Rhhko 3000() Where Ro and (H - H) Are in Meters and K Is in Meters Per Second (M/S)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biscayne Aquifer, Florida Groundwater Provides Nearly 50 Percent of the Nation’S Drinking Water
National Water Quality Program National Water-Quality Assessment Project Groundwater Quality in the Biscayne Aquifer, Florida Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey - (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Biscayne aquifer constitutes one of the important aquifers being evaluated. Background Overview of Water Quality The Biscayne aquifer underlies an area of about 4,000 square miles in southeastern Florida. About 4 million people live in this area, and the Biscayne aquifer is the primary source of drinking water with about 700 million gallons per day (Mgal/d) withdrawn for public supply in 2000 Inorganic Organic (Maupin and Barber, 2005; Arnold and others, 2020a). The study area for the Biscayne aquifer constituents constituents underlies much of Broward and Miami-Dade Counties in southeastern Florida and includes 3 the cities of Miami and Fort Lauderdale. Most of the area overlying the aquifer is developed 5 and consists of about 63 percent urban and 9 percent agricultural land use. The remaining area 17 (28 percent) is undeveloped (Homer and others, 2015). The Biscayne aquifer is an unconfined, surficial aquifer made up of shallow, highly 80 95 permeable limestone as well as some sandstone units (Miller, 1990). Because of the shallow depth of the units that make up this aquifer, the connection to surface water is an important aspect of the hydrogeology of the Biscayne aquifer (Miller, 1990). A system of canals and levees are used to manage the freshwater resources of southern Florida. -
Aquifer Test CONDUCTED on MAY 24, 2017 CONFINED QUATERNARY GLACIAL-FLUVIAL SAND AQUIFER
Analysis of the Cromwell, Minnesota Well 4 (593593) Aquifer Test CONDUCTED ON MAY 24, 2017 CONFINED QUATERNARY GLACIAL-FLUVIAL SAND AQUIFER TEST 2612, CROMWELL 4 (593593) MAY 24, 2017 Analysis of the Cromwell, Minnesota Well 4 (593593) Aquifer Test Conducted on May 24, 2017 Minnesota Department of Health, Source Water Protection Program PO Box 64975 St. Paul, MN 55164-0975 651-201-4700 [email protected] www.health.state.mn.us/divs/eh/water/swp To obtain this information in a different format, call: 651-201-4700. Upon request, this material will be made available in an alternative format such as large print, Braille or audio recording. Printed on recycled paper. 2 TEST 2612, CROMWELL 4 (593593) MAY 24, 2017 Contents Analysis of the Cromwell, Minnesota–Well 4 (593593) Aquifer Test............................................. 1 ..................................................................................................................................................... 1 Data Collection and Analysis ....................................................................................................... 7 Description .................................................................................................................................. 7 Purpose of Test ....................................................................................................................... 7 Well Inventory ......................................................................................................................... 7 -
Preliminary Baseline Sampling Plan for the Ross Isr Uranium Recovery Project, Crook County, Wyoming
