A Characterization of Homology Manifolds with $ G 2\Leq 2$
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Poincar\'E Duality for Spaces with Isolated Singularities
POINCARÉ DUALITY FOR SPACES WITH ISOLATED SINGULARITIES MATHIEU KLIMCZAK Abstract. In this paper we assign, under reasonable hypothesis, to each pseudomanifold with isolated singularities a rational Poincaré duality space. These spaces are constructed with the formalism of intersection spaces defined by Markus Banagl and are indeed related to them in the even dimensional case. 1. Introduction We are concerned with rational Poincaré duality for singular spaces. There is at least two ways to restore it in this context : • As a self-dual sheaf. This is for instance the case with rational intersection homology. • As a spatialization. That is, given a singular space X, trying to associate to it a new topological space XDP that satisfies Poincaré duality. This strategy is at the origin of the concept of intersection spaces. Let us briefly recall this two approaches. While seeking for a theory of characteristic numbers for complex analytic vari- eties and other singular spaces, Mark Goresky and Robert MacPherson discovered (and then defined in [9] for PL pseudomanifolds and in [8] for topological pseudo- p manifolds) a family of groups IH∗ (X) called intersection homology groups of X. These groups depend on a multi-index p called a perversity. Intersection homology is able to restore Poincaré duality on topological stratified pseudomanifolds. If X is a compact oriented pseudomanifold of dimension n and p, q are two complementary perversities, over Q we have an isomorphism p ∼ n−r IHr (X) = IHq (X), n−r q With IHq (X) := hom(IHn−r(X), Q). Intersection spaces were defined by Markus Banagl in [2] as an attempt to spa- tialize Poincaré duality for singular spaces. -
Characteristic Classes and Smooth Structures on Manifolds Edited by S
7102 tp.fh11(path) 9/14/09 4:35 PM Page 1 SERIES ON KNOTS AND EVERYTHING Editor-in-charge: Louis H. Kauffman (Univ. of Illinois, Chicago) The Series on Knots and Everything: is a book series polarized around the theory of knots. Volume 1 in the series is Louis H Kauffman’s Knots and Physics. One purpose of this series is to continue the exploration of many of the themes indicated in Volume 1. These themes reach out beyond knot theory into physics, mathematics, logic, linguistics, philosophy, biology and practical experience. All of these outreaches have relations with knot theory when knot theory is regarded as a pivot or meeting place for apparently separate ideas. Knots act as such a pivotal place. We do not fully understand why this is so. The series represents stages in the exploration of this nexus. Details of the titles in this series to date give a picture of the enterprise. Published*: Vol. 1: Knots and Physics (3rd Edition) by L. H. Kauffman Vol. 2: How Surfaces Intersect in Space — An Introduction to Topology (2nd Edition) by J. S. Carter Vol. 3: Quantum Topology edited by L. H. Kauffman & R. A. Baadhio Vol. 4: Gauge Fields, Knots and Gravity by J. Baez & J. P. Muniain Vol. 5: Gems, Computers and Attractors for 3-Manifolds by S. Lins Vol. 6: Knots and Applications edited by L. H. Kauffman Vol. 7: Random Knotting and Linking edited by K. C. Millett & D. W. Sumners Vol. 8: Symmetric Bends: How to Join Two Lengths of Cord by R. -
Manifolds: Where Do We Come From? What Are We? Where Are We Going
