UNITED STATES PATENT Office

Total Page:16

File Type:pdf, Size:1020Kb

UNITED STATES PATENT Office Patented June 6, 1944 2,350,583 UNITED STATES PATENT office DRYNG OS Theodore F. Bradley, Stamford, Conn., assignor to American Cyananid Company, New York, N. Y., a corporation of Maine No Drawing. Application February 8, 1941, Seria No. 378,060 3 Claims. (C. 260-405.6) This invention relates to improvements in dry may be used for the isomerization of any unsat ing oils and the higher fatty acids which they urated fatty acid or acids the molecules of which contain. The invention includes the prepara contain at least two non-conjugated double tion of such oils by isomerizing polyunsaturated bonds. In most cases the isomerization treat higher fatty acids to bring about a relatively high ment will be applied to mixed fatty acids only content of conjugated double bonds therein foll Some of which are polyunsaturated as this is the lowed by esterification of the isomerized acids forn) in which these acids are found in vegetable with a polyhydric alcohol. The invention also and fish oils of relatively high iodine values. It includes a new and improved method of isomeriz is an important advantage of the invention, how ing polyunsaturated fatty acids as Well as cer 0. ever, that it can be applied with success to fatty tain new drying oils prepared therefron, acid mixtures containing relatively low percen It is known that the drying properties of poly tages of non-conjugated, polyunsaturated fatty unsaturated higher fatty acids, winen employed acids, as is the case in soya bean fatty acids, as in the form of triglycerides, oil-modified alkyd well as to the more highly polyunsaturated fatty resins and the like, are influenced by the posi 5 acid mixtures such as those of linseed oil. tions of their double bonds with respect to each My isomerization treatment is especially other. If these double bonds are in conjugation adapted for improving the drying properties of (i. e. Separated by only one single bond) the oil the polyhydric alcohol esters of the fatty acid has better drying properties than a similar oil mixtures obtained from such vegetable oils as lin having an equal number of non-conjugated 20 seed oil, SOya bean oil, chia seed oil, perilla oil, double bonds. Thus, for example, tung oil dries poppy seed oil, cottonseed oil, sunflower seed oil faster than linseed oil because the three double and the like as well as the polyunsaturated fatty bonds of the eleostearic acid found in tung oil acids of fish oils, and other polyunsaturated are in conjugation whereas the double bonds of fatty acids of 18 or more carbon atoms. As a the linoleic and linolenic acids of linseed oil are 25 practical matter the oils from which the fatty not. It is a principal object of the present in acids are obtained should have a relatively high vention to provide a relatively quick and inex iodine value, at least on the order of 110-130, as pensive method of isomerizing polyunsaturated otherwise there are not sufficient polyunsaturated higher fatty acids to bring the double bonds acids present to warrant the treatment. It thereof into conjugation so that the polyhydric 30 should also be noted that there is no advantage alcohol esters thereof will have improved drying in applying my isomerization process to eleo properties. stearic acid, or to oils such as tung oil or oiticica, I have found that the double bonds of poly oil which contains large quantities of polyun unsaturated higher fatty acids can be brought saturated acids having double bonds that are into conjugation within a few hours by heating 35 already in conjugation, although the treatment an aqueous solution of the soaps thereof with of such acids is not excluded from the invention excess alkali in a pressure vessel at temperatures in its broadest aspects. Thus, for example, I above about 200° C. and under the corresponding have heated a mixture of 75 parts by weight of autogenic pressures. I have found that by heat tung oil acids, 75 parts of potassium hydroxide ing the acids at these temperatures in the form 40 and 100 parts of distilled water in an autoclave of a solution of their soaps in water the iso at 225-230° C. for 2.5 hours and liberated the re merization or rearrangement of the double bonds suiting isomerized fatty acids from their potas proceeds much faster than would otherwise be sium soaps. The resulting amber colored acids the case, and an equilibrium favoring a relative were partly liquid at room temperature, where ly high content of conjugated double bonds is 45 as the original acids were crystalline, and frac reached in from one to three hours. The most tionation of the isomerized acids by distillation favorable temperature range appears to be from at 250-300° C. under 1 mm. pressure followed by 200° to 250° C., for above this range excessive analysis of the fractions showed that the degree losses of the acids by polymerization may OCCur. of triple conjugation characteristic of eleostearic Insofar as I have been able to determine, my 50 acid had been substantially reduced while cor invention is perfectly general in character and responding quantities of acids having only dou 2,850,588 ble conjugation had been formed. While this have been isomerized to this extent exhibit faster constitutes further proof that the conditions ob and better drying properties as well as heat taining during the heating step brought about bodying characteristics than are possessed by the equilibrium favoring double conjugation, ester original oils from which these acids were ob fication of the isomerized tung oil acids with tained, and since the isomerization equilibrium . glycerine did not give as good a drying oil as the can be attained rapidly in ordinary equipment