Resistance of Anaerobic Bacteria Can We Find Any Clinical Impact

Total Page:16

File Type:pdf, Size:1020Kb

Resistance of Anaerobic Bacteria Can We Find Any Clinical Impact Resistance of anaerobic bacteria Can we find any clinical impact ? Szeged ESCMID School 2005 L. Dubreuil Faculté de Pharmacie Université de Lille II, France Antibiotic resistance among anaerobes Intrinsic resistance all anaerobes aminoglycosides, quinolones, fosfomycin,trimethoprim,aztreonam species -dependant : metronidazole : Propionibacterium & Actinomyces rifampicin : F. necrophorum, F. mortiferum cephalosporins : C. difficile cefotetan & vancomycin : C. innocuum Bacteroides fragilis group : C1G, aminopenicillins Fusobacterium : macrolides Acquired resistance Antibiotic resistance among anaerobes Acquired resistance : ß-lactams : ß -lactamase Clostridia (butyricum, + RIC group) Prevotella, Fusobacterium B. fragilis gene + promotor cfiA carbapenemase, cfxA Hyperproduction of the chromosomal enzyme lack of porin & PBP modifications Antibiotic resistance among anaerobes Acquired resistance : MLSb erm genes clindamycin Metronidazole nim genes Fluroquinolones gyrase, topoisomerase mutations resistance to Moxifloxacin Chloramphenicol cat genes The situation in Europe Gram positive cocci susceptible penicillins > cephalosporins glycopeptides, linezolid, rifampicin acquired resistance clindamycin > 20% metronidazole < 5% variable fluoroquinolones The situation in Europe Actinomyces susceptible penicillins > cephalosporins glycopeptides, linezolid, rifampicin acquired resistance tetracycline macrolides (rare) variable fluoroquinolones The situation in Europe Propionibacterium susceptible penicillins > cephalosporins fluoroquinolones glycopeptides, linezolid, rifampicin acquired resistance tetracyclin macrolides & clindamycin increasing The situation in Europe C. perfringens susceptible penicillins > cephalosporins, cefoxitin metronidazole, glycopeptides, linezolid, rifampicin most fluoroquinolones acquired resistance tetracyclins macrolides & clindamycin rare One strain resistant to metronidazole Faris & Poxton 1999 The situation in Europe C. difficile susceptible penicillins, metronidazole, glycopeptides, fusidic acid, bacitracin acquired resistance tetracyclins, chloramphenicol macrolides & clindamycin > 60% emerging ? Vancomycin & metronidazole The situation in Europe Other clostridia (with exception), susceptible penicillins > cephalosporins glycopeptides linezolid, metronidazole acquired resistance tetracyclins macrolides & clindamycin cefoxitin & cefotetan chloramphenicol glycopettides :C. boltae,C. hathewayi (Van B2) The situation in Europe clostridia C. butyricum : penicillinase inhibited by clavulanic acid RIC group C. clostridioforme broad cephalosporinase low-level resistance to teicoplanin, daptomycin, ramoplanin C. ramosum broad cephalosporinase not inhibited by clavulanic acid low-level resistance to vancomycin, linezolid, daptomycin C. innocuum intrinsic resistance to cefoxitin and cefotetan low-level resistance to vancomycin & daptomycin And now ? Gram positive cocci Non-sporulated gram positive bacilli Clostridia No major clinical problems except for individual patients low rate of antibiotic diffusion (brain, bone,) be aware of RIC group glycopeptide resistance in clostridia. What about gram negative anaerobes? Prevotella 2/3 ß-lactamase production + acquired resistance clindamycin 