Manifolds: Where Do We Come From? What Are We? Where Are We Going Misha Gromov September 13, 2010 Contents 1 Ideas and Definitions. 2 2 Homotopies and Obstructions. 4 3 Generic Pullbacks. 9 4 Duality and the Signature. 12 5 The Signature and Bordisms. 25 6 Exotic Spheres. 36 7 Isotopies and Intersections. 39 8 Handles and h-Cobordisms. 46 9 Manifolds under Surgery. 49 1 10 Elliptic Wings and Parabolic Flows. 53 11 Crystals, Liposomes and Drosophila. 58 12 Acknowledgments. 63 13 Bibliography. 63 Abstract Descendants of algebraic kingdoms of high dimensions, enchanted by the magic of Thurston and Donaldson, lost in the whirlpools of the Ricci flow, topologists dream of an ideal land of manifolds { perfect crystals of mathematical structure which would capture our vague mental images of geometric spaces. We browse through the ideas inherited from the past hoping to penetrate through the fog which conceals the future. 1 Ideas and Definitions. We are fascinated by knots and links. Where does this feeling of beauty and mystery come from? To get a glimpse at the answer let us move by 25 million years in time. 25 106 is, roughly, what separates us from orangutans: 12 million years to our common ancestor on the phylogenetic tree and then 12 million years back by another× branch of the tree to the present day orangutans. But are there topologists among orangutans? Yes, there definitely are: many orangutans are good at "proving" the triv- iality of elaborate knots, e.g. they fast master the art of untying boats from their mooring when they fancy taking rides downstream in a river, much to the annoyance of people making these knots with a different purpose in mind. -
Combinatorial Aspects of Convex Polytopes Margaret M
Combinatorial Aspects of Convex Polytopes Margaret M. Bayer1 Department of Mathematics University of Kansas Carl W. Lee2 Department of Mathematics University of Kentucky August 1, 1991 Chapter for Handbook on Convex Geometry P. Gruber and J. Wills, Editors 1Supported in part by NSF grant DMS-8801078. 2Supported in part by NSF grant DMS-8802933, by NSA grant MDA904-89-H-2038, and by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center, NSF-STC88-09648. 1 Definitions and Fundamental Results 3 1.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 1.2 Faces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 1.3 Polarity and Duality : : : : : : : : : : : : : : : : : : : : : : : : : 3 1.4 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2 Shellings 4 2.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2.2 Euler's Relation : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Line Shellings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 2.4 Shellable Simplicial Complexes : : : : : : : : : : : : : : : : : : : 5 2.5 The Dehn-Sommerville Equations : : : : : : : : : : : : : : : : : : 6 2.6 Completely Unimodal Numberings and Orientations : : : : : : : 7 2.7 The Upper Bound Theorem : : : : : : : : : : : : : : : : : : : : : 8 2.8 The Lower Bound Theorem : : : : : : : : : : : : : : : : : : : : : 9 2.9 Constructions Using Shellings : : : : : : : : : : : : : -
Connectivity Bounds and S-Partitions for Triangulated Manifolds Alexandru Ilarian Papiu Washington University in St
Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2017 Connectivity Bounds and S-Partitions for Triangulated Manifolds Alexandru Ilarian Papiu Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Mathematics Commons Recommended Citation Papiu, Alexandru Ilarian, "Connectivity Bounds and S-Partitions for Triangulated Manifolds" (2017). Arts & Sciences Electronic Theses and Dissertations. 1137. https://openscholarship.wustl.edu/art_sci_etds/1137 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Mathematics Dissertation Examination Committee: John Shareshian, Chair Renato Feres Michael Ogilvie Rachel Roberts David Wright Connectivity Bounds and S-Partitions for Triangulated Manifolds by Alexandru Papiu A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2017 St. Louis, Missouri c 2017, Alexandru Papiu Table of Contents List of Figures iii List of Tables iv Acknowledgments v Abstract vii 1 Preliminaries 1 1.1 Introduction and Motivation: . .1 1.2 Simplicial Complexes . .2 1.3 Shellability . .5 1.4 Simplicial Homology . .5 1.5 The Face Ring . .7 1.6 Discrete Morse Theory And Collapsibility . .9 2 Connectivity of 1-skeletons of Pesudomanifolds 11 2.1 Preliminaries and History . -
Some Rigidity Problems in Toric Topology: I