Original tung oil. this improvement is relatively inexpensive. In many cases it is feasible to subject higher When my isomerization treatment is applied fatty acid mixtures having a relatively low Con to the fatty acids of linseed oil and to dehydrated tent of polyunsaturated fatty acids to a prelim castor oil fatty acids, I find that the resulting inary treatment that will separate out the more fatty acid mixtures have very similar properties. highly saturated fatty acids such as stearic acid, By preparing the esters of the isomerized fatty palmitic acid and the like. Thus, for example, acids from these two sources with glycerine, the crude fatty acids obtainable by saponifica pentaerythritol and dipentaerythritol I have ob tion of soya bean oil, upon refrigeration at about S tained new drying oils which contain about 40% 4 to 12 below zero, centigrade, for 24 hours will of esterified octadecadienic acids in which the crystallize out substantial quantities of stearic two double bonds are in conjugation. These oils and palmitic acids, which can be removed by fill have excellent drying properties, and are in tration, and the percentage of doubly unsatu ed as specific features of the present inven rated fatty acids in the remaining oil is of course O increased substantially. The invention will be illustrated in greater de The content of fatty acids having conjugated tail by reference to the following specific exam double bonds can also be increased by vacuum ples. The results obtained in these examples distilation of the isomerized fatty acid mixtures. were evaluated by the spectroscopic method re I have found that the acids in which conjugation ferred to in volume 37 of the Biochemical Jour has occurred have slightly higher boiling points na, pages 138-141 (1937) and described in great at reduced pressures than the corresponding non er detail by the present applicant in Industrial conjugated acids, so that fractions rich in con and Engineering Chemistry, volume 32 (1940), jugated acids can be separated by this method. page 963. By this means it was possible to make Ordinarily a flash distillation is preferred, as con 30 quantitative determinations of the content of siderable polymerization of the conjugated acids doubly, triply and quadruply conjugated higher is encountered if they are maintained at ele fatty acids in fatty acid mixtures within very wated temperatures for too long a time. narrow limits of error. It should be understod, Another feature of the invention which is im however, that while these examples may describe portant from a commercial point of view resides 35 in detail some of the more specific features of the in the direct treatment of glyceride oils them invention, they are given primarily for purposes selves by my alkali isomerization process. When of illustration and the invention in its broader such triglycerides as soya bean oil, linseed oil, aspects is not limited thereto. perilla oil and the like are charged into an auto In Examples 2, 3, 4 and 7 some of the isom clave and heated with an aqueous solution of an erized fatty acids have been described by name. alkali the oil is immediately saponified and the It is quite possible, however, that the conjugated soaps of its fatty acids are formed. When the double bond systems of these acids may be one solution contains an excess of alkali over that or two carbon atoms removed from the positions necessary to saponify all the fatty acids and suf assigned, and therefore these examples should cient water to dissolve the resulting Soaps it be regarded as indicative of the results obtained is unnecessary to carry out the saponification as a rather than as proof of the exact structural for separate step, but the autoclave may be directly mulas of these compounds. heated to 200-250 C. and the contents main Eacample 1 tained at these temperatures until conjugation of the double bonds of the fatty acids is effected.
Recommended publications
  • Enhanced Fatty Acid Methyl Esters Recovery Through a Simple And
    www.nature.com/scientificreports OPEN Enhanced fatty acid methyl esters recovery through a simple and rapid direct transesterifcation of freshly harvested biomass of Chlorella vulgaris and Messastrum gracile Saw Hong Loh1,2*, Mee Kee Chen1,2, Nur Syazana Fauzi2,3, Ahmad Aziz1,2 & Thye San Cha1,2* Conventional microalgae oil extraction applies physicochemical destruction of dry cell biomass prior to transesterifcation process to produce fatty acid methyl esters (FAMEs). This report presents a simple and rapid direct transesterifcation (DT) method for FAMEs production and fatty acid profling of microalgae using freshly harvested biomass. Results revealed that the FAMEs recovered from Chlorella vulgaris were 50.1 and 68.3 mg with conventional oil-extraction-transesterifcation (OET) and DT method, respectively. While for Messastrum gracile, the FAMEs recovered, were 49.9 and 76.3 mg, respectively with OET and DT methods. This demonstrated that the DT method increased FAMEs recovery by 36.4% and 53.0% from C. vulgaris and M. gracile, respectively, as compared to OET method. Additionally, the DT method recovered a signifcantly higher amount of palmitic (C16:0) and stearic (C18:0) acids from both species, which indicated the important role of these fatty acids in the membranes of cells and organelles. The DT method performed very well using a small volume (5 mL) of fresh biomass coupled with a shorter reaction time (~ 15 min), thus making real-time monitoring of FAMEs and fatty acid accumulation in microalgae culture feasible. Te key processes involved in the fatty acid profling of microalgae are cultivation, biomass harvesting and drying, oil extraction and transesterifcation to produce fatty acid methyl esters (FAMEs).