5% metronidazole rare variable fluoroquinolones Porphyromonas Fusobacterium penicillinase < 10% Les mousquetaires anaérobies des infections pulmonaires et O.R.L QuickTime™ et un décompresseur TIFF (non compressé) sont requis pour visualiser cette image. Prevotella : MIC 50/90% ß-lactamase - ß-lactamase + Amoxicillin 0,12 0,25 8 >64 Amox +clavu 0,06 0,06 0,06 2 Cefalotin 0,25 1 16 >64 Cefuroxime 0,12 1 8 >64 Cefixime 0,25 1 16 >64 Cefpodoxime 0,12 0,5 4 >64 Ceftriaxone 0,12 0,5 4 >64 Prevotella : MIC distribution Nb of strains 25 Amoxycillin 20 15 10 5 0 MIC in mg/l Prevotella : distribution des CMI Nb of strains 12 Cephalotin 10 8 6 4 2 0 ß-lac + ß -lac - MIC in mg/l Prevotella : distribution des CMI Nb of strains 14 Cefuroxime 12 10 8 6 4 2 0 ß-lac + 0.03 0.06 ß lac - 0.12 0.25 0.5 1 2 4 8 16 32 64 128 >128 MIC in mg/l Prevotella : distribution des CMI Nb of strains 14 12 Cefpodoxime 10 8 6 4 2 0 ß-lac + ß -lac - MIC in mg/l Antibiotic susceptibility in Porphyromonas Antibiotic MIC range MIC 50% MIC90% Amoxicillin 0,03-0,5 0,5 0,5 Co-amoxiclav 0,03-0,25 0,25 0,25 Cefotaxime 0,06-1 1 1 Clindamycin 0,03-0,25 0,06 0,25 Metronidazole 0,03-0,25 0,125 0,25 Roxithromycin 0,25 Pristinamycin 0,25 FQ susceptibility of Prevotella & Fusobacterium Antibiotic Prevotella Fusobacterium MIC 50% 90% 50% 90% Ciprofloxacin 1 4 2 4 Ofloxacin 2 8 1 4 Levofloxacin 2 4 1 2 Moxifloxacin 0,12 0,5 0,12 1 Gatifloxacin 0,25 2 0,5 4 Trovafloxacin 1 2 0,25 0.5 Anaerobic lung infections. High rate of penicillin failures associated with penicillin-resistant Prevotella melaninogenica 10/47 resistant strains 5 patients received benzyl-penicillin 2 M every 4 hours all failed Failure penicillin 8/18 vs 1/19 clindamycin Gudiol Arch inter Med 1990 150 :2525 Role of ß-lactamases from gram neg anaerobes Nord-Brook ß-lactamases excreted by Prevotella or Fusobacterium caused clinical failures when patients were treated by penicillins otitis - sinusitis-dental abcess-lung abcess-recurrent tonsillitis Anaerobic infections Bacteroides fragilis group + Clostridium : intra-abdominal gyneco-obstetrics, biliary infections Perforated appendicitis Decubitus ulcers Last but not least the B. fragilis group Chromosomal cep A ß-lactamase AMX + C1G+ C3G+C4G + overproduction TIC + PIP + lack of porin AMC, TTC, PTZ ? carbapenemase All ß-lactams MLSb Clindamycin (20-40%) nim genes Nitro-imidazole AMX TIC PIP CTX IMP MTZ CFT CFX CTT ERY CLN AMC TCC PTZ TE CM Resistance to the combinations of ß- lactams and ß-lactamase inhibitors IS 1224 upstream the cep A gene increases the production of the chromosomal cephalosporinase Rogers et al.J Bacteriol 1994;176:4376-4384 High level production of the cephalosporinase alone or associated with modifications in the permeability barrier (defect of porin) Phenotypes of resistance among imipenem- susceptible strains of the B. fragilis group Antibiotic wild hyperproduction of ß-lactamase or/and lack type of porin or silent carbapenemase % (72) (19) (6) (2) (1) Ticarcillin S R R R R Coamoxiclav S S S/I I/R R Ticar + clavu S S S S I/R Pipera+tazo S S S S I Cefotetan S/I I/R R R R Figure 1 : Antibiotic resistance rates among the B. fragilis group (256 strains) in 2003 30 27,5 28 Antibiotic resistance rates (%) 25 20 15 10 6,2 4,3 1,9 1,9 5 0 0,8 0 Metronidazole Imipenem Ticar+ clavu Pipéra +tazo Co-amoxclav Cefoxitin Ticarcillin Clindamycin Activity of fluoroquinolones against the