Sporobolus Virginicus Grass Seedhead S

Total Page:16

File Type:pdf, Size:1020Kb

Sporobolus Virginicus Grass Seedhead S ARINE OUCH G10 © photos G. Sainty M C SALTdeck Series Sporobolus virginicus GRASS seedhead S. virginicus var. virginicus ligule S. virginicus var. minor 7cm Sustainable MARINE COUCH Grazing on SALTdeck Series Sporobolus virginicus Saline Land © AWI & CRC Salinity 2006 Alternative names: Sand Couch, Salt Couch, Saltwater Couch. G10 Family: Poaceae. Description: Creeping rhizomatous and stoloniferous perennial to 50 cm tall. Characterised by two rows of sharp stiff leaves on opposite sides of the same flat plane (see photo). Ligule a rim of hairs (see photo). Flowers mostly early summer through to autumn but does not always set viable seed. Sporobolus virginicus var. virginicus has leaves 3–5 mm wide whereas the fine-leaved form S. virginicus var. minor has leaves generally less than 2 mm wide. Key features: Tight spike to 10 cm long and 1 cm wide with tiny florets (flowers) 2–4 mm long. Seedhead projected above the leaves. Scattered tubercle (wart on base of hair) hairs on leaf sheath. Value: The narrow-leaved forms can provide useful grazing but the coarse broad-leaved forms have much lower forage value. It is an important grazing plant for cattle during the dry season in northern Australia. Little is known about its grazing management. Salinity and waterlogging tolerance: High tolerance to waterlogging and moderate to high tolerance to salinity as it thrives in frequently tidally inundated saltmarsh and is useful for stabilising sea-shores, and an ecologically important component of tidal saltmarsh. Notes: Native of all States. Common along the Australian H coastline. Inland records probably refer to the closely related S. mitchellii which is less tolerant to waterlogging and salinity. M References: Flora of NSW, Harden (ed), Vol. 4, 1993. Flora waterlogging L L M H of Victoria, Walsh and Entwisle (eds), Vol. 2, 1994. Saltland salinity Pastures in Australia, Barrett-Lennard, 2003..
Recommended publications
  • Sporobolus Latzii B.K.Simon (POACEAE)
    Threatened Species of the Northern Territory Sporobolus latzii B.K.Simon (POACEAE) Conservation status Australia: Not listed Northern Territory: Vulnerable Photo: D. Albrecht Description less than 200 plants were found there. Given, however, that the region is relatively poorly Sporobolus latzii is a fairly robust erect tufted sampled (with less than two flora survey or perennial grass with flowering stems to collection points per 100 km2) the existence almost 1 m high from a short rhizome. The of additional populations cannot presently be leaves are minutely roughened, flat and to 16 ruled out. The swamps surveyed represent cm long and 3.5 mm wide. Spikelets are 2-2.3 approximately one third to one half of the mm long and arranged in a panicle 11-13 cm potential swamps in the region (P. Latz pers. long. The main branches of the inflorescence comm.). are solitary and spikelet-bearing throughout. Conservation reserves where reported: None Flowering: recorded in May. Distribution Sporobolus latzii is endemic to the Northern Territory (NT) where it is known only from the type locality in the Wakaya Desert (east of the Davenport Ranges and south of the Barkly Tablelands). The species was originally discovered in 1993 during a biological survey of the Wakaya Desert (Gibson et al. 1994). Some 40 swamps in the Wakaya Desert and additional similar Known locations of Sporobolus latzii swamps to the north of the Wakaya Desert were visited in the course of this survey work, Ecology but Sporobolus latzii was only found at the one Sporobolus latzii occurs in clay soil on the edge site (the type locality; P.Latz pers.