    [Show full text]
  • Utrecht Art Supplies What Not to Use As Varnish
    Utrecht Art Supplies What Not to Use as Varnish • Removable with light solvents and gentle manipulation (should not require strong solvents or hard scrubbing) • Should not fuse with, soften or dissolve completely dry paint • Resin content should be documented to aid in later cleaning and care Alkyd Alkyd-based painting mediums are great for improving paint flow, imparting gloss, increasing transparency, and promoting a tough, flexible Ask the Expert: "Lately I've been finishing my paint film, but as a top-coat, they aren't oil paintings with a coat of alkyd medium to give reversible with even very harsh solvents. A coat a shiny finish. My friend says this might not be a of alkyd is permanent, for better or worse. Also, good idea. If I can coat an acrylic painting with some alkyd mediums impart harsh glare, making gloss medium, what's the problem with using it difficult to install and light the finished work. alkyd medium on oils?" Wax A: Artists sometimes make the mistake of top- coating a painting with a medium or other Wax is sometimes used as a top-coat over material which gives a good appearance in the paintings, but it has some significant short term, but which causes problems later. shortcomings for this application. Wax remains Alkyd-based painting mediums are great for their soft indefinitely, so it doesn't impart protection intended purpose, but alkyds don't meet the against mechanical damage from handling and requirements of a picture varnish. casual contact. Wax also tends to attract and hold dust. Cold wax medium has an attractive A picture varnish should satisfy these appearance when first applied, especially when functions: buffed to a shine, but can later become • Permanently neutral in color and lackluster.
    [Show full text]
  • Vinyl Toluene Modified Alkyd Resins
    VINYL TOLUENE MODIFIED ALKYD RESINS VT can be used to prepare a wide variety of alkyd coating resins. In general, the base alkyd is formulated to use low cost VT to reduce the oil length of the vehicle. For example using VT with a very long-oil soya alkyd produces improved drying time and hardness. These improvements are realized without reducing the good naphtha solubility of the vehicle. OIL AND BASE ALKYD SELECTION The type of oil used in the copolymer reaction is an important variable. Variations in the chemical structure such as degree of unsaturation, type of unsaturation and degree of polymerization have an effect on the product. Copolymers prepared from heavy-bodied oils have higher viscosities, faster drying rates and greater utility for protective coatings than those based on lower viscosity oils. Conjugated oils react readily with VT to form compatible products without use of a catalyst. VT reactivity with unconjugated oils is less active and appears to be a function of the Iodine value of the oil. Use of a small amount of suitable catalyst allows production of products with good homogeneity from any of the convential drying and semi-drying oils. Copolymers of maximum hardness, toughness and flexibility can be prepared by using one of the highly reactive oils such as dehydrated castor oil. VT modified alkyd properties depend upon the base alkyd resin used. Close attention must be given to the choice of polyhydric alcohols and the average functionality of the acids in addition to the type and amount of drying oil used. Viscosity buildup, dry time and film integrity are influenced by the functionality of both the polyhydric alcohol and acid constituents.
