Juniper Juniperus Deppeana Steud.; Juniperus Monosperma (Engelm.) Sarg.; Juniperus Osteosperma (Torr.) Little Cupressaceae

Total Page:16

File Type:pdf, Size:1020Kb

Juniper Juniperus Deppeana Steud.; Juniperus Monosperma (Engelm.) Sarg.; Juniperus Osteosperma (Torr.) Little Cupressaceae Juniper Juniperus deppeana Steud.; Juniperus monosperma (Engelm.) Sarg.; Juniperus osteosperma (Torr.) Little Cupressaceae Species description Junipers are long-lived, highly drought resistant evergreen shrubs or trees, often with many trunks, rounded crowns, and well-developed tap roots. Alligator juniper (Juniperus deppeana) has scaly bark, while Utah juniper (J. osteosperma) and one-seed juniper (J. monosperma) have looser, peeling bark. The leaves of all junipers are short, scaled needles. The small, inconspicuous flowers emerge on the branchlets in spring and may produce copious amounts of pollen. The fruits are small, round and berry-like, though they are technically cones. The berries mature to a purple-brown color and may be somewhat fleshy to very dry. The berries generally have a single, hard seed. Natural and cultural history Junipers are native to the northern hemisphere, and likely the most widespread evergreen plant in the world. Indigenous people used juniper wood as fuel and the berries to some degree as a food source. Planting considerations and propagation techniques Juniper trees may grow 20-40 feet wide and up to 50 feet tall. They have been known to live up to 800 years. The trees are highly frost and drought tolerant and disease resistant. They can grow in partial shade to full sun, and serve as a shade tree, windbreak, ground cover or hedge plant, however the roots and leaves both contain a mild toxin that can affect other trees and plants. Ideally, they should be grown at a distance from other trees. Junipers are wind pollinated and dioecious (trees may be either pollen- producing males, or berry-producing females). The trees tolerate a wide range of soils, however, they prefer well-drained areas and do not tolerate alkaline soils. Water needs Junipers have very low water needs once established. Care They may require pruning and shaping, only as needed to make the tree fit the space. Harvesting and processing Harvest the berries in autumn or winter (October-December) after they darken. The berries are most commonly dried and then crushed, and used as a spice for vegetable and meat dishes. They are potent, and a little of the spice goes a long way. The may also used as a flavoring agent in some beers and, most famously, gin. References and resources Johnson, K. A. 2002. Juniperus monosperma. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2015, June 17]. Plants for a Future (PFAF). n.d. Juniperus monosperma – (Engelm)Sarg. http://www.pfaf.org/user/Plant.aspx?LatinName=Juniperus+monosperma Spellenberg, Richard, Christopher J. Earle, and Gil Nelson. Trees of Western North America. Princeton University Press, 2014. 2 .
Recommended publications
  • An Environmental History of the Middle Rio Grande Basin
    United States Department of From the Rio to the Sierra: Agriculture Forest Service An Environmental History of Rocky Mountain Research Station the Middle Rio Grande Basin Fort Collins, Colorado 80526 General Technical Report RMRS-GTR-5 Dan Scurlock i Scurlock, Dan. 1998. From the rio to the sierra: An environmental history of the Middle Rio Grande Basin. General Technical Report RMRS-GTR-5. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 440 p. Abstract Various human groups have greatly affected the processes and evolution of Middle Rio Grande Basin ecosystems, especially riparian zones, from A.D. 1540 to the present. Overgrazing, clear-cutting, irrigation farming, fire suppression, intensive hunting, and introduction of exotic plants have combined with droughts and floods to bring about environmental and associated cultural changes in the Basin. As a result of these changes, public laws were passed and agencies created to rectify or mitigate various environmental problems in the region. Although restoration and remedial programs have improved the overall “health” of Basin ecosystems, most old and new environmental problems persist. Keywords: environmental impact, environmental history, historic climate, historic fauna, historic flora, Rio Grande Publisher’s Note The opinions and recommendations expressed in this report are those of the author and do not necessarily reflect the views of the USDA Forest Service. Mention of trade names does not constitute endorsement or recommendation for use by the Federal Government. The author withheld diacritical marks from the Spanish words in text for consistency with English punctuation. Publisher Rocky Mountain Research Station Fort Collins, Colorado May 1998 You may order additional copies of this publication by sending your mailing information in label form through one of the following media.