B. fragilis group (130 strains) 60 50 40 30 CIP 20 LEV 10 MOX 0 GAR 0.06 0.25 1 4 16 64 GAR MOX LEV CIP - B. fragilis group Are antibiotic resistance rates increasing ? Antibiotic resistance rates (%) 35 MTR 30 25 AMC 20 CLN 15 10 5 0 1996 1998 2000 2003 1996 1998 2000 2003 MTR 0,4 1,9 4,7 4,3 AMC 4 3,8 5,6 4,3 CLN 20 29 32 28 Metronidazole resistance nim on mobilisable plasmids nim A B.vulgatus nim C B. thetaiotaomicron nim D B. fragilis nim B chromosomal B. fragilis, P. acnes, A. odontolyticus, C. bifermentans nim A in Prevotella bivia nim G B. fragilis B. fragilis S or Intermediate to metronidazole B. fragilis metronidazole-R Metronidazole resistance Gal & Brazier, JAC 2004,54:109-116 15/ 206 isolates were found to possess nim genes and these had MICs of MTZ from 1.5 to >256 mg/L with 11.6% above the therapeutic breakpoint of 16 mg/L Disc diffusion 28-30 mm test on FAA with a 5 µg MTZ disc. 70% showed reduced zone of susceptibility or no zone 30% with no reduced zone MIC 1.5 to 4 mg/L No zone for 7 strains without nim gene. M 17 22 23 29 31 39 ND Results (2) E c o Ø Bacteroides fragilis group R (PCR-RFLP) V Strain N° 17: nimB 22: nimE 23: nimD 29: nimD F 31: nimB o 39: nimA k Strain N° 40: nimA (sequencing) I Ø Veillonella sp. Strain N° 18 : nimE (sequencing) H i n f I Results (3) MTZ /R MTZ /R MTZ /I 2 copies of nimA gene in the genome of: - MTZ Resistant strain (MIC = 64 mg/L) - MTZ intermediate strain (MIC = 16 mg/L) nimA SfiI nimA EcoRI nimA EcoRI Clinical significance of intermediate or resistant metronidazole clostridia ? Elsaghier , Brazier et al. JAC 2003 Failure of treatment due to Bacteroides fragilis with reduced susceptibility to metronidazole. Pelvic collections grew mixed coliforms susceptible to cefuroxime Patient treated by Cefuroxime +metronidazole +gentamicin. Pyrexia after four days of Tt. WBC 16000/mm3 B. fragilis MTR-R cultured from blood cultures (disk diffusion) MIC by E test 6 mg/L. Metronidazole resistance in France French resistant strains MTZ-R Prevotella buccae et 3 souches de P. loescheii CMI = 16 mg/L B. fragilis MIC = 64 mg/L H. Marchandin et al. Anaerobes 2002;8:137 Veillonella nim E in a metronidazole-susceptible Veillonella sp. strain MIC = 4 mg/L H. Marchandin, Dubreuil, AAC 2004 48:3207 Bacteremia caused by Prevotella sp. with reduced susceptibility to metronidazole Mory et al.ECC Paris december 2004 78 old patient with sepsis Cefotaxime (3g)+ ofloxacin (400mg) E. coli S + Streptococcus anginosus S Patient pyrexial new blood cultures Teicoplanin 400mg and metronidazole 500mg tid added Day 7 Prevotella AMX, CTX, OFL-R, MTR S but colonies appearing later in the inhibition zone MIC 64 mg/L. Day 16 persistance of fever Piperacillin + tazobactam 12g + Cipro 800 mg. Apyrexia in 48h Metronidazole resistance B. fragilis & B. ovatus from appendicetomy MIC >32 mg/l : failure in Koweit Rotimi et al. Clin Microbiol Infect 1999 ; 5:166-169 B. fragilis MIC =256 in New Delhi with clinical failure Chauldry, Emerging Infect Dis 2001,7,485-486 B. fragilis MIC >32 mg/L in Seattle Shapiro et al. J Clin Microbiol 2004 ;42:4127-4129 B. fragilis in Hungary (Nagy et al.), Poland (Wojcik) Prevotella loescheii MIC 12 mg/L subdural empyema in Cardiff Sandoe JAC 2001;47:366-367. Metronidazole resistance C. difficile MIC =16 mg/L in Hong Kong, Madrid and Cardiff Wong et al.Diagn Microbiol Infect Dis 1999 ;34:1-6 Pelaez AAC 2002,46:1647-1650 Brazier et al.