    [Show full text]
  • Suggested Non-Invasive Alternatives Invasive Grasses Suggested Non
    Sierra & Coastal Mtns. (Sunset Zones 1-3) Central Valley (Sunset Zones 7-9) Desert (Sunset Zones 10-13) North & Central Coast (Sunset Zones 14-17) South Coast (Sunset Zones 18-24) Low water CA native or cultivar Invasive Grasses Suggested Non-invasive Alternatives Featured Information Suitable Climates Green Oriental fountain grass (Pennisetum orientale) Compact, floriferous, cold hardy, very similar aesthetic and habit fountain grass Pennisetum ‘Fireworks’,‘Skyrocket’ & ‘Fairy Tails’ (Pennisetum Cultivars, similar aesthetic and habit. ‘Fireworks’ is magenta striped with green (Pennisetum x advena, often mislabeled as P. setaceum cultivars) and white. ‘Skyrocket’ is green with white edges, and ‘Fairy Tails’ is solid green setaceum) Mendocino reed grass (Calamagrostis foliosa) Cool-season grass 1 ft. tall & 2 ft. wide. Arching flower heads spring through fall Invasive in climate zones: California fescue (Festuca californica) Shade tolerant grass, needs good drainage, tolerates mowing Pink muhly (Muhlenbergia capillaris 'Regal Mist’) Fluffy pink cloud-like blooms, frost tolerant, needs drainage, good en masse Mexican Blue grama grass (Bouteloua gracilis 'Blonde Ambition') Attractive flowerheads, best when cut back in winter, cultivar of CA native feathergrass Alkali sacaton (Sporobolus airoides) Robust yet slower growing, does well in a range of soils (Stipa/Nassella Mexican deer grass (Muhlenbergia dubia) Semi-evergreen mounder, likes well-drained soils, good en masse tenuissima) White awn muhly (Muhlenbergia capillaris 'White Cloud') Fluffy white cloud-like flower heads, easy care Invasive in climate zones: Autumn moor grass (Sesleria autumnalis) Neat clumper, good en masse, tough Pampas grass Foerster's reed grass (Calamagrostis x acutiflora 'Karl Foerster') Stately white plumes from summer until frost, durable and showy (Cortaderia selloana) Deer grass (Muhlenbergia rigens) Smaller form with simple, clean plumes, easy to grow Lomandra hystrix 'Katie Belles' and 'Tropicbelle' Tidy, tough, 4 ft.
    [Show full text]
  • Alien Flora of Europe: Species Diversity, Temporal Trends, Geographical Patterns and Research Needs
    Preslia 80: 101–149, 2008 101 Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs Zavlečená flóra Evropy: druhová diverzita, časové trendy, zákonitosti geografického rozšíření a oblasti budoucího výzkumu Philip W. L a m b d o n1,2#, Petr P y š e k3,4*, Corina B a s n o u5, Martin H e j d a3,4, Margari- taArianoutsou6, Franz E s s l7, Vojtěch J a r o š í k4,3, Jan P e r g l3, Marten W i n t e r8, Paulina A n a s t a s i u9, Pavlos A n d r i opoulos6, Ioannis B a z o s6, Giuseppe Brundu10, Laura C e l e s t i - G r a p o w11, Philippe C h a s s o t12, Pinelopi D e l i p e t - rou13, Melanie J o s e f s s o n14, Salit K a r k15, Stefan K l o t z8, Yannis K o k k o r i s6, Ingolf K ü h n8, Hélia M a r c h a n t e16, Irena P e r g l o v á3, Joan P i n o5, Montserrat Vilà17, Andreas Z i k o s6, David R o y1 & Philip E. H u l m e18 1Centre for Ecology and Hydrology, Hill of Brathens, Banchory, Aberdeenshire AB31 4BW, Scotland, e-mail; [email protected], [email protected]; 2Kew Herbarium, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, United Kingdom; 3Institute of Bot- any, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic, e-mail: [email protected], [email protected], [email protected], [email protected]; 4Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 01 Praha 2, Czech Republic; e-mail: [email protected]; 5Center for Ecological Research and Forestry Applications, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain, e-mail: [email protected], [email protected]; 6University of Athens, Faculty of Biology, Department of Ecology & Systematics, 15784 Athens, Greece, e-mail: [email protected], [email protected], [email protected], [email protected], [email protected]; 7Federal Environment Agency, Department of Nature Conservation, Spittelauer Lände 5, 1090 Vienna, Austria, e-mail: [email protected]; 8Helmholtz Centre for Environmental Research – UFZ, Department of Community Ecology, Theodor-Lieser- Str.
