Astronomers Grapple with the Meaning of the First Two Objects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
KAREN J. MEECH February 7, 2019 Astronomer
BIOGRAPHICAL SKETCH – KAREN J. MEECH February 7, 2019 Astronomer Institute for Astronomy Tel: 1-808-956-6828 2680 Woodlawn Drive Fax: 1-808-956-4532 Honolulu, HI 96822-1839 [email protected] PROFESSIONAL PREPARATION Rice University Space Physics B.A. 1981 Massachusetts Institute of Tech. Planetary Astronomy Ph.D. 1987 APPOINTMENTS 2018 – present Graduate Chair 2000 – present Astronomer, Institute for Astronomy, University of Hawaii 1992-2000 Associate Astronomer, Institute for Astronomy, University of Hawaii 1987-1992 Assistant Astronomer, Institute for Astronomy, University of Hawaii 1982-1987 Graduate Research & Teaching Assistant, Massachusetts Inst. Tech. 1981-1982 Research Specialist, AAVSO and Massachusetts Institute of Technology AWARDS 2018 ARCs Scientist of the Year 2015 University of Hawai’i Regent’s Medal for Research Excellence 2013 Director’s Research Excellence Award 2011 NASA Group Achievement Award for the EPOXI Project Team 2011 NASA Group Achievement Award for EPOXI & Stardust-NExT Missions 2009 William Tylor Olcott Distinguished Service Award of the American Association of Variable Star Observers 2006-8 National Academy of Science/Kavli Foundation Fellow 2005 NASA Group Achievement Award for the Stardust Flight Team 1996 Asteroid 4367 named Meech 1994 American Astronomical Society / DPS Harold C. Urey Prize 1988 Annie Jump Cannon Award 1981 Heaps Physics Prize RESEARCH FIELD AND ACTIVITIES • Developed a Discovery mission concept to explore the origin of Earth’s water. • Co-Investigator on the Deep Impact, Stardust-NeXT and EPOXI missions, leading the Earth-based observing campaigns for all three. • Leads the UH Astrobiology Research interdisciplinary program, overseeing ~30 postdocs and coordinating the research with ~20 local faculty and international partners. -
Early Observations of the Interstellar Comet 2I/Borisov
geosciences Article Early Observations of the Interstellar Comet 2I/Borisov Chien-Hsiu Lee NSF’s National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ 85719, USA; [email protected]; Tel.: +1-520-318-8368 Received: 26 November 2019; Accepted: 11 December 2019; Published: 17 December 2019 Abstract: 2I/Borisov is the second ever interstellar object (ISO). It is very different from the first ISO ’Oumuamua by showing cometary activities, and hence provides a unique opportunity to study comets that are formed around other stars. Here we present early imaging and spectroscopic follow-ups to study its properties, which reveal an (up to) 5.9 km comet with an extended coma and a short tail. Our spectroscopic data do not reveal any emission lines between 4000–9000 Angstrom; nevertheless, we are able to put an upper limit on the flux of the C2 emission line, suggesting modest cometary activities at early epochs. These properties are similar to comets in the solar system, and suggest that 2I/Borisov—while from another star—is not too different from its solar siblings. Keywords: comets: general; comets: individual (2I/Borisov); solar system: formation 1. Introduction 2I/Borisov was first seen by Gennady Borisov on 30 August 2019. As more observations were conducted in the next few days, there was growing evidence that this might be an interstellar object (ISO), especially its large orbital eccentricity. However, the first astrometric measurements do not have enough timespan and are not of same quality, hence the high eccentricity is yet to be confirmed. This had all changed by 11 September; where more than 100 astrometric measurements over 12 days, Ref [1] pinned down the orbit elements of 2I/Borisov, with an eccentricity of 3.15 ± 0.13, hence confirming the interstellar nature. -
Initial Characterization of Interstellar Comet 2I/Borisov
