Analysis and Comparison of Tunneling Based Ipv6 Transition Mechanisms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Accelerating Adoption of Ipv6
Accelerating Adoption of IPv6 LUDVIG AHLINDER and ANDERS ERIKSSON KTH Information and Communication Technology Degree project in Communication Systems First level, 15.0 HEC Stockholm, Sweden Accelerating Adoption of IPv6 Ludvig Ahlinder and Anders Eriksson 2011.05.17 Mentor and Examiner: Prof. Gerald Q. Maguire Jr School of Information and Communications Technology Royal Institute of Technology (KTH) Stockholm, Sweden Abstract It has long been known that the number of unique IPv4-addresses would be exhausted because of the rapid expansion of the Internet and because countries such as China and India are becoming more and more connected to the rest of the world. IPv6 is a new version of the Internet Protocol which is supposed to succeed the old version, IPv4, in providing more addresses and new services. The biggest challenge of information and communication technology (ICT) today is to transition from IPv4 to IPv6. The purpose of this thesis is to accelerate the adoption of IPv6 by highlighting the benefits of it compared to IPv4. Although the need for more IP-addresses is the most urgent incentive for the transition to IPv6, other factors also exist. IPv6 offers many improvements to IPv4 which are necessary for the continued expansion of Internet-based applications and services. Some argue that we do not need to transition to IPv6 as the problems with IPv4, mainly the address- shortage, can be solved in other ways. One of the methods of doing this is by extending the use of Network Address Translators (NATs), but the majority of experts and specialists believe that NATs should not be seen as a long-term solution. -
INTERNET ADDRESSING: MEASURING DEPLOYMENT of Ipv6
INTERNET ADDRESSING: MEASURING DEPLOYMENT OF IPv6 APRIL 2010 2 FOREWORD FOREWORD This report provides an overview of several indicators and data sets for measuring IPv6 deployment. This report was prepared by Ms. Karine Perset of the OECD‟s Directorate for Science, Technology and Industry. The Working Party on Communication Infrastructures and Services Policy (CISP) recommended, at its meeting in December 2009, forwarding the document to the Committee for Information, Computer and Communications Policy (ICCP) for declassification. The ICCP Committee agreed to make the document publicly available in March 2010. Experts from the Internet Technical Advisory Committee to the ICCP Committee (ITAC) and the Business and Industry Advisory Committee to the OECD (BIAC) have provided comments, suggestions, and contributed significantly to the data in this report. Special thanks are to be given to Geoff Huston from APNIC and Leo Vegoda from ICANN on behalf of ITAC/the NRO, Patrick Grossetete from ArchRock, Martin Levy from Hurricane Electric, Google and the IPv6 Forum for providing data, analysis and comments for this report. This report was originally issued under the code DSTI/ICCP/CISP(2009)17/FINAL. Issued under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of the OECD member countries. ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of 30 democracies work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. -
Your Performance Task Summary Explanation
Lab Report: 13.3.4 Configure Remote Wipe Your Performance Your Score: 0 of 1 (0%) Pass Status: Not Passed Elapsed Time: 17 seconds Required Score: 100% Task Summary Actions you were required to perform: In Remotely wipe Maggie's iPad Explanation In this lab, your task is to assist Maggie with a remote wipe as follows: Log in to icloud.com using the following credentials: Apple ID: [email protected] Password: maggieB123 Using Find iPhone, select her iPad and erase it. Enter a phone number and message to be displayed on the iPad. Complete this lab as follows: 1. In the URL field in Chrome, enter icloud.com and press Enter. 2. Maximize the window for easier viewing. 3. In the Sign in to iCloud field, enter [email protected] and press Enter. 4. Enter maggieB123 and press Enter. 5. Select Find iPhone. 6. Select All Devices. 7. Select Maggie's iPad. 8. Select Erase iPad. 9. Select Erase. 10. In the Enter AppleID to continue field, enter [email protected] and press Enter. 11. Enter maggieB123 and press Enter. 12. In the Number field, enter a phone number of your choosing to be displayed on the iPad. 13. Click Next. 14. Enter a message of your choosing to be displayed on the iPad. 15. Click Done. 16. Click OK. Lab Report: 13.3.6 Require a Screen Saver Password Your Performance Your Score: 0 of 3 (0%) Pass Status: Not Passed Elapsed Time: 8 seconds Required Score: 100% Task Summary Actions you were required to perform: In Enable the screen saver In Enable the screen saver after 10 minutes In Show the logon screen when the computer wakes Explanation In this lab, your task is to complete the following: Enable the screen saver (you choose the screen saver type to use). -
Ipv4 WAN (Internet) Layer 2 Tunneling Protocol (L2TP) Configuration on RV120W and RV220W