    [Show full text]
  • TIDAL FRESHWATER MARSH (GIANT CORDGRASS SUBTYPE) Concept: Tidal Freshwater Marshes Are Very Wet Herbaceous Wetlands, Permanently
    TIDAL FRESHWATER MARSH (GIANT CORDGRASS SUBTYPE) Concept: Tidal Freshwater Marshes are very wet herbaceous wetlands, permanently saturated and regularly or irregularly flooded by lunar or wind tides with fully fresh or oligohaline water. The Giant Cordgrass Subtype covers the common, though often narrow, zones dominated by Sporobolus (Spartina) cynosuroides. This subtype has a broad range of salt tolerance, and may occur from marginally brackish to fully fresh water. Distinguishing Features: All Tidal Freshwater Marsh communities are distinguished from Brackish Marsh and Salt Marsh by occurring in oligohaline to fresh water and having plants intolerant of brackish water. The Giant Cordgrass Subtype is distinguished from all other subtypes by the strong or weak dominance of Sporobolus (Spartina) cynosuroides. Synonyms: Spartina cynosuroides Herbaceous Vegetation (CEGL004195). Atlantic Coastal Plain Embayed Region Tidal Freshwater Marsh (CES203.259). Ecological Systems: Atlantic Coastal Plain Central Fresh and Oligohaline Tidal Marsh (CES203.376). Sites: This community occurs in intertidal flats and shorelines, most often in zoned mosaics with other subtypes. The Giant Cordgrass Subtype often occurs along the shoreline of the sound or tidal channels on the edges of marsh mosaics. Soils: Most occurrences in both lunar and wind tidal areas have organic soils, most often Currituck (Terric Haplosaprist) but often Lafitte, Hobonny, or Dorovan (Typic Haplosaprists). A few may be mineral soils such as Chowan (Thapto-histic Fluvaquent). Hydrology: Lunar or wind tides in oligohaline waters, occasionally in areas that are nearly brackish in salinity. Vegetation: The Giant Cordgrass Subtype consists of dense tall herbaceous vegetation dominated by Sporobolus (Spartina) cynosuroides. This may be almost the only species in some areas, but it may be mixed with any of a number of other species and be only weakly dominant.
    [Show full text]
  • Halophytic Plants for Phytoremediation of Heavy Metals Contaminated Soil
    Journal of American Science, 2011;7(8) http://www.americanscience.org Halophytic Plants for Phytoremediation of Heavy Metals Contaminated Soil Eid, M.A. Soil Science Department, Faculty of Agriculture, Ain Shams University, Hadayek Shobra, Cairo, Egypt [email protected] Abstract: Using of halophyte species for heavy metal remediation is of particular interest since these plants are naturally present in soils characterized by excess of toxic ions, mainly sodium and chloride. In a pot experiment, three halophyte species viz. Sporobolus virginicus, Spartina patens (monocotyledons) and Atriplex nammularia (dicotyledon) were grown under two levels of heavy metals: 0 level and combinations of 25 mg Zn + 25 mg Cu + 25 mg Ni/kg soil. The three species demonstrated high tolerance to heavy metal salts in terms of dry matter production. Sporobolus virginicus reduced Zn, Cu, and Ni from soil to reach a level not significantly different from that of the untreated control soil. Similarly, Spartina patens significantly reduced levels of Zn and Cu but not Ni. Atriplex nummularia failed to reduced Zn, Cu and Ni during the experimental period (two months). Only Sporobolus virginicus succeeded to translocate Zn and Cu from soil to the aerial parts of the plant. The accumulation efficiency of Zn and Cu in aerial parts of Sporobolus virginicus was three and two folds higher than Spartina patens and around six and three times more than Atriplex nammularia for both metals, respectively. [Eid, M.A. Halophytic Plants for Phytoremediation of Heavy Metals Contaminated Soil. Journal of American Science 2011; 7(8):377-382]. (ISSN: 1545-1003). http://www.americanscience.org.