    [Show full text]
  • Influence of the Fatty Acid Pattern on the Drying of Linseed Oils
    Influence of the fatty acid pattern on the drying of linseed oils Cecilia Stenberg AKADEMISK AVHANDLING Som med tillstånd av Kungliga Tekniska Högskolan i Stockholm framlägges till offentlig granskning för avläggande av teknisk licentiatexamen tisdagen den 15 juni 2004, kl.10.00 i sal K1, Teknikringen 56, KTH, Stockholm. LIST OF PAPERS This thesis is a summary of the following papers: 1 “A study of the drying of linseed oils with different fatty acid patterns using RTIR-spectroscopy and Chemiluminescence (CL)” Accepted in Industrial Crops and Products (2004) 2 “Drying of linseed oil wood coatings using reactive diluents” To be submitted to Surface Coatings International Part B: Coatings Transactions (2004) ABSTRACT The interest in renewable resources due to environmental factors has increased the interest to use new VOC-free linseed oil qualities together with reactive diluents for coating applications. The drying of two linseed oils, Oil A with a high content (74,2 %) of linoleic acid (C18:2) and oil B, a more traditional linseed oil with a high amount (55,2-60,4 %) of linolenic acid (C18:3), was followed in order to reveal how the structural variations of the oils fatty acid pattern and the addition of the fatty acid methyl ester of oil A as a reactive diluent (0, 20 40 wt%) can change the drying performances of the oils and their final film properties. The influence of the drying temperature and the influence of driers was investigated. The drying performance of the different oil formulations applied on pinewood substrates was briefly investigated. Two different analytical techniques, chemiluminescence (CL), and real-time infrared spectroscopy, (RTIR), were shown to be versatile tools for the analysis of the drying process.
    [Show full text]
  • ANTICORROSION UV CURABLE ALKYDS a Thesis Presented to The
    ANTICORROSION UV CURABLE ALKYDS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Rongcheng Xu December, 2017 ANTICORROSION UV CURABLE ALKYDS Rongcheng Xu Thesis Approved: Accepted: ______________________________ _____________________________ Advisor Department Chair Dr. Mark Soucek Dr. Sadhan Jana ______________________________ ______________________________ Faculty Reader Dean of the College Dr. Xiong Gong Dr. Eric Amis ______________________________ ______________________________ Faculty Reader Executive Dean of Graduate School Dr. Younjin Min Dr. Chand Midha ______________________________ _____________________________ Date:_________________________ ii ACKNOWLEDGEMENTS I would like to sincerely thank the amazing people who have helped and supported me throughout my graduate research. I would like to sincerely thank Professor Mark Soucek, for his guidance, support, training, and advice during my time at the University of Akron. I had the pleasure of being trained by excellent mentors and group members, especially Dr. Qianhe Wang, Dr. Lei Meng, and Dr. Ryan Salata. I’d also like to thank Anisa Cobaj, Brittany Pellegrene, and Dr. Sayyed Abed for their experimental support. Especially, I want to thank my classmates Cheng Zhang and Haoran Wang for their precious help and encouragement. Most importantly, I want to thank my parents for their unconditional love and everything they have done for me. In addition, I want to thank my girlfriend Yidan Zhang for her support all the way and hope her a happy PhD life in Cornell University. iii ABSTRACT Alkyds are essentially oil modified polyesters derived from oils, dibasic acids and polyols. Being bio-renewable, versatile and low-cost made alkyds one of the most consumed coating material in the world.
    [Show full text]
  • Prospects and Potential of Green Fuel from Some Non Traditional Seed Oils Used As Biodiesel
    Chapter 5 Prospects and Potential of Green Fuel from some Non Traditional Seed Oils Used as Biodiesel Mushtaq Ahmad, Lee Keat Teong, Muhammad Zafar, Shazia Sultana, Haleema Sadia and Mir Ajab Khan Additional information is available at the end of the chapter http://dx.doi.org/10.5772/52031 1. Introduction Today’s diesel engines require a clean-burning, stable fuel that performs well under a variety of operating conditions. Biodiesel is the only alternative fuel that can be used directly in any existing, unmodified diesel engine. Because it has similar properties to petroleum diesel fuel, biodiesel can be blended in any ratio with petroleum diesel fuel. Many federal and state fleet vehicles in USA are already using biodiesel blends in their existing diesel engines (Harwood, 1981). The low emissions of biodiesel make it an ideal fuel for use in marine areas, national parks and forests, and heavily polluted cities. Biodiesel has many advantages as a transport fuel. For example, biodiesel can be produced from domestically grown oilseed plants. Producing biodiesel from domestic crops reduces the dependence on foreign petroleum, increases agricultural revenue, and creates jobs. Presently world’s energy needs are met through non-renewable resources such as petrochem‐ icals, natural gas and coal. Since the demand and cost of petroleum based fuel is growing rapidly, and if present pattern of consumption continues, these resources will be depleted in near future. It is the need of time to explore alternative sources of fuel energy. An alternative fuel must be technically feasible, economically competitive, environmentally acceptable and easily available. Fatty acid methyl esters derived from renewable sources such as vegetable oils has gained importance as an alternative fuel for diesel engines.