IPv4 WAN (Internet) Layer 2 Tunneling Protocol (L2TP) Configuration on RV120W and RV220W Objectives Layer 2 Tunneling Protocol (L2TP) establishes a Virtual Private Network (VPN) that allows remote hosts to connect to one another through a secure tunnel. It does not provide any encryption or confidentiality by itself but relies on an encryption protocol that it passes within the tunnel to provide privacy. One of its biggest advantages is that it encrypts the authentication process which makes it more difficult for someone to "listen in" on your transmission to intercept and crack the data. L2TP does not only provide confidentiality but also data integrity. Data integrity is protection against modification of date between the time it left the sender and the time it reached the recipient. This document explains how to configure the IPv4 WAN (Internet) for use with Layer 2 Tunneling Protocol (L2TP) on the RV120W and RV220W. Applicable Devices • RV120W • RV220W Software Version • v1.0.4.17 IPv4 WAN (Internet) L2TP Configuration Step 1. Log in to the web configuration utility and choose Networking > WAN (Internet) > IPv4 WAN(Internet). The IPv4 WAN (Internet) page opens: Step 2. Choose L2TP from the Internet Connection Type drop-down list. Step 3. Enter the username provided from ISP in the User Name field. Step 4. Enter the password provided from ISP in the password field. Step 5. (Optional) Enter the secret pass phrase if provided by the ISP in the Secret field. Step 6. Click the desired radio button for the Connection Type: • Keep Connected — This keeps the device connected to the network for all the time. -
The Internet in Transition: the State of the Transition to Ipv6 in Today's
Please cite this paper as: OECD (2014-04-03), “The Internet in Transition: The State of the Transition to IPv6 in Today's Internet and Measures to Support the Continued Use of IPv4”, OECD Digital Economy Papers, No. 234, OECD Publishing, Paris. http://dx.doi.org/10.1787/5jz5sq5d7cq2-en OECD Digital Economy Papers No. 234 The Internet in Transition: The State of the Transition to IPv6 in Today's Internet and Measures to Support the Continued Use of IPv4 OECD FOREWORD This report was presented to the OECD Working Party on Communication, Infrastructures and Services Policy (CISP) in June 2013. The Committee for Information, Computer and Communications Policy (ICCP) approved this report in December 2013 and recommended that it be made available to the general public. It was prepared by Geoff Huston, Chief Scientist at the Asia Pacific Network Information Centre (APNIC). The report is published on the responsibility of the Secretary-General of the OECD. Note to Delegations: This document is also available on OLIS under reference code: DSTI/ICCP/CISP(2012)8/FINAL © OECD 2014 THE INTERNET IN TRANSITION: THE STATE OF THE TRANSITION TO IPV6 IN TODAY'S INTERNET AND MEASURES TO SUPPORT THE CONTINUED USE OF IPV4 TABLE OF CONTENTS FOREWORD ................................................................................................................................................... 2 THE INTERNET IN TRANSITION: THE STATE OF THE TRANSITION TO IPV6 IN TODAY'S INTERNET AND MEASURES TO SUPPORT THE CONTINUED USE OF IPV4 .......................... 4 -
Ipv4 Address Sharing Mechanism Classification And
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE/ACM TRANSACTIONS ON NETWORKING 1 IPv4 Address Sharing Mechanism Classification and Tradeoff Analysis Nejc Škoberne, Olaf Maennel, Iain Phillips, Randy Bush, Jan Zorz, and Mojca Ciglaric Abstract—The growth of the Internet has made IPv4 addresses andonlyone/22prefix (1024 IPv4 addresses). Such allocations a scarce resource. Due to slow IPv6 deployment, IANA-level IPv4 are too small to satisfy current growth rates. address exhaustion was reached before the world could transition The only long-term solution to the IPv4 address exhaustion to an IPv6-only Internet. The continuing need for IPv4 reacha- bility will only be supported by IPv4 address sharing. This paper problem is transition to the IPv6 protocol, which enables ad- reviews ISP-level address sharing mechanisms, which allow In- dressing large numbers of Internet devices [2]. However, today ternet service providers to connect multiple customers who share we observe little IPv6 deployment. IPv6 penetration at content a single IPv4 address. Some mechanisms come with severe and un- providers (top 500 Web sites) is about 24% globally [3] as of predicted consequences, and all of them come with tradeoffs. We March 15, 2013, while is somethingmorethan1%attheuser propose a novel classification, which we apply to existing mech- anisms such as NAT444 and DS-Lite and proposals such as 4rd, side [4] as of the same date. As IPv4 and IPv6 are incompatible, MAP, etc. Our tradeoff analysis reveals insights into many prob- IPv6 designers envisioned a dual-stack deployment [5], with the lems including: abuse attribution, performance degradation, ad- aim that by the time the IPv4 address space became depleted, dress and port usage efficiency, direct intercustomer communica- IPv6 would be universally deployed. -
A Review and Qualitative Analysis of Ipv6 and Ipv4 Interoperability Technologies