    [Show full text]
  • Supplementary Material Spatial Analysis of Limiting Resources on An
    10.1071/WR14083_AC ©CSIRO 2014 Supplementary Material: Wildlife Research 41 , 510–521 Supplementary material Spatial analysis of limiting resources on an island: diet and shelter use reveal sites of conservation importance for the Rottnest Island quokka Holly L. Poole A, Laily Mukaromah A, Halina T. Kobryn A and Patricia A. Fleming A,B ASchool of Veterinary & Life Sciences, Murdoch University, WA 6150, Australia. BCorresponding author. Email: [email protected] Table S1. Raw data of plant fragment identification for 67 faecal samples from Rottnest Island quokkas Plant Family Plants No. No. No. field group faecal fragments validation sample quadrats sites present in present in Dicot Malvaceae Guichenotia ledifolia 52 9854 75 Dicot Fabaceae Acacia rostellifera 37 3018 37 Monocot Asphodelaceae Trachyandra divaricata 46 2702 145 Dicot Myrtaceae Melaleuca lanceolata 25 1506 28 Dicot Chenopodiaceae Tecticornia 13 1350 4 halocnemoides Monocot Poaceae Stipeae (Tribe) 34 1302 171 Monocot Asphodelaceae Asphodelus fistulosus 26 1103 22 Dicot Chenopodiaceae Rhagodia baccata 13 1002 46 Dicot Chenopodiaceae Suaeda australis 12 862 2 Dicot Chenopodiaceae Threlkeldia diffusa 15 829 0 Monocot Poaceae Rostraria cristata 27 788 71 Monocot Poaceae Sporobolus virginicus 5 617 2 Dicot Chenopodiaceae Sarcocornia sp . 10 560 0 Dicot Lamiaceae Westringia dampieri 5 383 46 Dicot Goodeniaceae Scaevola crassifolia 10 349 20 Monocot Cyperaceae Gahnia trifida 8 281 6 Other Cupressaceae Callitris preissii 3 148 18 Monocot Poaceae Poa poiformis 2 116 0 Dicot Chenopodiaceae Atriplex spp. (A. 1 40 1 paludosa ) Monocot Poaceae Polypogon maritimus 1 39 0 Dicot Myrtaceae Agonis flexuosa 1 15 0 Monocot Poaceae Brachypodium distachyon 0 0 1 Monocot Asphodelaceae Bulbine semibarbata 0 0 1 Dicot Pittosporaceae Pittosporum 0 0 1 phylliraeoides Monocot Poaceae Spinifex longifolius 0 0 1 Dicot Fabaceae Acacia saligna 0 0 2 Dicot Chenopodiaceae Atriplex cinerea 0 0 2 1 Dicot Asteraceae Centaurea sp .
    [Show full text]
  • Supporting Spartina
    Running Head: Supporting Spartina Supporting Spartina: Interdisciplinary perspective shows Spartina as a distinct solid genus Alejandro Bortolus1,38, Paul Adam2, Janine B. Adams3, Malika L. Ainouche4, Debra Ayres5, Mark D. Bertness6, Tjeerd J. Bouma7, John F. Bruno8, Isabel Caçador9, James T. Carlton10, Jesus M. Castillo11, Cesar S.B. Costa12, Anthony J. Davy13, Linda Deegan14, Bernardo Duarte9, Enrique Figueroa11, Joel Gerwein15, Alan J. Gray16, Edwin D. Grosholz17, Sally D. Hacker18, A. Randall Hughes19, Enrique Mateos-Naranjo11, Irving A. Mendelssohn20, James T. Morris21, Adolfo F. Muñoz-Rodríguez22, Francisco J.J. Nieva22, Lisa A. Levin23, Bo Li24, Wenwen Liu25, Steven C. Article Pennings26, Andrea Pickart27, Susana Redondo-Gómez11, David M. Richardson28, Armel Salmon4, Evangelina Schwindt29, Brian R. Silliman30, Erik E. Sotka31, Clive Stace32, Mark Sytsma33, Stijn Temmerman34, R. Eugene Turner20, Ivan Valiela35, Michael P. Weinstein36, Judith S. Weis37 1 Grupo de Ecología en Ambientes Costeros (GEAC), Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC), CONICET, Blvd. Brown 2915, Puerto Madryn (U9120ACD), Chubut, Argentina 2School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia 3Department of Botany, Nelson Mandela University, Port Elizabeth, South Africa This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to
    [Show full text]
  • THAISZIA Two Thermophilic Alien Species New to the Flora of Slovakia