    [Show full text]
  • Seiridium Canker of Cypress Trees in Arizona Jeff Schalau
    ARIZONA COOPERATIVE E TENSION AZ1557 January 2012 Seiridium Canker of Cypress Trees in Arizona Jeff Schalau Introduction Leyland cypress (x Cupressocyparis leylandii) is a fast- growing evergreen that has been widely planted as a landscape specimen and along boundaries to create windbreaks or privacy screening in Arizona. The presence of Seiridium canker was confirmed in Prescott, Arizona in July 2011 and it is suspected that the disease occurs in other areas of the state. Seiridium canker was first identified in California’s San Joaquin Valley in 1928. Today, it can be found in Europe, Asia, New Zealand, Australia, South America and Africa on plants in the cypress family (Cupressaceae). Leyland cypress, Monterey cypress, (Cupressus macrocarpa) and Italian cypress (C. sempervirens) are highly susceptible and can be severely impacted by this disease. Since Leyland and Italian cypress have been widely planted in Arizona, it is imperative that Seiridium canker management strategies be applied and suitable resistant tree species be recommended for planting in the future. The Pathogen Seiridium canker is known to be caused by three different fungal species: Seiridium cardinale, S. cupressi and S. unicorne. S. cardinale is the most damaging of the three species and is SCHALAU found in California. S. unicorne and S. cupressi are found in the southeastern United States where the primary host is JEFF Leyland cypress. All three species produce asexual fruiting Figure 1. Leyland cypress tree with dead branch (upper left) and main leader bodies (acervuli) in cankers. The acervuli produce spores caused by Seiridium canker. (conidia) which spread by water, human activity (pruning and transport of infected plant material), and potentially insects, birds and animals to neighboring trees where new Symptoms and Signs infections can occur.
    [Show full text]
  • Common Conifers in New Mexico Landscapes
    Ornamental Horticulture Common Conifers in New Mexico Landscapes Bob Cain, Extension Forest Entomologist One-Seed Juniper (Juniperus monosperma) Description: One-seed juniper grows 20-30 feet high and is multistemmed. Its leaves are scalelike with finely toothed margins. One-seed cones are 1/4-1/2 inch long berrylike structures with a reddish brown to bluish hue. The cones or “berries” mature in one year and occur only on female trees. Male trees produce Alligator Juniper (Juniperus deppeana) pollen and appear brown in the late winter and spring compared to female trees. Description: The alligator juniper can grow up to 65 feet tall, and may grow to 5 feet in diameter. It resembles the one-seed juniper with its 1/4-1/2 inch long, berrylike structures and typical juniper foliage. Its most distinguishing feature is its bark, which is divided into squares that resemble alligator skin. Other Characteristics: • Ranges throughout the semiarid regions of the southern two-thirds of New Mexico, southeastern and central Arizona, and south into Mexico. Other Characteristics: • An American Forestry Association Champion • Scattered distribution through the southern recently burned in Tonto National Forest, Arizona. Rockies (mostly Arizona and New Mexico) It was 29 feet 7 inches in circumference, 57 feet • Usually a bushy appearance tall, and had a 57-foot crown. • Likes semiarid, rocky slopes • If cut down, this juniper can sprout from the stump. Uses: Uses: • Birds use the berries of the one-seed juniper as a • Alligator juniper is valuable to wildlife, but has source of winter food, while wildlife browse its only localized commercial value.