Recommended publications
  • Investigational Drug Therapies Currently in Early-Stage Clinical Development for the Treatment of Clostridioides (Clostridium) Difficile Infection Mai-Chi N
    EXPERT OPINION ON INVESTIGATIONAL DRUGS https://doi.org/10.1080/13543784.2019.1581763 REVIEW Investigational drug therapies currently in early-stage clinical development for the treatment of clostridioides (clostridium) difficile infection Mai-Chi N. Trana,b, Ravina Kullarc and Ellie J. C. Goldsteind,e aDepartment of Pharmacy, Providence St. John’s Health Center, Santa Monica, CA, USA; bDepartment of Pharmacy, Clinica Juan Pablo Medical Group, Los Angeles, CA, USA; cDoctor Evidence, LLC, Santa Monica, CA, USA; dR M Alden Research Laboratory, Santa Monica, CA, USA; eDavid Geffen School of Medicine, Los Angeles, CA, USA ABSTRACT ARTICLE HISTORY Introduction: Clostridioides (Clostridium) difficile Infection (CDI) is an urgent global threat causing Received 16 August 2018 ~500,000 infections annually in the United States of America (USA) and is associated with a 36% 30- Accepted 8 February 2019 day attributable mortality rate. Despite the availability of three therapeutic agents, CDI recurrence KEYWORDS – – occurs in 20 40% of patients, with a 30 40% second recurrence rate in these patients. Consequently, ACX-362F; DS-2969b; there is a need for novel agents for treating CDI. LFF571; ribaxamase; Areas covered: We searched MEDLINE, PubMed, Embase, Web of Science, Cochrane Central Register of ridinilazole; RBX 2660; Controlled Trials, and ClinicalTrials.gov for agents in early stages of clinical development. CRS3123; MCB3681/ These drugs include ACX-362E, DS-2969b, LFF 571, RBX2660, ribaxamase, ridinilazole that have MCB3837 advanced to at least phase 2 and several other drugs in phase 1 development. Expert opinion: The challenge for these new agents is three-fold: (1) to have a novel approach such as a different target/mechanism of action; (2) be ‘significantly’ better than existing agents in regard to ‘sustained clinical response’; or (3) be priced at a reasonable cost when it comes to market or perhaps all three.
    [Show full text]
  • Biofire Blood Culture Identification System (BCID) Fact Sheet
    BioFire Blood Culture Identification System (BCID) Fact Sheet What is BioFire BioFire BCID is a multiplex polymerase chain reaction (PCR) test designed to BCID? identify 24 different microorganism targets and three antibiotic resistance genes from positive blood culture bottles. What is the purpose The purpose of BCID is to rapidly identify common microorganisms and of BCID? antibiotic resistance genes from positive blood cultures so that antimicrobial therapy can be quickly optimized by the physician and the antibiotic stewardship pharmacist. It is anticipated that this will result in improved patient outcomes, decreased length of stay, improved antibiotic stewardship, and decreased costs. When will BCID be BCID is performed on all initially positive blood cultures after the gram stain is routinely performed and reported. performed? When will BCID not For blood cultures on the same patient that subsequently become positive with be routinely a microorganism showing the same morphology as the initial positive blood performed? culture, BCID will not be performed. BCID will not be performed on positive blood cultures with gram positive bacilli unless Listeria is suspected. BCID will not be performed on blood culture bottles > 8 hours after becoming positive. BCID will not be performed between 10PM-7AM on weekdays and 2PM-7AM on weekends. BCID will not be performed for clinics that have specifically opted out of testing. How soon will BCID After the blood culture becomes positive and the gram stain is performed and results be available? reported, the bottle will be sent to the core Microbiology lab by routine courier. BCID testing will then be performed. It is anticipated that total turnaround time will generally be 2-3 hours after the gram stain is reported.