SEI020A ȱ ȱ ȱ ȱ PRELIMINARYȱBASELINEȱSAMPLINGȱ PLANȱFORȱTHEȱ ROSSȱISRȱURANIUMȱRECOVERYȱPROJECT,ȱ CROOKȱCOUNTY,ȱWYOMINGȱ ȱ ȱ ȱ ȱ United States Nuclear Regulatory Commission Official Hearing Exhibit STRATA ENERGY, INC. In the Matter of: ȱ (Ross In Situ Recovery Uranium Project) ASLBP #: 12-915-01-MLA-BD01 Docket #: 04009091 ȱ Exhibit #: SEI020A-00-BD01 Identified: 9/30/2014 Admitted: 9/30/2014 Withdrawn: ȱ Rejected: Stricken: Other: ȱ ȱ ȱ Preparedȱfor:ȱ ȱ StrataȱEnergy,ȱInc.ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Novemberȱ2009ȱ RevisedȱAugustȱ2010ȱ ȱ ServingȱtheȱRockyȱMountainȱregionȱsinceȱ1980. ȱ ȱ www.wwcengineering.comȱ - 1 - PRELIMINARY BASELINE SAMPLING PLAN FOR THE ROSS ISR URANIUM RECOVERY PROJECT, CROOK COUNTY, WYOMING Prepared for: Strata Energy, Inc. (Business Office) 406 W. 4th Ave. Gillette, Wyoming 82716 Strata Energy, Inc. (Field Office) 2869 New Haven Road Oshoto, Wyoming 82721 Prepared by: WWC Engineering 1849 Terra Avenue Sheridan, Wyoming 82801 (307) 672‐0761 Fax: (307) 674‐4265 Principal Authors: Benjamin J. Schiffer, P.G. John D. Berry, Biologist Reviewed by: Kenneth R. Collier, P.G. Michael J. Evers, P.G. Serving the Rocky Mountain region since 1980. Z:\Sheridan\CD_Archives\040212\Peninsula_Minerals\09142\Strata\010 Pre‐Op Sampling Plan\Pre‐Op Plan Cover 081910.doc www.wwcengineering.com - 2 - TABLE OF CONTENTS K:\Peninsula_Minerals\09142\Strata\010 Pre-Op Sampling Plan\Pre-Op Plan Final 081910.doc 1.0 INTRODUCTION .................................................................................................. 1 2.0 HISTORY AND BRIEF -
Transmissivity, Hydraulic Conductivity, and Storativity of the Carrizo-Wilcox Aquifer in Texas
Technical Report Transmissivity, Hydraulic Conductivity, and Storativity of the Carrizo-Wilcox Aquifer in Texas by Robert E. Mace Rebecca C. Smyth Liying Xu Jinhuo Liang Robert E. Mace Principal Investigator prepared for Texas Water Development Board under TWDB Contract No. 99-483-279, Part 1 Bureau of Economic Geology Scott W. Tinker, Director The University of Texas at Austin Austin, Texas 78713-8924 March 2000 Contents Abstract ................................................................................................................................. 1 Introduction ...................................................................................................................... 2 Study Area ......................................................................................................................... 5 HYDROGEOLOGY....................................................................................................................... 5 Methods .............................................................................................................................. 13 LITERATURE REVIEW ................................................................................................... 14 DATA COMPILATION ...................................................................................................... 14 EVALUATION OF HYDRAULIC PROPERTIES FROM THE TEST DATA ................. 19 Estimating Transmissivity from Specific Capacity Data.......................................... 19 STATISTICAL DESCRIPTION ........................................................................................ -
Method 9100: Saturated Hydraulic Conductivity, Saturated Leachate
METHOD 9100 SATURATED HYDRAULIC CONDUCTIVITY, SATURATED LEACHATE CONDUCTIVITY, AND INTRINSIC PERMEABILITY 1.0 INTRODUCTION 1.1 Scope and Application: This section presents methods available to hydrogeologists and and geotechnical engineers for determining the saturated hydraulic conductivity of earth materials and conductivity of soil liners to leachate, as outlined by the Part 264 permitting rules for hazardous-waste disposal facilities. In addition, a general technique to determine intrinsic permeability is provided. A cross reference between the applicable part of the RCRA Guidance Documents and associated Part 264 Standards and these test methods is provided by Table A. 1.1.1 Part 264 Subpart F establishes standards for ground water quality monitoring and environmental performance. To demonstrate compliance with these standards, a permit applicant must have knowledge of certain aspects of the hydrogeology at the disposal facility, such as hydraulic conductivity, in order to determine the compliance point and monitoring well locations and in order to develop remedial action plans when necessary. 