A Review and Qualitative Analysis of IPv6 and IPv4 Interoperability Technologies Antti Maula Helsinki University of Technology [email protected] Abstract structured as follows: section 2 contains descriptions of ex- isting solutions and their main technical features. Section 3 Deployment of IPv6 has been delayed even though the stan- presents some discussion about the state of the technologies dard has existed for over ten years and the number of free and section 4 presents the required future work and the final IPv4 addresses is decreasing fast. Some obstacles in deploy- conclusions are drawn in section 5. ment are economic but also technical issues remain. The Internet cannot be converted to IPv6 overnight, thus a transi- tion period is required during which both protocols co-exist 2 Related technologies and work together seamlessly. There is a vast amount of in- teroperability technologies available and this paper presents This section presents the existing IPv6 and IPv4 interop- proposed solutions to operate IPv6-only network segments erability technologies and their technical details. Interop- in cooperation with IPv4-only network segments. erability technologies include techniques which allow use of isolated IPv6 subnets in mostly IPv4 based Internet and KEYWORDS: IPv6, IPv4, interoperability, technology re- all of these technologies are intended to be used only dur- view, qualitative analysis ing the transition period and they should automatically stop working when underlying network infrastructure has imple- mented full IPv6 support. Some of the methods presented 1 Introduction here are implemented only by software while others re- quire additional hardware to function. These two models IP protocol version 4 (IPv4), which is currently used in most are namely “End-host” and “Middlebox” architectures, in parts of the internet, is becoming outdated. -
Performance Analysis and Comparison of 6To4 Relay Implementations
(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 4, No. 9, 2013 Performance Analysis and Comparison of 6to4 Relay Implementations Gábor Lencse Sándor Répás Department of Telecommunications Department of Telecommunications Széchenyi István University Széchenyi István University Győr, Hungary Győr, Hungary Abstract—the depletion of the public IPv4 address pool may delegated the last five “/8” IPv4 address blocks to the five speed up the deployment of IPv6. The coexistence of the two Regional Internet Registries in 2011 [3]. Therefore an versions of IP requires some transition mechanisms. One of them important upcoming coexistence issue is the problem of an is 6to4 which provides a solution for the problem of an IPv6 IPv6 only client and an IPv4 only server, because internet capable device in an IPv4 only environment. From among the service providers (ISPs) can still supply the relatively small several 6to4 relay implementations, the following ones were number of new servers with IPv4 addresses from their own selected for testing: sit under Linux, stf under FreeBSD and stf pool but the huge number of new clients can get IPv6 addresses under NetBSD. Their stability and performance were investigat- only. DNS64 [4] and NAT64 [5] are the best available ed in a test network. The increasing measure of the load of the techniques that make it possible for an IPv6 only client to 6to4 relay implementations was set by incrementing the number communicate with an IPv4 only server. Another very important of the client computers that provided the traffic. The packet loss and the response time of the 6to4 relay as well as the CPU coexistence issue comes from the case when the ISP does not utilization and the memory consumption of the computer support IPv6 but the clients do and they would like to running the tested 6to4 relay implementations were measured. -
Routing Loop Attacks Using Ipv6 Tunnels
Routing Loop Attacks using IPv6 Tunnels Gabi Nakibly Michael Arov National EW Research & Simulation Center Rafael – Advanced Defense Systems Haifa, Israel {gabin,marov}@rafael.co.il Abstract—IPv6 is the future network layer protocol for A tunnel in which the end points’ routing tables need the Internet. Since it is not compatible with its prede- to be explicitly configured is called a configured tunnel. cessor, some interoperability mechanisms were designed. Tunnels of this type do not scale well, since every end An important category of these mechanisms is automatic tunnels, which enable IPv6 communication over an IPv4 point must be reconfigured as peers join or leave the tun- network without prior configuration. This category includes nel. To alleviate this scalability problem, another type of ISATAP, 6to4 and Teredo. We present a novel class of tunnels was introduced – automatic tunnels. In automatic attacks that exploit vulnerabilities in these tunnels. These tunnels the egress entity’s IPv4 address is computationally attacks take advantage of inconsistencies between a tunnel’s derived from the destination IPv6 address. This feature overlay IPv6 routing state and the native IPv6 routing state. The attacks form routing loops which can be abused as a eliminates the need to keep an explicit routing table at vehicle for traffic amplification to facilitate DoS attacks. the tunnel’s end points. In particular, the end points do We exhibit five attacks of this class. One of the presented not have to be updated as peers join and leave the tunnel. attacks can DoS a Teredo server using a single packet. The In fact, the end points of an automatic tunnel do not exploited vulnerabilities are embedded in the design of the know which other end points are currently part of the tunnels; hence any implementation of these tunnels may be vulnerable. -