    [Show full text]
  • Phylogenetic Analyses of Juniperus Species in Turkey and Their Relations with Other Juniperus Based on Cpdna Supervisor: Prof
    MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY AYSUN DEMET GÜVENDİREN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGY APRIL 2015 Approval of the thesis MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA submitted by AYSUN DEMET GÜVENDİREN in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Department of Biological Sciences, Middle East Technical University by, Prof. Dr. Gülbin Dural Ünver Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Orhan Adalı Head of the Department, Biological Sciences Prof. Dr. Zeki Kaya Supervisor, Dept. of Biological Sciences METU Examining Committee Members Prof. Dr. Musa Doğan Dept. Biological Sciences, METU Prof. Dr. Zeki Kaya Dept. Biological Sciences, METU Prof.Dr. Hayri Duman Biology Dept., Gazi University Prof. Dr. İrfan Kandemir Biology Dept., Ankara University Assoc. Prof. Dr. Sertaç Önde Dept. Biological Sciences, METU Date: iii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Aysun Demet GÜVENDİREN Signature : iv ABSTRACT MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA Güvendiren, Aysun Demet Ph.D., Department of Biological Sciences Supervisor: Prof.
    [Show full text]
  • Juniperus Occidentalis
    Fire Effects Information System (FEIS) FEIS Home Page Table of Contents • SUMMARY INTRODUCTORY DISTRIBUTION AND OCCURRENCE BOTANICAL AND ECOLOGICAL CHARACTERISTICS FIRE EFFECTS AND MANAGEMENT MANAGEMENT CONSIDERATIONS APPENDICES REFERENCES Figure 1—Western juniper. Photo by Joseph M. DiTomaso, University of California-Davis, Bugwood.org. Citation: Fryer, Janet L.; Tirmenstein, D. 2019 (revised from 1999). Juniperus occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us/database/feis/plants/tree/junocc/all.html [2019, June 26]. Revisions: The Taxonomy, Botanical and Ecological Characteristics, and Fire Effects and Management sections of this Species Review were revised in March 2019. New primary literature and a review by Miller et al. [145] were incorporated and are cited throughout this review. SUMMARY Western juniper occurs in the Pacific Northwest, California, and Nevada. Old-growth western juniper stands that established in presettlement times (before the 1870s) occur primarily on sites of low productivity such as claypan soils, rimrock, outcrops, the edges of mesas, and upper slopes. They are generally very open and often had sparse understories. Western juniper has established and spread onto low slopes and valleys in many areas, especially areas formerly dominated by mountain big sagebrush. These postsettlement stands (woodland transitional communities) are denser than most presettlement and old-growth woodlands. They have substantial shrub understories in early to midsuccession. Western juniper establishes from seed. Seed cones are first produced around 20 years of age, but few are produced until at least 50 years of age. Mature western junipers produce seeds nearly every year, although seed production is highly variable across sites and years.
    [Show full text]
  • Tree Recommendations
    New Mexico State University, Cooperative Extension Service www.aces.nmsu.edu Shrubs Vines Trees Palms Citrus ‘Landscape Trees in the Southwest’ Discovering the beautiful possibilities of what can be grown in our southwestern desert climates Washington D.C. Tree Canopies for Walkability of City Streets, Reduction of the Heat Island Effect Red Oaks Tree Groups to Consider Zelkova/Elm trees Fagaceae/Oak Family Heritage Seedlings and Liners, Salem, Oregon (heritageseedlings.com) ‘Mesa de Maya’ Oak Quercus grisea ‘Grey Oak’ Quercus muhlenbergii ‘Chinquapin Oak’ Quercus rugosa ‘Net Leaf Oak’ Quercus laceyi ‘Lacey Oak’ Quercus oblongifolia ‘Mexican Blue Oak’ Quercus robur x alba 'Crimschmidt‘ ‘CRIMSON SPIRE OAK’ Quercus albocicta ‘Cusi Oak’ Yécora, Sonora, Mexico Quercus germana ‘Mexican Royal Oak’ Ulmaceae/Elm Family Celtis reticulata ‘Net Leaf Hackberry’ Sapindaceae/Maple Family Sapindus drummondii ‘Western Soapberry’ Ungnadia speciosa ‘Mexican Buckeye’ Acer grandidentatum ‘Big Tooth Maple’ ‘Big Tooth Maple’ Acer grandidentatum ‘Mesa Glow’ NMSU, New Tree Introduction through J. Frank Schmidt & Son Company, Boring, OR Acer sempervirens ‘Cretan Maple’ Acer sempervirens ‘Cretan Maple’ Cashew/Anacardiaceae Family Pistacia chinensis Pistacia chinensis ‘Keith Davey’ Pistacia ‘Red Push’ Pistacia mexicana Pistacia lentiscus ‘Mastic Gum Tree’ Pistacia lentiscus Pistacia lentiscus Rhus ovata Rhus ovata Olive/Oleaceae Family Chionanthus retusus ‘Chinese Fringe Tree’ Chionanthus retusus ‘Chinese Fringe Tree’ Foresteria neomexicana Fraxinus greggii ‘Little