Initial characterization of interstellar comet 2I/Borisov Piotr Guzik1*, Michał Drahus1*, Krzysztof Rusek2, Wacław Waniak1, Giacomo Cannizzaro3,4, Inés Pastor-Marazuela5,6 1 Astronomical Observatory, Jagiellonian University, Kraków, Poland 2 AGH University of Science and Technology, Kraków, Poland 3 SRON, Netherlands Institute for Space Research, Utrecht, the Netherlands 4 Department of Astrophysics/IMAPP, Radboud University, Nijmegen, the Netherlands 5 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, the Netherlands 6 ASTRON, Netherlands Institute for Radio Astronomy, Dwingeloo, the Netherlands * These authors contributed equally to this work; email: [email protected], [email protected] Interstellar comets penetrating through the Solar System had been anticipated for decades1,2. The discovery of asteroidal-looking ‘Oumuamua3,4 was thus a huge surprise and a puzzle. Furthermore, the physical properties of the ‘first scout’ turned out to be impossible to reconcile with Solar System objects4–6, challenging our view of interstellar minor bodies7,8. Here, we report the identification and early characterization of a new interstellar object, which has an evidently cometary appearance. The body was discovered by Gennady Borisov on 30 August 2019 UT and subsequently identified as hyperbolic by our data mining code in publicly available astrometric data. The initial orbital solution implies a very high hyperbolic excess speed of ~32 km s−1, consistent with ‘Oumuamua9 and theoretical predictions2,7. Images taken on 10 and 13 September 2019 UT with the William Herschel Telescope and Gemini North Telescope show an extended coma and a faint, broad tail. We measure a slightly reddish colour with a g′–r′ colour index of 0.66 ± 0.01 mag, compatible with Solar System comets. -
Comet Interceptor: a Mission to an Ancient World
EPSC Abstracts Vol. 14, EPSC2020-574, 2020 https://doi.org/10.5194/epsc2020-574 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Comet Interceptor: A mission to an ancient world Cecilia Tubiana1, Geraint Jones2,3, Colin Snodgrass4, and the the Comet Interceptor Team* 1Max Planck Institute for Solar System Research, Goettingen, Germany ([email protected]) 2Mullard Space Science Laboratory, University College London, Surrey, UK 3The Centre for Planetary Sciences at UCL/Birkbeck, London, UK 4Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh *A full list of authors appears at the end of the abstract Comets are the most pristine objects in our Solar System. Having spent most of their life at large distance from the Sun, where they remained mostly unaffected by solar radiation, comets are the most unaltered remnants from the era of planet formation. In June 2019, a multi-spacecraft project – Comet Interceptor – was selected by the European Space Agency (ESA) as its next planetary mission, and the first in its new class of Fast (F) projects [1]. The mission’s primary science goal is to characterise, for the first time, a long-period comet – preferably one which is dynamically new – or an interstellar object. An encounter with a comet approaching the Sun for the first time will provide valuable data to complement that from all previous comet missions: the surface of such an object would be being heated to temperatures above the its constituent ices’ sublimation point for the first time since its formation. -
Spherex: New NASA MIDEX All-Sky 1-5 Um Spectral Survey
SPHEREx: New NASA MIDEX All-Sky 1-5 um Spectral Survey Designed to Explore ▪ The Origin of the Universe ▪ The Origin and History of Galaxies ▪ The Origin of Water in Planetary Systems ▪ PI Jamie Bock, CalTech The First All-Sky Near-IR Spectral Survey A Rich Legacy Archive for the Astronomy Community with 100s of Millions of Stars and Galaxies Low-Risk Implementation ▪ 2022 NASA MIDEX Launch ▪ Single Observing Mode ▪ Large Design Margins Co-I Carey Lisse, SES/SRE ▪ No Moving Optics NASA SBAG Jun 25, 2019 Copyright 2017 California Institute of Technology. U.S. Government sponsorship acknowledged. New MIDEX SPHEREx (2022-2025): All-Sky 0.8 – 5.0 µm Spectral Legacy Archives Medium- High- Accuracy Accuracy Detected Spectra Spectra Clusters > 1 billion > 100 million 10 million 25,000 All-Sky surveys demonstrate high Galaxies scientiFic returns with a lasting Main data legacy used across astronomy