    [Show full text]
  • Table 3. Distribution of Tetracycline Resistance Genes Among Gram-Positive Bacteria, Mycobacterium, Mycoplasma, Nocardia, Streptomyces and Ureaplasma Modified Sept
    Table 3. Distribution of tetracycline resistance genes among Gram-positive bacteria, Mycobacterium, Mycoplasma, Nocardia, Streptomyces and Ureaplasma Modified Sept. 27, 2021 [n=58 genera] Originally modified from MMBR 2001; 65:232-260 with permission from ASM Journals One Determinant Two Determinants Three or More Determinants n=27 n=7 n=22 k Abiotrophia tet(M) Arthrobacter tet(33)(M) Actinomyces tet(L)(M)(W) Afipia tet(M) Gardnerella tet(M)(Q) Aerococcus tet(M)(O)(58)(61) o Amycolatopsis tet(M) Gemella tet(M)(O) Bacillus tet(K)(L)(M)(O)ao(T)ao(W)(39)m(42)I (45)atotr(A)L Anaerococcus tet(M)g Granulicatella tet(M)(O) Bifidobacterium a, w tet(L)(M)(O)(W) Bacterionema tet(M) Lactococcus tet(M)(S) Bhargavaea tet(L)ac(M)(45)aa ar Brachybacterium tet(M)k Mobiluncusa tet(O)(Q) Clostridiuma,f tet(K)(L)(M)(O)(P)(Q)(W)(36)(40)j(44)p(X) Catenibacteriuma tet(M) Savagea tet(L)(M) Clostridioidesat tet(L)(P)(W)(40) Cellulosimicrobium tet(39)m Corynebacterium tet(M)(Z)(33)(W)q (39)ak Cottaibacterium tet(M) Enterococcus tet(K)(L)(M)(O)(S)(T)(U)(58)ad(61)aq Cutibacterium tet(W)aq Eubacteriuma tet(K)(M)(O)(Q)(32) Erysipelothrix tet(M) Lactobacillusf tet(K)(L)(M)(O)(Q)(S)(W)(Z)(36)am Finegoldia tet(M)g Listeria tet(K)(L)(M)(S)AB(46)ag Geobacillus tet(L) Microbacterium tet(M)(O)ae(42)I Helcococcus tet(M)ah Mycobacteriumc tet(K)(L)(M)(O)t(V)arotr(A)(B) Leifsonia tet(O)t Nocardia tet(K)(L)(M)ai (O) ai Lysinibacillus tet(39)m Paenibacillus tet(L)(M)(O)t(42)i Micrococcus tet(42) Peptostreptococcusa tet(K)(L)(M)(O)(Q) Mycoplasmab tet(M) Sporosarcina tet(K)(L)ac(M)n
    [Show full text]
  • Effect of Msa on Antibiotic Resistance and Allelic Replacement of Pkor1 in Staphylococcus Aureus
    The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College Fall 12-2012 Effect of msa on Antibiotic Resistance and Allelic Replacement of pKOR1 in Staphylococcus aureus Jordan M. Towne University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/honors_theses Recommended Citation Towne, Jordan M., "Effect of msa on Antibiotic Resistance and Allelic Replacement of pKOR1 in Staphylococcus aureus" (2012). Honors Theses. 103. https://aquila.usm.edu/honors_theses/103 This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi Effect of msa on antibiotic resistance and allelic replacement of pKOR1 in Staphylococcus aureus by Jordan Towne A Thesis Submitted to the Honors College of The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in the Department of Biological Sciences December 2012 ii Approved By: ____________________________ Mohamed O. Elasri Department of Biological Sciences ____________________________ Glenmore Shearer, Chair Department of Biological Sciences ___________________________ David R. Davies, Dean Honors College iii Abstract Staphylococcus aureus is an important human pathogen that causes hospital and community-acquired infections (52). These infections are difficult to treat due to resistance to a wide range of antibiotics and spread of antibiotic-resistant strains (13, 52). S. aureus causes infection by regulation of accessory genes encoding for expression of factors contributing to virulence (9, 11, 12, 29, 34, 43, 45), including severe infection, biofilm formation, autolysis, and antibiotic resistance (4, 5, 7, 27, 56).