Allied Telesis Solutions Tested Solution:Ipv6 Transition Technologies
Allied Telesis Solutions IPv6 Transition Technologies Tested Solution: IPv6 Transition Technologies Moving a network from IPv4 addressing to IPv6 addressing cannot be performed in a single step. The transition necessarily proceeds in stages, with islands of IPv6 developing within the IPv4 network, and gradually growing until they cover the whole network. During this transition process, the islands of IPv6 need to be able to communicate with each other across the IPv4 network. Additionally, it is desirable to be able to transition some network functions across to IPv6 while the majority of the network is still using IPv4. Allied Telesis provides robust solutions for IPv4-to-IPv6 network transitioning, using IPv6 tunneling and dual IPv4/IPv6 network management. The Allied Telesis IPv6 transition technologies integrate seamlessly with the complementary facilities provided within Microsoft server and workstation operating systems. The Allied Telesis IPv6 transition solution will be presented here by a detailed description of an example IPv4/IPv6 hybrid network, consisting of Allied Telesis switches and servers and workstations running various versions of Microsoft Windows Network topology The example network used in this example consists of two sections of IPv4 network, and a section of pure IPv6 network. IPv4 133.27.65.34 v4 router 139.72.129.56/24 Vista 136.34.23.11/24 133.27.65.2 6to4 host/router x600 6to4 relay XP 2002:8B48:8139::10/64 136.34.23.10/24 139.72.129.57/24 2002:8B48:8139:1001::12/64 6to4 host/router IPv6 router Server 2008 2002:8b48:8139:1003::12/642002:8b48:8139:1002::12/64 ISATAP router 2002:8b48:8139:1003::10/64 192.168.2.254 192.168.2.54 IPv6 v4 router Server 2008 192.168.3.254 2002:8b48:8139:1002::10/64 192.168.3.11 IPv4 8000S ISATAP The workstations in the upper IPv4 network are able to communicate using both IPv4 and IPv6. -
VRF-Aware Ipv6 Rapid Deployment Tunnel
VRF-Aware IPv6 Rapid Deployment Tunnel Virtual Routing and Forwarding - aware tunnels are used to connect customer networks separated by untrusted core networks or core networks with different infrastructures (IPv4 or IPv6). The VRF-Aware IPv6 Rapid Deployment Tunnel feature extends Virtual Routing and Forwarding (VRF) awareness to IPv6 rapid deployment tunnels. • Finding Feature Information, on page 1 • Restrictions for the VRF-Aware IPv6 Rapid Deployment Tunnel, on page 1 • Information About the VRF-Aware IPv6 Rapid Deployment Tunnel, on page 2 • How to Configure the VRF-Aware IPv6 Rapid Deployment Tunnel, on page 2 • Feature Information for the VRF-Aware IPv6 Rapid Deployment Tunnel , on page 10 Finding Feature Information Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module. Use Cisco Feature Navigator to find information about platform support and software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required. Restrictions for the VRF-Aware IPv6 Rapid Deployment Tunnel The VRF- Aware IPv6 Rapid Deployment Tunnel feature has the following restrictions: • The incoming physical interface, and the tunnel interface should have the same VRF instance defined. • The tunnel transport VRF and the egress physical interface, through which the traffic leaves should have the same VRF instance defined. -
Best Practices for Deploying Ipv6 Over Broadband Access
WHITE PAPER Best Practices for Deploying IPv6 over Broadband Access www.ixiacom.com 915-0123-01 Rev. D, January 2016 2 Table of Contents Introduction ................................................................................................. 4 IPv6 Solutions for Broadband Access......................................................... 4 Translation ................................................................................................... 5 Tunneling ..................................................................................................... 5 Dual-Stack Lite (DS-Lite) ............................................................................ 5 IPv6 Rapid Deployment (6rd) ...................................................................... 6 Dual-Stack ................................................................................................... 8 How Dual-Stack PPP works ....................................................................... 8 Test Requirements ....................................................................................... 9 Testing Tunneling ......................................................................................... 9 Testing Dual-Stack PPP ............................................................................. 11 Conclusion ..................................................................................................12 3 Introduction Service Providers: The IPv6 Bell Tolls for Thee! After more than a decade of forewarning, the IPv4 to IPv6 transition has