    Thaiszia - J. Bot., Košice, 24 (2): 125-134, 2014 http://www.bz.upjs.sk/thaiszia THAISZIAT H A I S Z I A JOURNAL OF BOTANY Two thermophilic alien species new to the flora of Slovakia 1 2 3 GERGELY KIRÁLY , PAVOL ELIÁŠ JUN . & DANIEL DÍT Ě 1University of West Hungary, Institute of Silviculture and Forest protection, Ady E. u. 5., H-9400 Sopron, Hungary; [email protected] 2Department of Botany, Slovak University of Agriculture, Tr. A. Hlinku 2, SK-949 76 Nitra, Slovakia; [email protected] 3Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23, Bratislava, Slovakia; [email protected] Király G., Eliáš P. jun. & Dít ě D. (2014): Two thermophilic alien species new to the flora of Slovakia. – Thaiszia – J. Bot. 24 (2): 125-134. – ISSN 1210-0420. Abstract: Dittrichia graveolens (L.) GREUTER and Euphorbia prostrata AITON were reported for the first time from the territory of Slovakia. The first one was recorded near Kúty (W Slovakia) at the highway D2; its occurrence was already expected in view of its well- documented expansion along the roads of Austria and the Czech Republic. The second species grows in a city pavement in Banská Bystrica (Central Slovakia); as a notable very isolated population existing probably due to the urban heat island effect. Keywords: alien species, invasion, highways, urban heat effect Introduction Annual weeds of human-made habitats play an important role in the rapidly changing inventory of alien plants (e.g. MEDVECKÁ et al. 2012; PYŠEK et al 2012); many of them have become paradigm for long-distance spreading.
    [Show full text]
  • “Grassland” Sparrow Clade
    Ornithology Program (HRC) Harry Reid Center for Environmental Studies 4-2007 A molecular evaluation of the North American “Grassland” sparrow clade John Klicka University of Nevada, Las Vegas, [email protected] Garth M. Spellman University of Nevada, Las Vegas, [email protected] Follow this and additional works at: https://digitalscholarship.unlv.edu/hrc_ornithology Part of the Molecular Genetics Commons, Ornithology Commons, and the Population Biology Commons Repository Citation Klicka, J., Spellman, G. M. (2007). A molecular evaluation of the North American “Grassland” sparrow clade. Auk, 124(2), 537-551. Available at: https://digitalscholarship.unlv.edu/hrc_ornithology/24 This Article is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Article in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Article has been accepted for inclusion in Ornithology Program (HRC) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. The Auk 124(2):537–551, 2007 © The American Ornithologists’ Union, 2007. Printed in USA. A MOLECULAR EVALUATION OF THE NORTH AMERICAN “GRASSLAND” SPARROW CLADE John Klicka1 and Garth M. Spellman Barrick Museum of Natural History, Box 454012, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada 89154, USA Abstract.—Because they share several morphological and ecological characters, the North American sparrow (Emberizidae) genera Ammodramus, Passerculus, and Xenospiza have historically been considered members of a well-defi ned “grass- land” sparrow assemblage.
    [Show full text]
  • An Assessment of Floral Diversity in the Mangrove Forest of Karaikal
    International Journal of Research in Social Sciences Vol. 9 Issue 1, January 2019, ISSN: 2249-2496 Impact Factor: 7.081 Journal Homepage: http://www.ijmra.us, Email: [email protected] Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A An Assessment of Floral Diversity in the Mangrove Forest of Karaikal, Karaikal District, Puducherry Union territory Duraimurugan, V.* Jeevanandham, P.** Abstract The tropical coastal zone of the world is covered by a dynamic system in a state of continual adjustment as a result of natural process and human activities. The mangrove ecosystem is a unique association of plants, animals and micro-organisms acclimatized to life in the fluctuating environment of the tropical and subtropical and intertidal zone covering more than 10 million ha worldwide. The present study documents the directly observed diversity of true mangroves and their associates, in the mangroves of Karaikal. The present study recorded a sum of 136 plant species. Among the plants 8 species were true mangroves and 128 species were mangrove associates. The family Rhizophoraceae is the dominant group represent three species followed by Avicenniaceae with two species. The associated mangrove flora recorded in the present study falls to 128 genera belongs to 42 families from 20 orders. As per IUCN current status, most of the mangrove species in decreased status. The base line information is very much helpful for the conservation and feature references.