    [Show full text]
  • Distribution of the Native Trees of Utah Kimball S
    Brigham Young University Science Bulletin, Biological Series Volume 11 | Number 3 Article 1 9-1970 Distribution of the native trees of Utah Kimball S. Erdman Department of Biology, Slippery Rock State College, Slippery Rock, Pennsylvania Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Erdman, Kimball S. (1970) "Distribution of the native trees of Utah," Brigham Young University Science Bulletin, Biological Series: Vol. 11 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/byuscib/vol11/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. MU3. CCy.P. ZOOL. LIBRARY DEC 41970 Brigham Young University HARVARD Science Bulletin UNIVERSITY) DISTRIBUTION OF THE NATIVE TREES OF UTAH by Kimball S. Erdman BIOLOGICAL SERIES—VOLUME XI, NUMBER 3 SEPTEMBER 1970 BRIGHAM YOUNG UNIVERSITY SCIENCE BULLETIN BIOLOGICAL SERIES Editor: Stanley L. Welsh, Department of Botany, Brigham Young University, Provo, Utah Members of the Editorial Board: Tipton, Zoology Vernon J. Feeeon L. Anderson, Zoology Joseph R. Murdock, Botany WiLMER W. Tanner, Zoology Ex officio Members: A. Lester Allen, Dean, College of Biological and Agricultural Sciences Ernest L. Olson, Chairman, University Publications The Brigham Young University Science Bulletin, Biological Series, publishes acceptable papers, particularly large manuscripts, on all phases of biology. Separate numbers and back volumes can be purchased from Pubhcation Sales, Brigham Young University, Provo, Utah.
    [Show full text]
  • Cupressaceae – Cypress Family
    CUPRESSACEAE – CYPRESS FAMILY Plant: shrubs and small to large trees, with resin Stem: woody Root: Leaves: evergreen (some deciduous); opposite or whorled, small, crowded and often overlapping and scale-like or sometimes awl- or needle-like Flowers: imperfect (monoecious or dioecious); no true flowers; male cones small and herbaceous, spore-forming; female cones woody (berry-like in junipers), scales opposite or in 3’s, without bracts Fruit: no true fruits; berry-like or drupe-like; 1-2 seeds at cone-scale, often with 2 wings Other: sometimes included with Pinaceae; locally mostly ‘cedars’; Division Coniferophyta (Conifers), Gymnosperm Group Genera: 30+ genera; locally Chamaecyparis, Juniperus (juniper), Thuja (arbor vitae), Taxodium (cypress) WARNING – family descriptions are only a layman’s guide and should not be used as definitive Flower Morphology in the Cupressaceae (Cypress Family) Examples of some common genera Common Juniper Juniperus communis L. var. depressa Pursh Bald Cypress Taxodium distichum (L.) L.C. Rich. Arbor Vitae [Northern White Cedar] Eastern Red Cedar [Juniper] Thuja occidentalis L. Juniperus virginiana L. var. virginiana CUPRESSACEAE – CYPRESS FAMILY Ashe's Juniper; Juniperus ashei J. Buchholz Common Juniper; Juniperus communis L. var. depressa Pursh Utah Juniper; Juniperus osteosperma (Torr.) Little Eastern Red Cedar [Juniper]; Juniperus virginiana L. var. virginiana Bald Cypress; Taxodium distichum (L.) L.C. Rich. Arbor Vitae [Northern White Cedar]; Thuja occidentalis L. Ashe's Juniper USDA Juniperus ashei J. Buchholz Cupressaceae (Cypress Family) Ashe Juniper Natural Area, Stone County, Missouri Notes: shrub to small tree; leaves evergreen, scale- like in 2-4 ranks, somewhat ovate with acute tip, no glands but resinous, margin with minute teeth; bark gray-brown-reddish, shreds easily, white blotches ring trunk and branches; fruit globular, fleshy and hard, blue, glaucous; dolostone bluffs and glades [V Max Brown, 2010] Common Juniper USDA Juniperus communis L.