    [Show full text]
  • Drying Oil - Wikipedia
    10/22/2020 Drying oil - Wikipedia Drying oil A drying oil is an oil that hardens to a tough, solid film after a period of exposure to air. The oil hardens through a chemical reaction in which the components crosslink (and hence, polymerize) by the action of oxygen (not through the evaporation of water or other solvents). Drying oils are a key component of oil paint and some varnishes. Some commonly used drying oils include linseed oil, tung oil, poppy seed oil, perilla oil, and walnut oil. Their use has declined over the past several decades, as they have been replaced by alkyd resins and other binders. Since oxidation is the key to curing in these oils, those that are susceptible to chemical drying are often unsuitable for cooking, and are also highly susceptible to becoming rancid through autoxidation, the process by which fatty foods develop off-flavors.[1] Rags, cloth, and paper saturated with drying oils may combust spontaneously (ignite) after a few hours as heat is released during the oxidation process. Contents Chemistry of the drying process Role of metal catalysts Constituents Comparison to waxes and resins Safety See also References Further reading External links Chemistry of the drying process The "drying", hardening, or, more properly, curing of oils is the result of autoxidation, the addition of oxygen to an organic compound and the subsequent crosslinking. This process begins with an oxygen molecule (O2) in the air inserting into carbon-hydrogen (C-H) bonds adjacent to one of the double bonds within the unsaturated fatty acid. The resulting hydroperoxides are susceptible to crosslinking reactions.
    [Show full text]
  • Components and Types of Varnishes
    Components and types of Varnishes Varnish is traditionally a combination of a drying oil, a resin, and a thinner or solvent. However, different types of varnish have different components. After being applied, the film-forming substances in varnishes either harden directly, as soon as the solvent has fully evaporated, or harden after evaporation of the solvent through curing processes, primarily chemical reaction between oils and oxygen from the air (autoxidation) and chemical reactions between components of the varnish. Resin varnishes "dry" by evaporation of the solvent and harden almost immediately upon drying. Acrylic and waterborne varnishes "dry" upon evaporation of the water but will experience an extended curing period. Oil, polyurethane, and epoxy varnishes remain liquid even after evaporation of the solvent but quickly begin to cure, undergoing successive stages from liquid or syrupy, to tacky or sticky, to dry gummy, to "dry to the touch", to hard. Environmental factors such as heat and humidity play a very large role in the drying and curing times of varnishes. In classic varnish the cure rate depends on the type of oil used and, to some extent, on the ratio of oil to resin. The drying and curing time of all varnishes may be sped up by exposure to an energy source such as sunlight, ultraviolet light, or heat. Drying oil There are many different types of drying oils, including linseed oil, tung oil, and walnut oil. These contain high levels of polyunsaturated fatty acids. Drying oils cure through an exothermic reaction between the polyunsaturated portion of the oil and oxygen from the air.
    [Show full text]
  • Modified Vegetable Oil Based Additives As a Future Polymeric Material—Review
    Open Journal of Organic Polymer Materials, 2015, 5, 1-22 Published Online January 2015 in SciRes. http://www.scirp.org/journal/ojopm http://dx.doi.org/10.4236/ojopm.2015.51001 Modified Vegetable Oil Based Additives as a Future Polymeric Material—Review Nikesh B. Samarth, Prakash A. Mahanwar Department Polymer and Surface Engineering, Institute of Chemical Technology, Mumbai, India Email: [email protected], [email protected] Received 26 August 2014; revised 19 September 2014; accepted 28 October 2014 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Polymeric materials from renewable resources have attracted a lot of attention in recent years. The development and utilization of vegetable oils for polymeric materials are currently in the spotlight of the polymer and chemical industry, as they are the largest renewable platform due to their universal wide availability, ingrained biodegradability, low cost, and excellent environmen- tal aspects (i.e., low ecotoxicity and low toxicity toward humans). These excellent natural charac- teristics are now being taken advantage of in research and development, with vegetable oil de- rived polymers/polymeric materials/composites being used in numerous applications including paints and coatings, adhesives, and nanocomposites. The aim of this review paper is to give a fun- damental description of the various vegetable oil applications in polymer materials and its recent developments. Particular emphasis will be placed on study and main application of triglyceride based additive for polymer and to give the reader an insight into the main developments is dis- cussed.