Sequence Brown Spectra Dust-forming Dwarfs Cataclysms For example: > 100 million 10,000 > 400 > 1,000 COBE J IRAS J Stars GALEX Asteroid WMAP & Comet Galactic Quasars Quasars z >7 Spectra Line Maps Planck > 1.5 million 1 – 300? > 100,000 PAH, HI, H2 WISE J Other More than 400,000 total citations! SPHEREx Data Products & Tools: A spectrum (0.8 to 5 micron) for every 6″ pixel on the sky Planned Data Releases Survey Data Date (Launch +) Associated Products Survey 1 1 – 8 mo S1 spectral images Survey 2 8 – 14 mo S1/2 spectral images Early release catalog Survey 3 14 – 20 mo S1/2/3 spectral images Survey 4 20 – 26 mo S1/2/3/4 spectral images Final Release -
Isotopic Ratios in Outbursting Comet C/2015 ER61
Astronomy & Astrophysics manuscript no. draft_Dec_07 c ESO 2018 September 10, 2018 Isotopic ratios in outbursting comet C/2015 ER61 Bin Yang1; 2, Damien Hutsemékers3, Yoshiharu Shinnaka4, Cyrielle Opitom1, Jean Manfroid3, Emmanuël Jehin3, Karen J. Meech5, Olivier R. Hainaut1, Jacqueline V. Keane5, and Michaël Gillon3 (Affiliations can be found after the references) September 10, 2018 ABSTRACT Isotopic ratios in comets are critical to understanding the origin of cometary material and the physical and chemical conditions in the early solar nebula. Comet C/2015 ER61 (PANSTARRS) underwent an outburst with a total brightness increase of 2 magnitudes on the night of 2017 April 4. The sharp increase in brightness offered a rare opportunity to measure the isotopic ratios of the light elements in the coma of this comet. We obtained two high-resolution spectra of C/2015 ER61 with UVES/VLT on the nights of 2017 April 13 and 17. At the time of our observations, the comet was fading gradually following the outburst. We measured the nitrogen and carbon isotopic ratios from the CN violet (0,0) band and found that 12C/13C=100 ± 15, 14N/15N=130 ± 15. 14 15 14 15 In addition, we determined the N/ N ratio from four pairs of NH2 isotopolog lines and measured N/ N=140 ± 28. The measured isotopic ratios of C/2015 ER61 do not deviate significantly from those of other comets. Key words. comets: general - comets: individual (C/2015 ER61) - methods: observational 1. Introduction Understanding how planetary systems form from proto- planetary disks remains one of the great challenges in as- tronomy. -
Comets and the Origin of Life from N.J
540 Nature Vol. 288 11 December 1980 been cloned in Stanford and is being used base pair substitution in this region and by premature transcription; but that these for the analysis of this entire region of the a factor of two in the abudance of their early transcripts are not translated and, genome by S. Beckendorf (University of mRNAs. indeed, decay as development gets under California, Berkeley) and for detailed The egg shell protein genes, under study way. Only at the appropriate develop studies of the gene itself by M. Muskavitch by A. Spradling (Carnegie Institution, mental stage several hours later does (Stanford). A surprising result is that the Washington) and in F. C. Kafatos' transcription resume to produce mRNAs transcript of SGS-4 differs in size in laboratory (Harvard) also surprised us for that are subsequently translated. different strains of Drosophila. This they are amplified in the tissue in which What is the meaning of this? It implies results, it would appear, from the fact that they are expressed. Spradling has found some relationship between amplification within the coding sequence there is a 21 that the amount of DNA amplified extends and early transcription and also indicates base pair sequence whose repetition at least 30 kb on each side of the genes the existence of a translational control at frequency can vary between different themselves, but the degree of amplification the early developmental stage. SGS-4 alleles. Although nothing is known falls off, from a peak of some 60 fold, in Like all good meetings, at the end there of the chemistry of the protein this must both directions away from the coding were far more questions than answers. -
LSST Solar System Science (Excluding Neos)