    [Show full text]
  • Individualistic Response of Piñon and Juniper Tree Species Distributions to Climate Change in North America's Arid Interior West
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2011 Individualistic Response of Piñon and Juniper Tree Species Distributions to Climate Change in North America's Arid Interior West Jacob R. Gibson Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Climate Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Gibson, Jacob R., "Individualistic Response of Piñon and Juniper Tree Species Distributions to Climate Change in North America's Arid Interior West" (2011). All Graduate Theses and Dissertations. 908. https://digitalcommons.usu.edu/etd/908 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INDIVIDUALISTIC RESPONSE OF PIÑON AND JUNIPER TREE SPECIES DISTRIBUTIONS TO CLIMATE CHANGE IN NORTH AMERICA'S INTERIOR WEST by Jacob R. Gibson A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Ecology Approved: ____________________ ____________________ Thomas C. Edwards, Jr. James A. MacMahon Major Advisor Committee Member ____________________ ____________________ Terry L. Sharik Gretchen G. Moisen Committee Member Committee Member ____________________ Byron Burnham Dean of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2011 ii ABSTRACT Individualistic Response of Piñon and Juniper Tree Species Distributions to Climate Change in North America's Arid Interior West by Jacob R. Gibson, Master of Science Utah State University, 2011 Major Professor: Dr. Thomas C.
    [Show full text]
  • Demonstration Arboretum and Honor Grove Species List
    DEMONSTRATION ARBORETUM AND HONOR GROVE SPECIES LIST HONOR GROVE DECIDUOUS CONTINUED COMMON NAME LATIN CLASSIFICATION COMMON NAME LATIN CLASSIFICATION Silver maple Acer saccharinum American beech Fagus grandiflora Sugar maple Acer saccharum Indiancherry Frangula caroliniana Pecan Carya illinoensis White ash Fraxinus americana Common hackberry Celtis occidentalis Green ash Fraxinus pennsylvanica Eastern redbud Cercis canadensis Thornless honeylocust Gleditsia triacanthos Ginkgo Ginkgo biloba var. inermis Kentucky coffeetree Gymnocladus dioica Carolina silverbell Halesia carolina Black walnut Juglans nigra Possenhaw Ilex decidua Osage-orange Maclura pomifera Little walnut Juglans microcarpa Austrian pine Pinus nigra Black walnut Juglans nigra Eastern white pine Pinus strobus English walnut Juglans regia Sawtooth oak Quercus acutissima Sweetgum Liquidambar styraciflua Bur oak Quercus macrocarpa Tuliptree Liriodendron tulipifera English oak Quercus robur Southern magnolia Magnolia grandiflora Northern red oak Quercus rubra Sweetbay magnolia Magnolia virginiana Baldcypress Taxodium distichum Prairie crabapple Malus ioensis Dawn redwood Metasequoia glyptostroboides DEMONSTRATION ARBORETUM Water tupelo Nyssa aquatica Sourwood Oxydendrum arboreum DECIDUOUS Chinese pistache Pistacia chinensis John Pair caddo maple Acer saccharum ‘John Pair’ Black cherry Prunus serotina Shantung maple Acer truncatum Hop tree Ptelea trifoliata Yellow buckeye Aesculus flava Sawtooth oak Quercus acutissima Ohio buckeye Aesculus glabra White oak Quercus alba Red buckeye
    [Show full text]
  • Sedona Plant List