1.1.2 In this report, the laboratory and field methods that are considered the most appropriate to meeting the requirements of Part 264 are given in sufficient detail to provide an experienced hydrogeologist or geotechnical engineer with the methodology required to conduct the tests. Additional laboratory and field methods that may be applicable under certain conditions are included by providing references to standard texts and scientific journals. 1.1.3 Included in this report are descriptions of field methods considered appropriate for estimating saturated hydraulic conductivity by single well or borehole tests. The determination of hydraulic conductivity by pumping or injection tests is not included because the latter are considered appropriate for well field design purposes but may not be appropriate for economically evaluating hydraulic conductivity for the purposes set forth in Part 264 Subpart F. -
Aquifer System in Southern Florida
HYDRGGEOLOGY, GRQUOT*WATER MOVEMENT, AND SUBSURFACE STORAGE IN THE FLORIDAN AQUIFER SYSTEM IN SOUTHERN FLORIDA REGIONAL AQUIFER-SYSTEM ANALYSIS \ SOUTH CAROLINA L.-S.. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1403-G AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur vey publications released prior to the current year are listed in the most recent annual "Price and Availability List" Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, -
Hydrogeologic Characterization of Aquifers and Injection Capacity Estimation
Hydrogeologic characterization of aquifers and injection capacity estimation Main authors: Peter K. Kang (UMN ESCI), Anthony Runkel (MGS), Seonkyoo Yoon (UMN ESCI), Raghwendra N. Shandilya (KIST), Etienne Bresciani (KIST), and Seunghak Lee (KIST) Contents Introduction 2 Overview of four ASR study areas 4 Buffalo aquifer, Clay County 4 Jordan aquifer, City of Woodbury 6 Jordan aquifer, Olmsted County 10 Straight River Groundwater Management Area: Pineland Sands Aquifer 12 Methodology for InJection Capacity Estimation 19 Methodology Overview 19 Parameters estimation 21 Transmissivity 22 Allowable head change 23 Injection duration 25 Storativity 25 Well radius 25 Data sources 25 Application to aquifers in Minnesota 26 Transmissivity characterization 26 Buffalo aquifer, Clay County 26 Transmissivity of Jordan aquifer, Woodbury, Washington County 28 1 Transmissivity of the Jordan aquifer, Olmsted County 31 Allowable head change estimation 33 Buffalo aquifer, Clay County 34 Jordan aquifer, Woodbury, Washington County 37 Jordan aquifer, Olmsted County 40 Injection Duration, Storativity and Well Radius 44 Injection capacity 45 Buffalo aquifer, Clay County 45 Jordan aquifer, Woodbury, Washington County 48 Jordan aquifer, Olmsted County 50 Comparison of InJection Capacity 52 Identified Data Gaps 53 Groundwater Level Data 53 Aquifer Pumping Test Data 54 Future Directions 54 Incorporate Leakage factor in the Injection Capacity Estimation Framework 54 Recovery Efficiency of InJected Water 54 Conclusions 54 References 62 2 1 Introduction About 99% of global unfrozen freshwater is stored in groundwater systems, and groundwater is an essential freshwater resource both in the United States and across the globe. The availability of groundwater is particularly important where surface water options are scarce or inaccessible. -
A Comparative Analysis of Two Slug Test Methods in Puget Lowland Glacio-Fluvial Sediments Near Coupeville, WA
A Comparative Analysis of Two Slug Test Methods in Puget Lowland Glacio-Fluvial Sediments near Coupeville, WA Matthew Lewis A report prepared in partial fulfillment of the requirements for the degree of Masters of Science Masters of Earth and Space Science: Applied Geosciences University of Washington November, 2013 Project Mentor: Mark Varljen Project Coordinator Kathy Troost Reading Committee: Dr. Michael Brown and Dr. Drew Gorman-Lewis MESSAGe Technical Report Number: 004 ©Copyright 2013 Matthew Lewis i Table of Contents Abstract ……………………………………… iii Introduction ……………………………………… 1 Geological Setting ……………………………………… 2 Methods ……………………………………… 4 Results ……………………………………… 10 Discussion ……………………………………… 11 Summary