LSST Solar System Science (excluding NEOs) Meg Schwamb (Gemini Observatory) @megschwamb @lsstsssc LSST Solar System Science Collaboration (SSSC) Active objects Working Group (Lead: Mike Kelley): broadly consisting of all categories of activity in the minor planet populations: short period comets, long period comets, main belt comets, impact- or rotationally- generated active asteroids,etc Community software/infrastructure development Working Group (Lead: Henry Hsieh ): broadly consisting of people interested in helping David Trilling & Meg Schwamb build databases, software packages, etc to be used by the Solar System SSSC Co-Chairs community on LSST data Inner Solar System Working Group (Lead: Cristina Thomas): broadly consisting of the main belt, Mars/Jupiter Trojans, and Jupiter irregular satellites www.lsstsssc.org NEOs (Near Earth Objects) and Interstellar Objects Working Group (Lead: Steve Chesley): broadly consisting of objects on orbits inward of or diffusing inward from the main belt as well as interstellar objects temporarily residing in the Solar System Outer Solar System Working Group (Lead: Darin Ragozzine and Matt Holman): broadly consisting of KBOs, Centaurs, Oort cloud, Wes Fraser Saturn/Neptune/Uranus Trojans, and Saturn/Neptune/Uranus irregular LSST: UK Solar System POC satellites Slide Credit: Mario Jurić It’s Really Coming! Science Operations Start in 2022 Next 3 years is the time to prepare! Slide Credit: LSST/AURA/LSSTC Slide Credit: Victor Krabbendam Expected LSST Yield ugrizy photometry Slide Credit: LSST Science book/Lynne Jones What is LSST project Providing Slide Credit: Mario Jurić See http://ls.st/Document-29545 What LSST Can Do finding new small body targets for future NASA mission (e.g. -
Project Pan-STARRS and the Outer Solar System
Project Pan-STARRS and the Outer Solar System David Jewitt Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 ABSTRACT Pan-STARRS, a funded project to repeatedly survey the entire visible sky to faint limiting magnitudes (mR ∼ 24), will have a substantial impact on the study of the Kuiper Belt and outer solar system. We briefly review the Pan- STARRS design philosophy and sketch some of the planetary science areas in which we expect this facility to make its mark. Pan-STARRS will find ∼20,000 Kuiper Belt Objects within the first year of operation and will obtain accurate astrometry for all of them on a weekly or faster cycle. We expect that it will revolutionise our knowledge of the contents and dynamical structure of the outer solar system. Subject headings: Surveys, Kuiper Belt, comets 1. Introduction to Pan-STARRS Project Pan-STARRS (short for Panoramic Survey Telescope and Rapid Response Sys- tem) is a collaboration between the University of Hawaii's Institute for Astronomy, the MIT Lincoln Laboratory, the Maui High Performance Computer Center, and Science Ap- plications International Corporation. The Principal Investigator for the project, for which funding started in the fall of 2002, is Nick Kaiser of the Institute for Astronomy. Operations should begin by 2007. The science objectives of Pan-STARRS span the full range from planetary to cosmolog- ical. The instrument will conduct a survey of the solar system that is staggering in power compared to anything yet attempted. A useful measure of the raw survey power, SP , of a telescope is given by AΩ SP = (1) θ2 where A [m2] is the collecting area of the telescope primary, Ω [deg2] is the solid angle that is imaged and θ [arcsec] is the full-width at half maximum (FWHM) of the images { 2 { produced by the telescope. -
Characterization of the Physical Properties of the ROSETTA Target Comet 67P/Churyumov-Gerasimenko