    [Show full text]
  • Chemical Probes to Visualize Bacterial Cell Structure and Physiology
    molecules Review From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology Jonathan Hira 1, Md. Jalal Uddin 1 , Marius M. Haugland 2 and Christian S. Lentz 1,* 1 Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; [email protected] (J.H.); [email protected] (M.J.U.) 2 Department of Chemistry and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; [email protected] * Correspondence: [email protected] Academic Editor: Steven Verhelst Received: 30 September 2020; Accepted: 23 October 2020; Published: 26 October 2020 Abstract: Chemical probes have been instrumental in microbiology since its birth as a discipline in the 19th century when chemical dyes were used to visualize structural features of bacterial cells for the first time. In this review article we will illustrate the evolving design of chemical probes in modern chemical biology and their diverse applications in bacterial imaging and phenotypic analysis. We will introduce and discuss a variety of different probe types including fluorogenic substrates and activity-based probes that visualize metabolic and specific enzyme activities, metabolic labeling strategies to visualize structural features of bacterial cells, antibiotic-based probes as well as fluorescent conjugates to probe biomolecular uptake pathways. Keywords: activity-based probe; antibiotic conjugate; bacterial imaging; bacterial uptake; fluorogenic substrate; metabolic labeling; phenotypic heterogeneity 1. Introduction—From 19th Century Microbiology to Modern Day Chemical Biology If chemical biology can be defined as the ‘interrogation of biological systems with chemical approaches’ [1], we must acknowledge some of the first microbiologists as chemical biologists.
    [Show full text]
  • Identification and Antimicrobial Susceptibility Testing of Anaerobic
    antibiotics Review Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology? Márió Gajdács 1,*, Gabriella Spengler 1 and Edit Urbán 2 1 Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; [email protected] 2 Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-62-342-843 Academic Editor: Leonard Amaral Received: 28 September 2017; Accepted: 3 November 2017; Published: 7 November 2017 Abstract: Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance
    [Show full text]
  • (BCID) Results Are “Not Detected”
    Interpretation of Positive Blood Cultures When PCR Blood Culture Identification (BCID) Results are “Not Detected” Nebraska Medicine currently uses a multi-plex PCR-based blood culture identification (BCID) system that is able to identify 19 potential pathogens growing in blood culture. BCID generally detects over 90% of the most common causative agents in bloodstream infections; however, when microbes not included on the panel are present in a blood culture, it returns a result of “Not Detected.” This document aims to provide guidance in these scenarios supported by data collected at Nebraska Medicine from January 2018 to August 2019. Table 1: Recommendations for treatment of patients with blood cultures growing organisms not detected on BCID Gram Stain/Preliminary Likely Organism (% total BCID negative)* Recommended Treatment Culture Result Gram-positive: Aerobe Micrococcus sp. (18.1%) (most can also grow in Coagulase-negative Staphylococcus (9.3%) None anaerobic bottles) Diphtheroids (7%) None Peptostreptococcus sp. (4.4%) If therapy is desired: Anaerobe bottle only Lactobacillus sp. (2.6%) Metronidazole 500 mg PO q8h Clostridium sp. (2.6%) OR Penicillin G 4 million units IV q4h Gram-negative: Aerobe Acinetobacter sp. (1.8%) (most can also grow in Stenotrophomonas maltophilia (1.6%) Levofloxacin 750 mg IV/PO q24h anaerobic bottles) Pseudomonas fluorescens-putida group (1%) Bacteroides fragilis group (9.3%) Anaerobe bottle only Metronidazole 500 mg IV/PO q8h Fusobacterium sp. (4.7%) *A full list of isolated organisms can be found below in Table 2 Orange text = Cocci, Blue text = Bacilli (rods) Gram-Positives When BCID results as “Not Detected” but there is microbial growth, the organism is most frequently gram-positive (71%).