and ……………………………………… 12 Conclusion Acknowledgements ……………………………………… 13 Bibliography ……………………………………… 14 Figures begin on page 20 Tables begin on page 30 Appendices begins on page 33 ii A Comparative Analysis of Two Slug Test Methods in Puget Lowland Glacio-Fluvial Sediments. Abstract Two different slug test field methods are conducted in wells completed in a Puget Lowland aquifer and are examined for systematic error resulting from water column displacement techniques. Slug tests using the standard slug rod and the pneumatic method were repeated on the same wells and hydraulic conductivity estimates were calculated according to Bouwer & Rice and Hvorslev before using a non-parametric statistical test for analysis. Practical considerations of performing the tests in real life settings are also considered in the method comparison. Statistical analysis indicates that the slug rod method results in up to 90% larger hydraulic conductivity values than the pneumatic method, with at least a 95% certainty that the error is method related. This confirms the existence of a slug-rod bias in a real world scenario which has previously been demonstrated by others in synthetic aquifers. -
Aquifer Test Procedures for Determining Hydrologic Properties
AquiferAquifer TestTest ProceduresProcedures forfor DeterminingDetermining HydrologicHydrologic PropertiesProperties Dr. Michael Strobel Deputy State Director EXHIBIT G– WATER RESOURCES Meeting Date: 03-22-06 USGS Nevada Water Science Center Document consists of 28 slides. Entire Exhibit Provided Purposes of Aquifer Tests • Measure the change, with time, in water levels as a result of withdrawals through wells • Determine the transmissivity and storage coefficient of the aquifer • Determine characteristics of confining layers • Determine well efficiency and optimum pumping rates • Determine boundary conditions (natural) and potential well interference Types of Aquifer Tests •Slug • Single-well • Multiple-wells – Time-Drawdown Analysis – Distance-Drawdown Analysis From Alley, W.M., Reilly, T.E., and Franke, O.L., 1999, Sustainability of ground- water resources: U.S. Geological Survey Circular 1186, 79 p. From Alley, W.M., Reilly, T.E., and Franke, O.L., 1999, Sustainability of ground- water resources: U.S. Geological Survey Circular 1186, 79 p. From Alley, W.M., Reilly, T.E., and Franke, O.L., 1999, Sustainability of ground- water resources: U.S. Geological Survey Circular 1186, 79 p. From Alley, W.M., Reilly, T.E., and Franke, O.L., 1999, Sustainability of ground- water resources: U.S. Geological Survey Circular 1186, 79 p. Slug Test TIME • The rapid addition or removal of a known volume from a well stresses the aquifer. • The hydraulic conductivity (K) estimate is related to the rate of recovery with various corrections for well construction -
Aquifer Test Procedures
General Aquifer Test Procedures These guidelines accompany the Lower Platte South NRD’s Ground Water Rules and Regulations (Revised Effective Date: 1/1/2017) Section C: Water Well Permits. Typically, they will apply to Class 2 and 4 Permits but may apply to Class 1 Permits if required by the District, and Class 3 Permits if the proposed well is within 600 feet of a well with higher preference of use. For the purposes of LPSNRD’s Ground Water Rules and Regulations, an aquifer test may be required to estimate aquifer parameters in order to determine the effect of a permitted well on preexisting wells in the vicinity, and to demonstrate that an adequate ground water supply is present for the well to be permitted. Aquifer parameters such as transmissivity, hydraulic conductivity, storativity/specific yield, etc. can generally be adequately estimated using a single well drawdown/recovery test (i.e. using drawdown and recovery observations in the production well) by constant-rate pumping, slug testing, or step-drawdown tests; numerous software programs are available for these estimates. If further refinements of these parameters are necessary, installation of one or more dedicated observation well(s) or utilization of appropriate nearby existing wells can be considered. General A licensed geologist or professional engineer must oversee the aquifer test and stamp the aquifer test report. When selecting a professional, confirm that he or she has previous experience designing, performing and analyzing aquifer tests. If an additional observation well is used, it should be close enough to the pumping well so that drawdown is observed in the observation well, but not directly next to the pumping well. -