    [Show full text]
  • Fluid Characteristics of Biodiesel Produced from Palm Oil with Various Initial Water Contents
    processes Article Fluid Characteristics of Biodiesel Produced from Palm Oil with Various Initial Water Contents Cherng-Yuan Lin * and Lei Ma Department of Marine Engineering, National Taiwan Ocean University, Keelung 202, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-2-24622307 Abstract: Biodiesel is regarded as a significant alternative fuel to petrodiesel due to its excellent combustion features and renewable character. The water content in the reactant mixtures needs to be considered so as to retard the conversion rate and it is suggested to be kept as low as possible. The fluid characteristics of biodiesel might be affected by initial water content; however, the optimum ratio of water content added to raw oil for achieving superior fluid characteristics of biodiesel has not yet been studied. Hence, this study empirically investigated the influences of the initial water content added to raw feedstock oil on the fluid characteristics of biodiesel. The experimental results show that an adequate amount of water content in the reactant mixture was found effective for improving the transesterification reaction and, in turn, the fluid characteristics. The biodiesel made from raw oil with 0.05 wt. % water content added was observed to bear the lowest water content, acid value, and cold filter plugging point (CFPP) and, therefore, superior fluidity at low temperatures. The lower CFPP of biodiesel is attributed to its more unsaturated fatty acids and lower iodine value. In addition, the biodiesel produced from feedstock oil with 0.02 wt. % water added was observed to have the lowest iodine value but the highest kinematic viscosity.
    [Show full text]
  • Physical and Chemical Properties of Varnishes and Their Vibrational Consequences
    PHYSICAL AND CHEMICAL PROPERTIES OF VARNISHES AND THEIR VIBRATIONAL CONSEQUENCES PACS REFERENCE: 43 75 DE Simonnet, Claire(1) ; Gibiat, Vincent(2) ; Halary, Jean-Louis(3) (1) CEA Marcoule, DIEC-SCDV-LEBM BP 17171, 30207 bagnols sur Cèze, France Tel: 0033 4 66 79 69 07, Fax: 0033 4 66 79 66 03, [email protected] (2) Laboratoire Acoustique, Mesures et Instrumentation, Université P. Sabatier, Toulouse III, 118 route de Narbonne, 31 000 Toulouse, France, ([email protected]) (3) Laboratoire Physico-Chimie Structurale et Macromoléculaire, ESPCI, 10 rue vauquelin, 75005 Paris, France, ([email protected]) ABSTRACT: It is well known that the sound quality of stringed instruments evolves for years after their fabrication, specially during the varnish drying process. Even if essentially aesthetic and protective, the varnish has an effect on the vibrating properties of the instrument. This may be due to the evolution of its chemical structure and mechanical behaviour. The existing studies on the matter are not really concluding. From viscoelastic characterisations, we will try to understand on a simplified system what the relationship is between the physico-chemical properties of isolated simple varnishes and the mechanical characteristics of samples of varnished woods. 1. INTRODUCTION It is generally known that the quality of violin changes with time after it has been completed. Various parameters may be responsible for this change: the drying and hardening of varnish over a few years, the change of mechanical properties of wood and varnish over a long period, and the condition of use of the violin (frequency of use, humidity, temperature).
    [Show full text]
  • Intensification of Microalgae Drying and Oil Extraction Process by Vapor Recompression and Heat Integration
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Tsukuba Repository Intensification of microalgae drying and oil extraction process by vapor recompression and heat integration 著者 Song Chunfeng, Liu Qingling, Ji Na, Deng Shuai, Zhao Jun, Kitamura Yutaka journal or Bioresource technology publication title volume 207 page range 67-75 year 2016-05 権利 (C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4 .0/ URL http://hdl.handle.net/2241/00138516 doi: 10.1016/j.biortech.2016.01.129 Creative Commons : 表示 - 非営利 - 改変禁止 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.ja Intensification of microalgae drying and oil extraction process by vapor recompression and heat integration Chunfeng Song a, b, Qingling Liu a, b *, Na Ji a, b, Shuai Deng b, Jun Zhao b, Yutaka Kitamura c a Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, P.R. China b Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education, Tianjin 300072, China c Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan * Corresponding author. Tel: +86-022-8740-1255. E-mail: [email protected] Abstract Reducing energy penalty caused by drying and oil extraction is the most critical challenge in microalgae biodiesel production. In this study, vapor recompression and heat integration are utilized to optimize the performance of wet microalgae drying and oil extraction.
    [Show full text]