    Sedona Plant List Botanical Name Common Name Botanical Name Common Name Perennials/Annuals Achillea millefolium Western Yarrow Machaeranthera canescens Purple Aster Agastache cana Hummingbird Mint Mimulus cardinalis Crimson Monkey Flower Agastache rupestris Licorice Mint Mimulus guttatus Yellow Monkey Flower Antennaria parvifolia Small Leaf Pussytoes Mirabilis multiflora Desert Four O’Clock Antennaria rosulata Kaibab Pussytoes Monarda menthaefolia Beebalm Aquilegia chrysantha Golden Columbine Oenothera caespitosa Tufted Evening Primrose Artemesia frigida Fringed Sage Oenothera hookeri Hookers Evening Primrose Oenothera pallida Pale Evening Primrose Asclepias tuberosa Butterflyweed Penstemon ambiguus Bush Penstemon Aster comutatus White Aster Penstemon barbatus Scarlet Bugler Baileya multiradiata Desert Marigold Penstemon eatonii Firecracker Penstemon Berlandieria lyrata Chocolate Flower Penstemon linarioides Mat Penstemon Penstemon palmeri Palmer’s Penstemon Calylophus hartwegii Hartweg Evening Penstemon pseudospectabilis Arizona Penstemon Primrose Castilleja integra Paintbrush Penstemon rostriflorus Bridge Penstemon Datura meteloides Sacred Datura Penstemon strictus Rocky Mt Penstemon Erigeron divergens Fleabane Psilostrophe tagetina Paper Flower Eschscholtzia californica California Poppy Ratibida columnaris Prairie Coneflower Sphaeralcea grossulariaefolia Gooseberry Globemallow Gaillardia pinnatifida Adobe Blanketflower Psilostrophe tagetina Paper Flower Geranium caespitosum Purple Crainsbill Ratibida columnaris red Mexican Hat Heterotheca
    [Show full text]
  • An Updated List of Species Used in Tree-Ring Research
    TREE-RING BULLETIN, Vol. 53, 1993 AN UPDATED LIST OF SPECIES USED IN TREE-RING RESEARCH HENRI D. GRISSINO-MAYER Laboratory of Tree-Ring Research University of Arizona Tucson, AZ 85721, U.S.A. ABSTRACT During the past 100 years, researchers have investigated the potential of hundreds of tree and shrub species for use in applications of tree-ring research. Although several lists of species known to crossdate have been published, investigated species that do not crossdate are rarely included despite the usefulness of this infonnation for future research. This paper provides a list of the Latin and common names of 573 species that have been investigated in tree-ring research, infor­ mation on species known to crossdate, and information on species with measurement and/or chronology data in the International Tree-Ring Data Bank. In addition, a measure of the suitability of a species for future tree-ring applications, the Crossdating Index (CDI), is developed and pro­ posed for standard usage. 1n den letzten hundert J ahren haben Forscher das Potential von hunderten von Baum- und Buscharten fi.ir die Anwendung in der Jahresring-Forschung untersucht. Zahlreiche Listen mit Arten, von denen man wei~, da~ sie zeitlich korrespondieren, sind bereits veroffentlicht worden, dagegen sind untersuchte Arten, die nicht zeitlich korresponclieren, selten in Publikationen beriick­ sichtigt worden, obwohl diese Informationen fi.ir die kiinftige Forschung nutzvoll sein konnten. Dieser Artikel legt eine Liste der lateinischen und der gemeinen Narnen von 573 Arten vor, die im Rahmen der Jahresring-Forschung untersucht worden sind, Inforrnationen Uber Arten, die bekan­ nterweise zeitlich korrespondieren sowie Informationen iiber Arten mit Ma~- und/oder Chronologiedaten in der intemationalen Jahresring-Datenbank (International Tree-Ring Data Bank).
    [Show full text]