Slug) Test with a Mechanical Slug and Submersible Pressure Transducer
GWPD 17—Conducting an Instantaneous Change in Head (Slug) Test with a Mechanical Slug and Submersible Pressure Transducer VERSION: 2010.1 PURPOSE: To obtain data from which an estimate of hydraulic conductivity of an aquifer can be calculated. During a slug test the water level in a well is changed 5. Slug of polyvinyl chloride (PVC) or other relatively inert rapidly, and the rate of water-level response to that change is material (fig. 1). A slug of solid PVC (fig. 1C) is ideal measured. From these data, an estimate of hydraulic conduc- because PVC caps (fig. 1A) can catch the well casing tivity can be calculated using appropriate analytical methods during insertion, and PVC plugs (fig. 1B) can come loose (for example, Ferris and Knowles, 1963). during the rapid removal of the slug. A slug test requires a rapid (“instantaneous”) water-level change and measurement of the water-level response at high Select the largest diameter and length of slug that will frequency. A rapid change in water level can be induced in fit in the well without disturbing the transducer. The many ways, including injecting or withdrawing water, increas- slug should have a displacement that will provide an ing or decreasing air pressure in the well casing, or adding adequate change in water level. The slug should displace a mechanical device like a plastic rod to displace water. The enough water to provide a measurable change in water water-level changes can be measured with many methods, level, but not so large as to significantly increase the including steel tape, electric tape, air line, wireline/float, and saturated thickness of the aquifer, disturb the transducer, submersible pressure transducers. -
34816 Dewatering Calcs Tables
Table 1A: Dewatering Calculations for Installation of Underground Storage Tanks Facility Name: 7-Eleven Store No. 34816 Facility Address: 3701 Santa Barbara Blvd, Naples, Collier Co, FL 34104 FDEP ID: 11/9063983 aquifer thickness water table drop (b) in feet in feet H=total head of aquifer 50 13 H= 15.2 m h=total head of dewatered aquifer 37 h= 11.3 m K in ft/day K=hydraulic conductivity 6.97 Ro = Radius of Influence K= 2.46E-05 m/s Re = Equivalent Radius of Influence Ro in feet Ro + Re in Feet Ro=3000(H-h)sqrtK L in ft W in ft 193.4 217.8 Ro= 58.9 m 52 36 ab Re=radius of influence (equivalent) 15.8 11.0 Re= 7.4 m # well points q= 7.84335E-05 m^3 / sec 50 q= 1.2 gpm per well point Total pump rate 62 (gpm) 89,452 (gpd) NOTE: 1. Please see enclosed the Broward County Environmental Protection Department Exhibit III: Calculation Methods for Radius of Influence and Dewatering Flow Rate from Aquifer Test Data. 2. Aquifer values are from subject site assessment data. Table 1B: Dewatering Calculations for Installation of Fuel Dispenser Sumps, Product Piping, and Canopy Footers Facility Name: 7-Eleven Store No. 34816 Facility Address: 3701 Santa Barbara Blvd, Naples, Collier Co, FL 34104 FDEP ID: 11/9063983 aquifer thickness water table drop (b) in feet in feet H=total head of aquifer 50 3 H= 15.2 m h=total head of dewatered aquifer 47 h= 14.3 m K in ft/day K=hydraulic conductivity 6.97 Ro = Radius of Influence K= 2.46E-05 m/s Re = Equivalent Radius of Influence Ro in feet Ro + Re in Feet Ro=3000(H-h)sqrtK L in ft W in ft 44.6 81.3 Ro= 13.6 m 132 32 ab Re=radius of influence (equivalent) 40.2 9.8 Re= 11.2 m # well points q= 0.000212597 m^3 / sec 50 q= 3.4 gpm per well point Total pump rate 168 (gpm) 242,463 (gpd) NOTE: 1.