    [Show full text]
  • Sporobolus Spp. (Poaceae)
    ISTA Universal List Sporobolus spp. (Poaceae) SPIKELET Typically single floret spikelet, up to 3 florets per spikelet, disarticulation above the glumes (glumes remain attached to plant). Size, shape, color, texture, and distinguishing features of all parts of the spikelet differ depending on species. The descriptions included here the extremes of the genus. 3 FLORET 2 General shape: elliptic to lanceolate; round in cross-section or laterally compressed Normal size: lemma 0.7 – 6.5 (10) mm long; palea 0.7 – 6.7 (10) mm long; palea +/- equal to or longer 3 than lemma Color: straw-colored to green and/or purple tinged Texture: lemma and palea +/- membranous, +/- translucent, glabrous or with short stiff hairs 1 depending on species Distinguishing features: palea 2- veined and often ©2013 California Department of Food & Agriculture splitting open between veins at maturity; callus blunt Sporogolus compositus fruits (1) and florets showing lemmas (2) and paleas (3). FRUIT Not technically a caryopsis because the seed coat is not fused to the pericarp. ©2013 California Department of Food & Agriculture General shape: globose, ellipsoid, obovoid, fusiform or quadangular Normal size: 0.4 – 2.3 mm long x 0.5 – 1.0 mm wide Color : white, yellow, orange-brown, red-brown, black 4 Texture: pericarp thin and transparent to hard and opaque, smooth or striate, +/- loose fitting, fruit of 5 some species become mucilaginous if wet and the seed may slip out of the pericarp under these conditions Sporogolus compositus fruits in lateral view (left) showing embryo (4) and SEED ventral view showing hilum area (5). General shape, size and color: same as fruit Embryo: scuterllum and/or root-shoot axis same color as pericarp or dark brown to black; ½ - ¾ the length of the seed Endosperm: solid, +/- transparent Hilum: basal Description by Deborah Meyer Images by Jim Effenberger California Department of Food & Agriculture Page 1 of 1.
    [Show full text]
  • Supporting Spartina
    Supporting Spartina : Interdisciplinary perspective shows Spartina as a distinct solid genus Alejandro Bortolus, Paul Adam, Janine Adams, Malika Ainouche, Debra Ayres, Mark Bertness, Tjeerd Bouma, John Bruno, Isabel Caçador, James Carlton, et al. To cite this version: Alejandro Bortolus, Paul Adam, Janine Adams, Malika Ainouche, Debra Ayres, et al.. Supporting Spartina : Interdisciplinary perspective shows Spartina as a distinct solid genus. Ecology, Ecological Society of America, 2019, 100 (11), pp.e02863. 10.1002/ecy.2863. hal-02355287 HAL Id: hal-02355287 https://hal-univ-rennes1.archives-ouvertes.fr/hal-02355287 Submitted on 18 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Running Head: Supporting Spartina Supporting Spartina: Interdisciplinary perspective shows Spartina as a distinct solid genus Alejandro Bortolus1,38, Paul Adam2, Janine B. Adams3, Malika L. Ainouche4, Debra Ayres5, Mark D. Bertness6, Tjeerd J. Bouma7, John F. Bruno8, Isabel Caçador9, James T. Carlton10, Jesus M. Castillo11, Cesar S.B. Costa12, Anthony J. Davy13, Linda Deegan14, Bernardo Duarte9, Enrique Figueroa11, Joel Gerwein15, Alan J. Gray16, Edwin D. Grosholz17, Sally D. Hacker18, A. Randall Hughes19, Enrique Mateos-Naranjo11, Irving A. Mendelssohn20, James T. Morris21, Adolfo F.
    [Show full text]