    [Show full text]
  • Extraintestinal Clostridioides Difficile Infections
    antibiotics Article Extraintestinal Clostridioides difficile Infections: Epidemiology in a University Hospital in Hungary and Review of the Literature Edit Urbán 1,*, Gabriella Terhes 2 and Márió Gajdács 3 1 Department of Public Health, Faculty of Medicine, University of Szeged, Dóm tér 10., 6720 Szeged, Hungary 2 Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Semmelweis utca 6., 6725 Szeged, Hungary; [email protected] 3 Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., 6720 Szeged, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-62-342-861 Received: 8 December 2019; Accepted: 31 December 2019; Published: 2 January 2020 Abstract: Extraintestinal manifestations of Clostridioides difficile infections (CDIs) are very uncommon, and according to the literature, poor outcomes and a high mortality have been observed among affected individuals. The objective of this study was to investigate the incidence rate of extraintestinal infections caused by C. difficile (ECD) in a tertiary-care university hospital in Hungary. During a 10-year study period, the microbiology laboratory isolated 4129 individual strains of C. difficile; among these, the majority were either from diarrheal fecal samples or from colonic material and only n = 24 (0.58%) were from extraintestinal sources. The 24 extraintestinal C. difficile isolates were recovered from 22 patients (female-to-male ratio: 1, average age: 55.4 years). The isolates in n = 8 patients were obtained from abdominal infections, e.g., appendicitis, rectal abscess or Crohn’s disease. These extraintestinal cases occurred without concomitant diarrhea. In all, but two cases C.
    [Show full text]
  • A Case of Necrotizing Fasciitis Caused by Finegoldia Magna in a Patient with Type 2 Diabetes Mellitus
    Le Infezioni in Medicina, n. 4, 359-363, 2018 CASE REPORTS 359 A case of necrotizing fasciitis caused by Finegoldia magna in a patient with type 2 diabetes mellitus Margherita Scapaticci1, Sabina Marchetto2, Andrea Nardi2, Maira Zoppelletto3, Andrea Bartolini3 1Laboratory Medicine Department, San Camillo Hospital, Treviso, Italy; 2Diabetic Foot Surgery Department, San Camillo Hospital, Treviso, Italy; 3Laboratory Medicine, San Bassiano Hospital, AULSS 7 Pedemontana, Bassano del Grappa, Italy SUMMARY Diabetes mellitus is one of the serious conditions the appropriate antibacterial agents. Hence the key associated with necrotizing fasciitis, a severe bac- to successful management is an early and accurate terial skin infection that spreads quickly and is diagnosis. We report a case of necrotizing fasciitis characterized by extensive necrosis of the deep and caused by Finegoldia magna in a patient with type 2 superficial fascia resulting in devascularization diabetes mellitus. and necrosis of the associated tissues. In addition to debridement and aggressive surgery procedures, Keywords: necrotizing fasciitis, type 2 diabetes mellitus, the effectiveness of therapy depends on choosing diabetic foot ulcers, anaerobes, GPACs. n INTRODUCTION lesion caused by a trauma, frequently trivial [4]. Symptoms include red or purple skin in the affect- iabetic foot ulcers are one of the main caus- ed area, severe pain, fever, and vomiting [5]. The Des of hospitalization and the major cause of major causative organisms include Streptococcus morbidity in individuals suffering from diabetes pyogenes, Staphylococcus aureus, anaerobic bacteria and, if not properly treated, can need amputation. and intestinal flora [4,6]. Diabetic patients may be The effectiveness of therapy depends on choos- predisposed to necrotizing fasciitis by the tissue hy- ing the appropriate antibacterial agents, and for poxia caused by arteriosclerosis and the immuno- this reason the key to a successful management is deficiency associated with poor glycemic control.
    [Show full text]
  • Identifying Targets for Potentiators in S. Aureus Using Chemical Genetic Approaches
    Identifying targets for potentiators in S. aureus using chemical genetic approaches The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Rajagopal, Mithila. 2016. Identifying targets for potentiators in S. aureus using chemical genetic approaches. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33840649 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Identifying targets for potentiators in S. aureus using chemical genetic approaches A dissertation presented by Mithila Rajagopal to The Department of Chemistry and Chemical Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemistry Harvard University Cambridge, Massachusetts June 2016 © 2016 Mithila Rajagopal All Rights Reserved Dissertation Advisors: Dr. Suzanne Walker and Dr. Daniel Kahne Mithila Rajagopal Identifying targets for potentiators in S. aureus using chemical genetic approaches Abstract Staphylococcus aureus is a highly feared Gram-positive pathogen. The rise in antibiotic resistance has made S. aureus infections intractable. To find new ways to treat S. aureus infections, it is important to understand how this organism protects itself from antibiotics. We probed S. aureus transposon libraries with different classes of antibiotics and used Tn-Seq to identify intrinsic resistance factors that are important in withstanding antibiotics. We identified and validated the importance of a number of previously known intrinsic resistance factors such as mprF, fmtA and the graRS/vraFG multi-component sensing system, as well as a number of novel factors whose involvement in antibiotic resistance has not been previously appreciated.