SOME RIGIDITY PROBLEMS IN TORIC TOPOLOGY: I FEIFEI FAN, JUN MA AND XIANGJUN WANG Abstract. We study the cohomological rigidity problem of two families of man- ifolds with torus actions: the so-called moment-angle manifolds, whose study is linked with combinatorial geometry and combinatorial commutative algebra; and topological toric manifolds, which can be seen as topological generalizations of toric varieties. These two families are related by the fact that a topological toric manifold is the quotient of a moment-angle manifold by a subtorus action. In this paper, we prove that when a simplicial sphere satisfies some combina- torial condition, the corresponding moment-angle manifold and topological toric manifolds are cohomological rigid, i.e. their homeomorphism classes in their own families are determined by their cohomology rings. Our main strategy is to show that the combinatorial types of these simplicial spheres (or more gener- ally, the Gorenstein∗ complexes in this class) are determined by the Tor-algebras of their face rings. This is a solution to a classical problem (sometimes know as the B-rigidity problem) in combinatorial commutative algebra for a class of Gorenstein∗ complexes in all dimensions > 2. Contents 1. Introduction2 Acknowledgements4 2. Preliminaries5 2.1. Notations and conventions5 2.2. Face rings and Tor-algebras6 arXiv:2004.03362v7 [math.AT] 17 Nov 2020 2.3. Moment-angle complexes and manifolds8 2.4. Cohomology of moment-angle complexes8 2.5. Quasitoric manifolds and topological toric manifolds 10 2.6. B-rigidity of simplicial complexes 12 2.7. Puzzle-moves and puzzle-rigidity 13 2010 Mathematics Subject Classification. -
Optimization Methods in Discrete Geometry
Optimization Methods in Discrete Geometry Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) am Fachbereich Mathematik und Informatik der Freien Universität Berlin von Moritz Firsching Berlin 2015 Betreuer: Prof. Günter M. Ziegler, PhD Zweitgutachter: Prof. Dr. Dr.Jürgen Richter-Gebert Tag der Disputation: 28. Januar 2016 וראיתי תשוקתך לחכמות הלמודיות עצומה והנחתיך להתלמד בהם לדעתי מה אחריתך. 4 (דלאלה¨ אלחאירין) Umseitiges Zitat findet sich in den ersten Seiten des Führer der Unschlüssigen oder kurz RaMBaM רבי משה בן מיימון von Moses Maimonides (auch Rabbi Moshe ben Maimon des ,מורה נבוכים ,aus dem Jahre 1200. Wir zitieren aus der hebräischen Übersetzung (רמב״ם judäo-arabischen Originals von Samuel ben Jehuda ibn Tibbon aus dem Jahr 1204. Hier einige spätere Übersetzungen des Zitats: Tunc autem vidi vehementiam desiderii tui ad scientias disciplinales: et idcirco permisi ut exerceres anima tuam in illis secundum quod percepi de intellectu tuo perfecto. —Agostino Giustiniani, Rabbi Mossei Aegyptii Dux seu Director dubitantium aut perplexorum, 1520 Und bemerkte ich auch, daß Dein Eifer für das mathematische Studium etwas zu weit ging, so ließ ich Dich dennoch fortfahren, weil ich wohl wußte, nach welchem Ziele Du strebtest. — Raphael I. Fürstenthal, Doctor Perplexorum von Rabbi Moses Maimonides, 1839 et, voyant que tu avais un grand amour pour les mathématiques, je te laissais libre de t’y exercer, sachant quel devait être ton avenir. —Salomon Munk, Moise ben Maimoun, Dalalat al hairin, Les guide des égarés, 1856 Observing your great fondness for mathematics, I let you study them more deeply, for I felt sure of your ultimate success. -
Lower Bound Theorems and a Generalized Lower Bound Conjecture for Balanced Simplicial Complexes
Lower Bound Theorems and a Generalized Lower Bound Conjecture for balanced simplicial complexes Steven Klee Isabella Novik ∗ Department of Mathematics Department of Mathematics Seattle University University of Washington Seattle, WA 98122, USA Seattle, WA 98195-4350, USA [email protected] [email protected] May 23, 2015 Abstract A(d − 1)-dimensional simplicial complex is called balanced if its underlying graph admits a proper d-coloring. We show that many well-known face enumeration results have natural balanced analogs (or at least conjectural analogs). Specifically, we prove the balanced analog of the celebrated Lower Bound Theorem for normal pseudomanifolds and characterize the case of equality; we introduce and characterize the balanced analog of the Walkup class; we propose the balanced analog of the Generalized Lower Bound Conjecture and establish some related results. We close with constructions of balanced manifolds with few vertices. 1 Introduction This paper is devoted to the study of face numbers of balanced simplicial complexes. A (d − 1)- dimensional simplicial complex ∆ is called balanced if the graph of ∆ is d-colorable. In other words, each vertex of ∆ can be assigned one of d colors in such a way that no edge has both endpoints of the same color. This class of complexes was introduced by Stanley [36] where he called them completely balanced complexes. Balanced complexes form a fascinating class of objects that arise often in combinatorics, algebra, and topology. For instance, the barycentric subdivision of any regular CW complex is balanced; therefore, every triangulable space has a balanced triangulation. A great deal of research has been done on the flag face numbers of balanced spheres that arise as the barycentric subdivision of regular CW-complexes in the context of the cd-index, see [38, 22, 16] and many references mentioned therein. -
On Embedding Polyhedra and Manifolds
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 157, June 1971 ON EMBEDDING POLYHEDRA AND MANIFOLDS BY KRESO HORVATIC Abstract. It is well known that every «-polyhedron PL embeds in a Euclidean (2« + l)-space, and that for PL manifolds the result can be improved upon by one dimension. In the paper are given some sufficient conditions under which the dimen- sion of the ambient space can be decreased. The main theorem asserts that, for there to exist an embedding of the //-polyhedron A-into 2/z-space, it suffices that the integral cohomology group Hn(X— Int A) = 0 for some /¡-simplex A of a triangulation of X. A number of interesting corollaries follow from this theorem. Along the line of manifolds the known embedding results for PL manifolds are extended over a larger class containing various kinds of generalized manifolds, such as triangulated mani- folds, polyhedral homology manifolds, pseudomanifolds and manifolds with singular boundary. Finally, a notion of strong embeddability is introduced which allows us to prove that some class of //-manifolds can be embedded into a (2«—l)-dimensional ambient space. 1. Introduction. It was known early [14] that every «-dimensional polyhedron can be piecewise linearly embedded into a Euclidean space of dimension 2«+l, and that for piecewise linear manifolds this result can be improved upon by one dimension. On the other hand, there are counterexamples showing that these results are, in general, the best possible ([5], [6], [19]). So the natural problem arises as to characterizing those polyhedra and manifolds for which the dimension of the ambient space can be decreased. -
On Locally Constructible Manifolds
On Locally Constructible Manifolds vorgelegt von dottore magistrale in matematica Bruno Benedetti aus Rom Von der Fakult¨atII { Mathematik und Naturwissenschaften der Technischen Universit¨atBerlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften { Dr. rer. nat. { genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. John M. Sullivan Berichter: Prof. G¨unter M. Ziegler Prof. Rade T. Zivaljevi´cˇ Tag der wissenschaftlichen Aussprache: Dec. 8, 2009 Berlin 2009 D 83 On Locally Constructible Manifolds by Bruno Benedetti 3 To Giulietta Signanini for teaching me addition Contents Contents 5 0 Introduction 7 0.1 Main results . 11 0.2 Where to find what . 15 0.3 Acknowledgements . 17 1 Getting started 19 1.1 Polytopal complexes . 19 1.2 PL manifolds . 22 1.3 Shellability and constructibility . 24 1.4 Vertex-decomposability . 28 1.5 Regular CW complexes . 29 1.6 Local constructibility . 30 1.7 Operations on complexes . 34 2 Asymptotic enumeration of manifolds 39 2.1 Few trees of simplices . 41 2.2 Few 2-spheres . 44 2.3 Many surfaces and many handlebodies . 45 2.4 Many 3-spheres? . 48 2.5 Few LC simplicial d-manifolds . 51 2.6 Beyond the LC class . 54 3 Collapses 61 3.1 Collapsing a manifold minus a facet . 63 5 Contents 3.2 Collapse depth . 65 3.3 Collapses and products . 68 3.4 Collapses and cones . 70 3.5 Collapses and subcomplexes . 72 4 Knots 75 4.1 Knot groups . 76 4.2 Putting knots inside 3-spheres or 3-balls . 78 4.3 Knots versus collapsibility . 81 4.4 Knots versus shellability . -
Intersection Homology Theory
TO~O~ORY Vol. 19. pp. 135-162 0 Perpamon Press Ltd.. 1980. Printed in Great Bntain INTERSECTION HOMOLOGY THEORY MARK GORESKY and ROBERT MACPHERSON (Received 15 Seprember 1978) INTRODUCTION WE DEVELOP here a generalization to singular spaces of the Poincare-Lefschetz theory of intersections of homology cycles on manifolds, as announced in [6]. Poincart, in his 1895 paper which founded modern algebraic topology ([18], p. 218; corrected in [19]), studied the intersection of an i-cycle V and a j-cycle W in a compact oriented n-manifold X, in the case of complementary dimension (i + j = n). Lefschetz extended the theory to arbitrary i and j in 1926[10]. Their theory may be summarized in three fundamental propositions: 0. If V and W are in general position, then their intersection can be given canonically the structure of an i + j - n chain, denoted V f~ W. I(a). a(V 17 W) = 0, i.e. V n W is a cycle. l(b). The homology class of V n W depends only on the homology classes of V and W. Note that by 0 and 1 the operation of intersection defines a product H;(X) X Hi(X) A Hi+j-, (X). (2) Poincar& Duality. If i and j are complementary dimensions (i + j = n) then the pairing Hi(X) x Hj(X)& HO( Z is nondegenerate (or “perfect”) when tensored with the rational numbers. (Here, E is the “augmentation” which counts the points of a zero cycle according to their multiplicities). We will study intersections of cycles on an n dimensional oriented pseudomani- fold (or “n-circuit”, see § 1.1 for the definition). -
Topological Applications of Stanley-Reisner Rings of Simplicial Complexes
Trudy Moskov. Matem. Obw. Trans. Moscow Math. Soc. Tom 73 (2012) 2012, Pages 37–65 S 0077-1554(2013)00200-9 Article electronically published on January 24, 2013 TOPOLOGICAL APPLICATIONS OF STANLEY-REISNER RINGS OF SIMPLICIAL COMPLEXES A. A. AIZENBERG Abstract. Methods of commutative and homological algebra yield information on the Stanley-Reisner ring k[K] of a simplicial complex K. Consider the following problem: describe topological properties of simplicial complexes with given properties of the ring k[K]. It is known that for a simplicial complex K = ∂P∗,whereP ∗ is a polytope dual to the simple polytope P of dimension n, the depth of depth k[K] equals n. A recent construction allows us to associate a simplicial complex KP to any convex polytope P . As a consequence, one wants to study the properties of the rings k[KP ]. In this paper, we report on the obtained results for both of these problems. In particular, we characterize the depth of k[K] in terms of the topology of links in the complex K and prove that depth k[KP ]=n for all convex polytopes P of dimension n. We obtain a number of relations between bigraded betti numbers of the complexes KP . We also establish connections between the above questions and the notion of a k-Cohen-Macaulay complex, which leads to a new filtration on the set of simplicial complexes. 1. Introduction Cohen-Macaulay rings are classical objects of homological algebra and algebraic ge- ometry. In R. Stanley’s monograph [22] and in earlier work of other authors, methods of commutative algebra were used for the study of quotients of polynomial rings by ideals generated by square-free monomials.