manganese (Mn), iron (Fe), copper (Cu), molyb- denum (Mo), chlorine (Cl) and silicon (Si). They constitute in total less than 1% of the dry weight of most plants. Organic sources like farm yard manure, compost, vermicompost etc. may contain less quantity of these nutrients but presence of these help the plant in their growth and develop- ment. They also called trace elements or minor elements. They are required only in small amounts (5 to 200 ppm, or less than 0.02% dry weight). The visual symptoms may be caused by more than one nutrient. Deficiency of one nutrient may be related to an excess quantity of another. -
Glyphosate Poisoning
Toxicol Rev 2004; 23 (3): 159-167 REVIEW ARTICLE 1176-2551/04/0003-0159/$31.00/0 © 2004 Adis Data Information BV. All rights reserved. Glyphosate Poisoning Sally M. Bradberry, Alex T. Proudfoot and J. Allister Vale National Poisons Information Service (Birmingham Centre) and West Midlands Poisons Unit, City Hospital, Birmingham, UK Contents Abstract ...............................................................................................................159 1. Epidemiology .......................................................................................................160 2. Mode of Action .....................................................................................................161 3. Mechanisms of Toxicity ..............................................................................................161 3.1 Glyphosate ....................................................................................................161 3.1.1 Acute Toxicity ............................................................................................161 3.1.2 Chronic Toxicity ...........................................................................................161 3.2 Surfactants .....................................................................................................161 3.2.1 Polyoxyethyleneamine ....................................................................................162 3.2.2 Surfactants Derived from Plant Fats .........................................................................162 3.2.3 Other Surfactants -
Soil Test Handbook for Georgia
SOIL TEST HANDBOOK FOR GEORGIA Georgia Cooperative Extension College of Agricultural & Environmental Sciences The University of Georgia Athens, Georgia 30602-9105 EDITORS: David E. Kissel Director, Agricultural and Environmental Services Laboratories & Leticia Sonon Program Coordinator, Soil, Plant, & Water Laboratory TABLE OF CONTENTS INTRODUCTION .......................................................................................................................................................2 SOIL TESTING...........................................................................................................................................................4 SOIL SAMPLING .......................................................................................................................................................4 SAMPLING TOOLS ......................................................................................................................................................5 SIZE OF AREA TO SAMPLE..........................................................................................................................................5 Traditional Methods.............................................................................................................................................5 Precision Agriculture Methods.............................................................................................................................5 AREAS NOT TO SAMPLE ............................................................................................................................................5