    [Show full text]
  • Antibiotics Currently in Clinical Development
    A data table from Feb 2018 Antibiotics Currently in Global Clinical Development Note: This data visualization was updated in December 2017 with new data. As of September 2017, approximately 48 new antibiotics1 with the potential to treat serious bacterial infections are in clinical development. The success rate for clinical drug development is low; historical data show that, generally, only 1 in 5 infectious disease products that enter human testing (phase 1 clinical trials) will be approved for patients.* Below is a snapshot of the current antibiotic pipeline, based on publicly available information and informed by external experts. It will be updated periodically, as products advance or are known to drop out of development. Because this list is updated periodically, endnote numbers may not be sequential. In September 2017, the antibiotics pipeline was expanded to include products in development globally. Please contact [email protected] with additions or updates. Expected activity Expected activity against CDC Development against resistant Drug name Company Drug class Target urgent or WHO Potential indication(s)?5 phase2 Gram-negative critical threat ESKAPE pathogens?3 pathogen?4 Approved for: Acute bacterial skin and skin structure infections; other potential Baxdela Approved June 19, Melinta Bacterial type II Fluoroquinolone Possibly No indications: community-acquired bacterial (delafloxacin) 2017 (U.S. FDA) Therapeutics Inc. topoisomerase pneumonia and complicated urinary tract infections6 Approved for: Complicated urinary Rempex tract infections including pyelonephritis; Vabomere Pharmaceuticals β-lactam (carbapenem) other potential indications: complicated Approved Aug. 30, (Meropenem + Inc. (wholly owned + β-lactamase inhibitor PBP; β-lactamase Yes Yes (CRE) intra-abdominal infections, hospital- 2017 (U.S.
    [Show full text]
  • Clinically Relevant Gram- Positive Anaerobic Cocci (GPAC), New Names and Their Antibiotic Susceptibility
    Clinically relevant Gram- positive anaerobic cocci (GPAC), new names and their antibiotic susceptibility © by author ESCMID Online Lecture Library Linda Veloo Contents Introduction Gram-positive anaerobic cocci Peptostreptococcus sp. (formerly) New species and taxonomy Identification : - Phenotypic - Vitek ANC© bycard author - Fluorescent in situ hybridisation (FISH) - MALDI-TOF MS ESCMID Online Lecture Library Antibiotic resistance Virulence F. magna Introduction Gram-positive anaerobic cocci (GPAC): Peptococcus P.niger Seldomly isolated from clinical material Ruminococcus Faecel microbiota Seldomly ©isolated by fromauthor clinical material Insufficient culture methods? ESCMIDCoprococcus Online Lecture Library Isolated from faecal samples Gram positive anaerobic cocci, D.A. Murdoch Clinical Microbiology reviews, 1998 Introduction Atopobium Faecal microbiota and clinical material Sarcina Soil, abdominal samples, faecal samples from vegetarians and patients with gastro-intestinal abnormalities Unique cell© morphology: by author Groups of 8 cells which might produce spores ESCMID Online Lecture Library Peptostreptococcus The genus Peptostreptococcus contained 13 species. Clinically most relevant (literature): P. anaerobius P. asaccharolyticus P. magnus P. micros © by author ESCMID Online Lecture Library New species, changed taxonomy (in chronological order) In 1997 3 new species were added to the genus Peptostreptococcus P. harei P. ivorii P. octavius Clinical relevance unknown© by author ESCMID Online Lecture Library Description of Three New Species of the Genus Peptostreptococcus from Human Clinical Specimens: P. harei sp. nov., P. ivorii sp. nov., and P. octavius sp. nov., D. A. Murdoch et al., Int. J. Syst. Bact. 1997 New taxonomy Reclassification of Peptostreptococcus magnus (Prevot 1933) Holdeman and Moore 1972 as Finegoldia magna comb. nov. and Peptostreptococcus micros (Prevot 1933) Smith 1957 as Micromonas micros comb.
    [Show full text]