UC Berkeley UC Berkeley Previously Published Works Title Operator bases, S-matrices, and their partition functions Permalink https://escholarship.org/uc/item/31n0p4j4 Journal Journal of High Energy Physics, 2017(10) ISSN 1126-6708 Authors Henning, B Lu, X Melia, T et al. Publication Date 2017-10-01 DOI 10.1007/JHEP10(2017)199 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Published for SISSA by Springer Received: July 7, 2017 Accepted: October 6, 2017 Published: October 27, 2017 Operator bases, S-matrices, and their partition functions JHEP10(2017)199 Brian Henning,a Xiaochuan Lu,b Tom Meliac;d;e and Hitoshi Murayamac;d;e aDepartment of Physics, Yale University, New Haven, Connecticut 06511, U.S.A. bDepartment of Physics, University of California, Davis, California 95616, U.S.A. cDepartment of Physics, University of California, Berkeley, California 94720, U.S.A. dTheoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, U.S.A. eKavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583, Japan E-mail:
[email protected],
[email protected],
[email protected],
[email protected] Abstract: Relativistic quantum systems that admit scattering experiments are quan- titatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. In this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary de- scriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) mo- mentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal.