UC Berkeley UC Berkeley Previously Published Works

Total Page:16

File Type:pdf, Size:1020Kb

UC Berkeley UC Berkeley Previously Published Works UC Berkeley UC Berkeley Previously Published Works Title Operator bases, S-matrices, and their partition functions Permalink https://escholarship.org/uc/item/31n0p4j4 Journal Journal of High Energy Physics, 2017(10) ISSN 1126-6708 Authors Henning, B Lu, X Melia, T et al. Publication Date 2017-10-01 DOI 10.1007/JHEP10(2017)199 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Published for SISSA by Springer Received: July 7, 2017 Accepted: October 6, 2017 Published: October 27, 2017 Operator bases, S-matrices, and their partition functions JHEP10(2017)199 Brian Henning,a Xiaochuan Lu,b Tom Meliac;d;e and Hitoshi Murayamac;d;e aDepartment of Physics, Yale University, New Haven, Connecticut 06511, U.S.A. bDepartment of Physics, University of California, Davis, California 95616, U.S.A. cDepartment of Physics, University of California, Berkeley, California 94720, U.S.A. dTheoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, U.S.A. eKavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583, Japan E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: Relativistic quantum systems that admit scattering experiments are quan- titatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. In this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary de- scriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) mo- mentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce a partition function, termed the Hilbert series, to enumerate the op- erator basis | correspondingly, the S-matrix | and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. Open Access, c The Authors. https://doi.org/10.1007/JHEP10(2017)199 Article funded by SCOAP3. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most na¨ıve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Although primarily discussed in the language of EFT, some of our results | conceptual and quantitative | may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence. JHEP10(2017)199 Keywords: Effective Field Theories, Differential and Algebraic Geometry, Scattering Amplitudes ArXiv ePrint: 1706.08520 Contents 1 Introduction1 2 The operator basis6 2.1 Single particle modules6 2.2 The operator basis via cohomology and conformal representation theory9 2.3 The operator basis as Feynman rules 10 JHEP10(2017)199 2.4 Non-linear realizations 12 2.5 Gauge symmetries, topological terms and discrete spacetime symmetries 13 2.6 A partition function for the operator basis 14 3 Conformal representations and characters 14 3.1 Unitary conformal representations 15 3.2 Character formulae 17 3.3 Character orthogonality 21 3.4 Summary 22 4 Counting operators: Hilbert series 23 4.1 Deriving a matrix integral formula for the Hilbert series 24 4.2 Multiple fields and internal symmetries 29 4.3 Parity invariance: from SO(d) to O(d) 30 4.4 Reweighting and summary of main formulas 33 5 Constructing operators: kinematic polynomial rings 35 5.1 Polynomial ring in particle momenta 35 5.2 Tour of the four point ring 39 5.3 Interpreting the ring in terms of operators and amplitudes 42 5.4 Constructing the basis at higher n: generators and algebraic properties 43 5.4.1 The Cohen-Macaulay property 43 5.4.2 A set of primary invariants in the absence of Gram conditions 47 5.4.3 Relationship between and 47 J K 5.4.4 Generalizations with spin 47 G 5.5 Conformal primaries and elements of Mn;K 48 5.6 Algorithms for operator construction and the n = 5 basis 49 5.6.1 The n = 5 operator basis 51 5.7 Summary 54 6 Applications and examples of Hilbert series 54 6.1 Hilbert series for a real scalar field in d = 4 55 6.2 Closed form Hilbert series for n distinguishable scalars in d = 2; 3 57 6.3 Hilbert series for spinning particles 61 6.4 Quantifying the effects of EOM, IBP, and Gram redundancy 64 { i { 7 Non-linear realizations 65 7.1 Linearly transforming building blocks 66 7.2 Computing the Hilbert series 68 7.3 Summary 72 8 Discussion 73 A Character formulae for classical Lie groups 75 B Weyl integration formula 79 JHEP10(2017)199 B.1 A simplification when f(g) is Weyl invariant 82 B.2 The measures for the classical Lie groups 83 C Parity 84 C.1 Representations and characters of O(2r) 84 C.2 Understanding the parity odd character: folding so2r 86 C.3 Hilbert series with parity 89 C.4 Examples 92 D Computation of ∆H 94 S E Hilbert series for C[s12; s13; s14; s23; s24; s34] 4 96 F Counting helicity amplitudes 97 G EOM for non-linear realizations 102 1 Introduction The basic tenets of S-matrix theory and effective field theory are equivalent: the starting point is to take assumed particle content and parameterize all possible scattering experi- ments. This is dictated by kinematics and symmetry principles. In the context of effective field theory (EFT), this parameterization is embodied in the operator basis of the EFT, K which is defined to be the set of all operators that lead to physically distinct phenomena. The purpose of this work is to formalize the rules governing the operator basis and investigate the structure they induce on . By considering the set in its own right, we K K are aiming to get as much mileage from kinematics and selection rules as possible before addressing specific dynamics. At a practical level, as well as imposing Lorentz invariance (and other internal symmetries), it amounts to dealing with redundancies associated with equations of motion (EOM) and total derivatives (also called integration by parts (IBP) redundancies). At a more fundamental level, we are accounting for Poincar´ecovariance of single particle states together with Poincar´einvariance of the S-matrix. { 1 { We focus on the exploration of operator bases in a wide class of relativistic EFTs in d 2 spacetime dimensions. Our main purpose is to introduce and develop a number of ≥ systematic methods to deal with EOM and IBP redundancies at all orders in the EFT expansion. This treatment of course also provides a standard procedure to determine low-order terms of an operator basis, a continuing topic of interest for various relativistic phenomenological theories as experimental energy and precision thresholds are crossed. One basic and very useful means of studying the operator basis is to consider the partition function on K H = TrKw = w ; (1.1) O JHEP10(2017)199 O2K X where w is some weighting function. We callb H thebHilbert series of the operator basis, or simply Hilbert series for short. The Hilbert series is a counting function, just as the usual physicalb partition function (path integral) counts states in the Hilbert space weighted by e−βE. In many ways, the Hilbert series can be thought of as a partition function of the S- matrix. Loosely speaking, it captures the rank of the S-matrix by enumerating independent observables. Hilbert series will play a central role in our study of operator bases. Effective field theory is a description of the S-matrix, and as such can address questions concerning the use of general physical principles to derive and implement | bootstrap | consistency conditions with the goal of probing physical observables. A revival of older S- matrix theory ideas, e.g. [1], in the past 25 years has seen remarkable, useful, and beautiful results based on unitarity and causality (for recent reviews see e.g. [2,3 ]). Similar types of general considerations, also discussed last century [4{6], found concrete implementation in d > 2 CFTs a decade ago [7], spawning the modern CFT bootstrap program (see e.g. [8] for an overview). The AdS/CFT correspondence [9] has demonstrated underlying connections between these two areas [10{25]. More concretely, the AdS/CFT correspondence in the flat space limit of AdS indicates that there is a (not entirely understood) correspondence between d-dimensional scattering amplitudes and (d 1)-dimensional conformal correlators [10, 26{28]. In [10] it was shown − that solutions to the crossing equations for scalar four point functions in CFTd−1 are in one-to-one correspondence with operators in d-dimensions consisting of four scalar fields and derivatives. In our analysis, this set is described by M4 in eq. (2.12), whose solution is (see section5 ) a freely generated ring in st + su + tu and stu where (s; t; u) are the usual Mandelstam variables. The initial clue in [10] was a counting argument, that showed the number of objects in M4 is the same as the number of solutions to the crossing equations.
Recommended publications
  • Dimension Theory and Systems of Parameters
    Dimension theory and systems of parameters Krull's principal ideal theorem Our next objective is to study dimension theory in Noetherian rings. There was initially amazement that the results that follow hold in an arbitrary Noetherian ring. Theorem (Krull's principal ideal theorem). Let R be a Noetherian ring, x 2 R, and P a minimal prime of xR. Then the height of P ≤ 1. Before giving the proof, we want to state a consequence that appears much more general. The following result is also frequently referred to as Krull's principal ideal theorem, even though no principal ideals are present. But the heart of the proof is the case n = 1, which is the principal ideal theorem. This result is sometimes called Krull's height theorem. It follows by induction from the principal ideal theorem, although the induction is not quite straightforward, and the converse also needs a result on prime avoidance. Theorem (Krull's principal ideal theorem, strong version, alias Krull's height theorem). Let R be a Noetherian ring and P a minimal prime ideal of an ideal generated by n elements. Then the height of P is at most n. Conversely, if P has height n then it is a minimal prime of an ideal generated by n elements. That is, the height of a prime P is the same as the least number of generators of an ideal I ⊆ P of which P is a minimal prime. In particular, the height of every prime ideal P is at most the number of generators of P , and is therefore finite.
    [Show full text]
  • 23. Dimension Dimension Is Intuitively Obvious but Surprisingly Hard to Define Rigorously and to Work With
    58 RICHARD BORCHERDS 23. Dimension Dimension is intuitively obvious but surprisingly hard to define rigorously and to work with. There are several different concepts of dimension • It was at first assumed that the dimension was the number or parameters something depended on. This fell apart when Cantor showed that there is a bijective map from R ! R2. The Peano curve is a continuous surjective map from R ! R2. • The Lebesgue covering dimension: a space has Lebesgue covering dimension at most n if every open cover has a refinement such that each point is in at most n + 1 sets. This does not work well for the spectrums of rings. Example: dimension 2 (DIAGRAM) no point in more than 3 sets. Not trivial to prove that n-dim space has dimension n. No good for commutative algebra as A1 has infinite Lebesgue covering dimension, as any finite number of non-empty open sets intersect. • The "classical" definition. Definition 23.1. (Brouwer, Menger, Urysohn) A topological space has dimension ≤ n (n ≥ −1) if all points have arbitrarily small neighborhoods with boundary of dimension < n. The empty set is the only space of dimension −1. This definition is mostly used for separable metric spaces. Rather amazingly it also works for the spectra of Noetherian rings, which are about as far as one can get from separable metric spaces. • Definition 23.2. The Krull dimension of a topological space is the supre- mum of the numbers n for which there is a chain Z0 ⊂ Z1 ⊂ ::: ⊂ Zn of n + 1 irreducible subsets. DIAGRAM pt ⊂ curve ⊂ A2 For Noetherian topological spaces the Krull dimension is the same as the Menger definition, but for non-Noetherian spaces it behaves badly.
    [Show full text]
  • Arxiv:1012.0864V3 [Math.AG] 14 Oct 2013 Nbt Emtyadpr Ler.Ltu Mhsz H Olwn Th Following the Emphasize Us H Let Results Cit.: His Algebra
    ORLOV SPECTRA: BOUNDS AND GAPS MATTHEW BALLARD, DAVID FAVERO, AND LUDMIL KATZARKOV Abstract. The Orlov spectrum is a new invariant of a triangulated category. It was intro- duced by D. Orlov building on work of A. Bondal-M. van den Bergh and R. Rouquier. The supremum of the Orlov spectrum of a triangulated category is called the ultimate dimension. In this work, we study Orlov spectra of triangulated categories arising in mirror symmetry. We introduce the notion of gaps and outline their geometric significance. We provide the first large class of examples where the ultimate dimension is finite: categories of singular- ities associated to isolated hypersurface singularities. Similarly, given any nonzero object in the bounded derived category of coherent sheaves on a smooth Calabi-Yau hypersurface, we produce a new generator by closing the object under a certain monodromy action and uniformly bound this new generator’s generation time. In addition, we provide new upper bounds on the generation times of exceptional collections and connect generation time to braid group actions to provide a lower bound on the ultimate dimension of the derived Fukaya category of a symplectic surface of genus greater than one. 1. Introduction The spectrum of a triangulated category was introduced by D. Orlov in [39], building on work of A. Bondal, R. Rouquier, and M. van den Bergh, [44] [11]. This categorical invariant, which we shall call the Orlov spectrum, is simply a list of non-negative numbers. Each number is the generation time of an object in the triangulated category. Roughly, the generation time of an object is the necessary number of exact triangles it takes to build the category using this object.
    [Show full text]
  • Commutative Algebra Ii, Spring 2019, A. Kustin, Class Notes
    COMMUTATIVE ALGEBRA II, SPRING 2019, A. KUSTIN, CLASS NOTES 1. REGULAR SEQUENCES This section loosely follows sections 16 and 17 of [6]. Definition 1.1. Let R be a ring and M be a non-zero R-module. (a) The element r of R is regular on M if rm = 0 =) m = 0, for m 2 M. (b) The elements r1; : : : ; rs (of R) form a regular sequence on M, if (i) (r1; : : : ; rs)M 6= M, (ii) r1 is regular on M, r2 is regular on M=(r1)M, ::: , and rs is regular on M=(r1; : : : ; rs−1)M. Example 1.2. The elements x1; : : : ; xn in the polynomial ring R = k[x1; : : : ; xn] form a regular sequence on R. Example 1.3. In general, order matters. Let R = k[x; y; z]. The elements x; y(1 − x); z(1 − x) of R form a regular sequence on R. But the elements y(1 − x); z(1 − x); x do not form a regular sequence on R. Lemma 1.4. If M is a finitely generated module over a Noetherian local ring R, then every regular sequence on M is a regular sequence in any order. Proof. It suffices to show that if x1; x2 is a regular sequence on M, then x2; x1 is a regular sequence on M. Assume x1; x2 is a regular sequence on M. We first show that x2 is regular on M. If x2m = 0, then the hypothesis that x1; x2 is a regular sequence on M guarantees that m 2 x1M; thus m = x1m1 for some m1.
    [Show full text]
  • On the Hilbert Function of a Graded Cohen-Macaulay Domain
    Journal of Pure and Applied Algebra 73 (lW1) 307-314 307 North-Holland Richard P. Stsnley” Department of Mathematics, Massachusetts Institute of Teclmology . Carnhridge. MA 02139. USA Communicated by A. Blass Received 7 May 1990 Revised 6 August 1990 Abstract Stanley, R.P., On the Hilbert function of a graded Cohen-Macaulay domain. Journal of Pure and Applied Algebra 73 (1991) 307-314. A condition is obtained on the Hilbert function of a graded Cohen-Macaulay domain R=R,$f?,G+. - over a field R, = K when R is integral over the subalgebra generated by R,. A result of Eisenbud and Harris leads to a stronger condition when char K = 0 and R is generated as a K-aigebra by R,. An application is given to the Ehrhart polynomial of an :,r____:-&W’ ^ ,,-l -u-i.-I\*..- _- c- --1..+,q,__~“t..‘. ... -_ _ _,_-_. 1. Introduction By a graded algebra over a field K, we mean here a commutative K-algebra R with identity, together with a vector space direct sum decompo&ion & = &_,l R;. such that: (a) RiRi c Ri+i, (b) R, = K (i.e., R is connected), and (c) R is finitely-generated as a K-algebra. R is standard if R is generated as a K-algebra by R,, and semistandard if R is integral over the subalgebra K[ R,] of R generated by R,. The Hilbert function H( R, -) of R is defined by H( R, i) = dim,R,, for i 2 0. while the Hilbert series is given by F(R, A) = 2 H(R, i)A’.
    [Show full text]
  • Commutative Algebra) Notes, 2Nd Half
    Math 221 (Commutative Algebra) Notes, 2nd Half Live [Locally] Free or Die. This is Math 221: Commutative Algebra as taught by Prof. Gaitsgory at Harvard during the Fall Term of 2008, and as understood by yours truly. There are probably typos and mistakes (which are all mine); use at your own risk. If you find the aforementioned mistakes or typos, and are feeling in a generous mood, then you may consider sharing this information with me.1 -S. Gong [email protected] 1 CONTENTS Contents 1 Divisors 2 1.1 Discrete Valuation Rings (DVRs), Krull Dimension 1 . .2 1.2 Dedekind Domains . .6 1.3 Divisors and Fractional Ideals . .8 1.4 Dedekind Domains and Integral Closedness . 11 1.5 The Picard Group . 16 2 Dimension via Hilbert Functions 21 2.1 Filtrations and Gradations . 21 2.2 Dimension of Modules over a Polynomial Algebra . 24 2.3 For an arbitrary finitely generated algebra . 27 3 Dimension via Transcendency Degree 31 3.1 Definitions . 31 3.2 Agreement with Hilbert dimension . 32 4 Dimension via Chains of Primes 34 4.1 Definition via chains of primes and Noether Normalization . 34 4.2 Agreement with Hilbert dimension . 35 5 Kahler Differentials 37 6 Completions 42 6.1 Introduction to inverse limits and completions . 42 6.2 Artin Rees Pattern . 46 7 Local Rings and Other Notions of Dimension 50 7.1 Dimension theory for Local Noetherian Rings . 50 8 Smoothness and Regularity 53 8.1 Regular Local Rings . 53 8.2 Smoothness/Regularity for algebraically closed fields . 55 8.3 A taste of smoothness and regularity for non-algebraically closed fields .
    [Show full text]
  • Expansive Subdynamics
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 349, Number 1, January 1997, Pages 55–102 S 0002-9947(97)01634-6 EXPANSIVE SUBDYNAMICS MIKE BOYLE AND DOUGLAS LIND Abstract. This paper provides a framework for studying the dynamics of d commuting homeomorphisms. Let α be a continuous action of Z on an infi- d nite compact metric space. For each subspace V of R we introduce a notion of expansiveness for α along V , and show that there are nonexpansive subspaces in every dimension d 1. For each k d the set Ek(α) of expansive k- dimensional subspaces≤ is− open in the Grassmann≤ manifold of all k-dimensional d subspaces of R . Various dynamical properties of α are constant, or vary nicely, within a connected component of Ek(α), but change abruptly when passing from one expansive component to another. We give several examples of this sort of “phase transition,” including the topological and measure-theoretic di- rectional entropies studied by Milnor, zeta functions, and dimension groups. For d = 2 we show that, except for one unresolved case, every open set of directions whose complement is nonempty can arise as an E1(α). The unre- solved case is that of the complement of a single irrational direction. Algebraic examples using commuting automorphisms of compact abelian groups are an important source of phenomena, and we study several instances in detail. We conclude with a set of problems and research directions suggested by our anal- ysis. Contents 1. Introduction 56 2. Definitions and examples 57 3. Nonexpansive subspaces 63 4. Realization 67 5.
    [Show full text]
  • 2-Dimensional Vertex Decomposable Circulant Graphs
    2-DIMENSIONAL VERTEX DECOMPOSABLE CIRCULANT GRAPHS GIANCARLO RINALDO AND FRANCESCO ROMEO n Abstract. Let G be the circulant graph Cn(S) with S ⊆ {1,..., 2 } and let ∆ be its independence complex. We describe the well-covered circulant graphs with 2-dimensional ∆ and construct an infinite family of vertex-decomposable circulant graphs within this family. Key Words: Circulant graphs, Cohen-Macaulay, Vertex decomposability. 2010 Mathematics Subject Classification: Primary 13F55. Secondary 13H10 Introduction N n Let n ∈ and S ⊆ {1, 2,..., 2 }. The circulant graph G := Cn(S) is a graph with vertex set Z = {0,...,n − 1} and edge set E(G) := {{i, j} | n |j − i|n ∈ S} where |k|n = min{|k|,n − |k|}. Let R = K[x0,...,xn−1] be the polynomial ring on n variables over a field K. The edge ideal of G, denoted by I(G), is the ideal of R generated by all square-free monomials xixj such that {i, j} ∈ E(G). Edge ideals of graphs have been introduced by Villarreal [20] in 1990, where he studied the Cohen–Macaulay property of such ideals. Many authors have focused their attention on such ideals (e.g.[10], [12]). A known fact about Cohen- Macaulay edge ideals is that they are well-covered, that is all the maximal independent sets of G have the same cardinality. Despite the nice structure the circulant graphs have, it has been proved that is hard to compute their clique number (see [5]), and hence the Krull dimension of R/I(G). arXiv:1807.05755v1 [math.AC] 16 Jul 2018 In particular, some well-covered circulant graphs have been studied (see [2], [3],[19], [8] and [15]).
    [Show full text]
  • MAT4210—Algebraic Geometry I: Notes 5 the Dimension of Varieties 16Th March 2018
    MAT4210—Algebraic geometry I: Notes 5 The dimension of varieties 16th March 2018 Hot themes in notes 5: Krull dimension of spaces—finite maps and Going Up—Noethers Normalization Lemma—transcendence degree and dimension—the dimension of An—the dimenion of a product— Krull’s Principal Ideal Theorem—Intersections in projective space. Very preliminary version 0.2 as of 16th March 2018 at 9:46am—Prone to mis- prints and errors. Changes 2018-02-26 10:08:34: Rewritten section about Krull’s Principal Ideal Theorem. Added a section about the dimension of a product. Proposition 5.2was wrong as stated; has bee corrected. Geir Ellingsrud — [email protected] Introduction Dimension For general topological spaces there is no good notion of dimension. Manifolds of course, have a dimension (or at least each connected component has). They are locally isomorphic to open sets in some euclidean space, and the dimension of that space is constant along connected components, and is the dimension of the component. Noetherian topological spaces as well, have a dimension, and in many instances it is very useful, although it can be infinite. The def- inition is inspired by the concept of the Krull dimension of a Noethe- rian ring; and resembles vaguely one of our naive conception of dimension. For example, in three dimensional geometric gadgets, called threefolds, we may imagine increasing chains of subgadgets of length three; points in curves, curves in surfaces and surfaces in the threefold. The definition below works for any topological space, but the ensuing dimension carries not much information unless the topology is “Zariski-like”.
    [Show full text]
  • Commutative Algebra Dimension Theory of Noetherian Rings June 18, 2020
    Commutative Algebra Dimension theory of Noetherian Rings June 18, 2020 1. Krull Dimension Recall the definition of dimension of a ring. In this lecture we shall call it the Krull dimension and denote it by dim. Definition 1: Let A be a ring and p a prime ideal of A. We define the height of p, denoted by ht p, to be the supremum of lengths n of all chains p0 ⊂ p1 ⊂ ::: ⊂ pn = p of prime ideals pi 2 A such that pi 6= pi+1. The Krull dimension of A is dim A = supfht p j p ⊂ A prime idealg. Clearly, ht p = 0 () p is a minimal prime ideal. Moreover, the Krull dimension is in fact the supremum over the heights of all maximal ideals of a ring. Example 1. We have already seen that artinian rings and fields have Krull dimension 0. More- over, Dedekind domains by definition have Krull dimension 1. Exercise (i). Let A be a ring, p ⊂ A a prime ideal and Ap the localisation of A at p, then show that ht p = dim Ap. Infer that dim A = supfdim Am j m ⊂ A; maximal idealg. Example 2 (Integral extension has same Krull dimension). If A ⊂ B are rings and B is integral over A then dim A = dim B. Recall that if q ⊂ q0 are prime ideals of B such that q \ A = q0 \ A, 0 then q = q . Hence if q0 ⊂ ::: ⊂ qn is a chain of prime ideals in B, and pi = qi \ A, then p0 ⊂ ::: ⊂ pn is a chain in A, thus dim A ≥ dim B.
    [Show full text]
  • The Concept of Dimension: a Theoretical and an Informal Approach
    Tesi di Laurea — Diplomarbeit The concept of dimension: a theoretical and an informal approach Ester Dalvit Relatore Betreuer Prof. Dr. Domenico Luminati Prof. Dr. J¨urgen Hausen Anno Accademico 2006–2007 Contents Introduction vii Introduzione xi Einleitung xv I A survey on dimension 1 1 Dimension of manifolds 3 1.1 Basicconcepts........................... 3 1.2 Tangentspace........................... 5 1.3 Sard’sTheorem .......................... 8 1.4 SomeresultsinAlgebraicTopology . 15 1.5 Invarianceofdomain . 16 2 Dimension of affine varieties 21 2.1 Basicconcepts........................... 22 2.2 Affinetangentspaces . 27 2.3 Derivations ............................ 29 2.4 Regularandsingularpoints . 36 2.5 Transcendencedegree. 38 2.6 Morphisms............................. 42 2.7 Krulldimension.......................... 45 2.8 Zariskidimension . .. .. .. 47 2.9 Krulldimensionforrings. 49 3 Dimension of metric spaces 53 3.1 Three concepts of dimension . 53 3.2 Somebasictheory......................... 57 3.3 The large inductive dimension . 60 3.4 SumtheoremforInd ....................... 66 3.5 Subspace and decomposition theorems for Ind . 69 3.6 ProducttheoremforInd . 70 3.7 Coveringdimension. 71 3.8 Coincidencetheorems. 80 3.9 The dimension of the Euclidean space . 85 II Informal learning of mathematics 89 4 An exhibition about the 4D space 91 4.1 Somebasicdefinitions . 92 4.2 Contentsoftheexhibition . 94 4.2.1 Introduction........................ 94 4.2.2 Models........................... 94 4.2.3 Symmetry ......................... 97 4.2.4 Slices............................ 97 4.2.5 Dice ............................ 98 4.2.6 Flipacube ........................ 98 4.2.7 Polytopes ......................... 98 4.3 Flipacube ............................ 99 4.3.1 Animationsandimages. .101 4.3.2 Flipasquare .......................103 4.3.3 Flipacube ........................106 4.4 Otheranimations . .110 4.4.1 Foldingupa(hyper)cube. 110 4.4.2 Projections ........................112 4.4.3 Hypersphere.
    [Show full text]
  • Topological Applications of Stanley-Reisner Rings of Simplicial Complexes
    Trudy Moskov. Matem. Obw. Trans. Moscow Math. Soc. Tom 73 (2012) 2012, Pages 37–65 S 0077-1554(2013)00200-9 Article electronically published on January 24, 2013 TOPOLOGICAL APPLICATIONS OF STANLEY-REISNER RINGS OF SIMPLICIAL COMPLEXES A. A. AIZENBERG Abstract. Methods of commutative and homological algebra yield information on the Stanley-Reisner ring k[K] of a simplicial complex K. Consider the following problem: describe topological properties of simplicial complexes with given properties of the ring k[K]. It is known that for a simplicial complex K = ∂P∗,whereP ∗ is a polytope dual to the simple polytope P of dimension n, the depth of depth k[K] equals n. A recent construction allows us to associate a simplicial complex KP to any convex polytope P . As a consequence, one wants to study the properties of the rings k[KP ]. In this paper, we report on the obtained results for both of these problems. In particular, we characterize the depth of k[K] in terms of the topology of links in the complex K and prove that depth k[KP ]=n for all convex polytopes P of dimension n. We obtain a number of relations between bigraded betti numbers of the complexes KP . We also establish connections between the above questions and the notion of a k-Cohen-Macaulay complex, which leads to a new filtration on the set of simplicial complexes. 1. Introduction Cohen-Macaulay rings are classical objects of homological algebra and algebraic ge- ometry. In R. Stanley’s monograph [22] and in earlier work of other authors, methods of commutative algebra were used for the study of quotients of polynomial rings by ideals generated by square-free monomials.
    [Show full text]