Characterization of the physical properties of the ROSETTA target comet 67P/Churyumov-Gerasimenko Von der Fakultät für Elektrotechnik, Informationstechnik, Physik der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr.rer.nat.) genehmigte Dissertation von Cecilia Tubiana aus Moncalieri/Italien Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar. 1. Referentin oder Referent: Prof. Dr. Jürgen Blum 2. Referentin oder Referent: Prof. Dr. Michael A’Hearn eingereicht am: 18 August 2008 mündliche Prüfung (Disputation) am: 30 Oktober 2008 ISBN 978-3-936586-89-3 Copernicus Publications 2008 http://publications.copernicus.org c Cecilia Tubiana Printed in Germany Contents Summary 7 1 Comets: introduction 11 1.1 Physical properties of cometary nuclei . 15 1.1.1 Size and shape of a cometary nucleus . 18 1.1.2 Rotational period of a cometary nucleus . 22 1.1.3 Albedo of cometary nuclei . 24 1.1.4 Bulk density of cometary nuclei . 25 1.1.5 Colors indices and spectra of the nucleus . 25 1.2 Dust trail and neck-line . 27 2 67P/Churyumov-Gerasimenko and the ESA’s ROSETTA mission 29 2.1 Discovery and orbital evolution . 29 2.2 Nucleus properties . 30 2.3 Annual light curve . 32 2.4 Gas and dust production . 32 2.5 Coma features, trail and neck-line . 35 2.6 ESA’s ROSETTA mission . 35 2.7 Motivations of the thesis . 39 3 Observing strategy and performance of the observations of 67P/C-G 41 3.1 Observations: strategy and preparation . -
Gudipati Keck Comet Physical and Chemical Composition of Comet
Present Understanding of Comet Nucleus Physical and Chemical Composition Murthy S. Gudipati Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Keck Study – Comet – June 5, 2017 Outline Comet – Physical Composition Comet - Chemical Composition Comet – History 2 Comet – Physical Composition Physical Composition of Comets 3 Comet Physical Composition Gas (Volatiles, now Super Volatiles) Dust (Silicate Grains) Water (in the form of Ice – major component) The Elephant in the Room: How these three components are put together in a comet’s nucleus? 4 Porosity Science, 349, aab0639, 2015 Dust/Ice = 0.4 – 2.6 Porosity = 75 -85% Enrichment of Dust Regions and vice versa? Dust = Carbonaceous Chondrites (high percentages of water & organics; silicates, oxides, sulfides, olivine, serpentine, etc.) 5 Density Icarus 277 (2016) 257–278 Density = 532 ± 7 kg m−3 Crystalline water-ice = 920 kg m−3 Amorphous water-ice = ~500 - 800 kg m−3 Carbonaceous chondrites = ~3 to 3.7 kg m−3 6 Thermal Inertia Science, 349, aab0464, 2015 Thermal Inertia:85±35 J m-2K-1s-1/2 Thermal gradient? How Deep to reach <30 K? 7 Surface Science, 349, aaa9816, 2015 ~20 cm granular (soft) Below hard crust How thick is the crust – cm range or m range? 8 Simultaneous UV & IR Absorption + Fluorescence Pyrene in H2O Ice UV - PAH IR - Ice Flu - PAH Lignell & Gudipati J. Phys. Chem A. 119 (2015) 2607 9 Are Comets Like Deep Fried Ice Cream? ~0.1 m Comet CG/67P Lignell & Gudipati J. Phys. Chem A. 119 (2015) 2607 10 Comet – Chemical Composition Chemical Composition of Comets 11 Composition of Interstellar Medium At 1 atm. -
Symposium on Telescope Science
Proceedings for the 26th Annual Conference of the Society for Astronomical Sciences Symposium on Telescope Science Editors: Brian D. Warner Jerry Foote David A. Kenyon Dale Mais May 22-24, 2007 Northwoods Resort, Big Bear Lake, CA Reprints of Papers Distribution of reprints of papers by any author of a given paper, either before or after the publication of the proceedings is allowed under the following guidelines. 1. The copyright remains with the author(s). 2. Under no circumstances may anyone other than the author(s) of a paper distribute a reprint without the express written permission of all author(s) of the paper. 3. Limited excerpts may be used in a review of the reprint as long as the inclusion of the excerpts is NOT used to make or imply an endorsement by the Society for Astronomical Sciences of any product or service. Notice The preceding “Reprint of Papers” supersedes the one that appeared in the original print version Disclaimer The acceptance of a paper for the SAS proceedings can not be used to imply or infer an endorsement by the Society for Astronomical Sciences of any product, service, or method mentioned in the paper. Published by the Society for Astronomical Sciences, Inc. First printed: May 2007 ISBN: 0-9714693-6-9 Table of Contents Table of Contents PREFACE 7 CONFERENCE SPONSORS 9 Submitted Papers THE OLIN EGGEN PROJECT ARNE HENDEN 13 AMATEUR AND PROFESSIONAL ASTRONOMER COLLABORATION EXOPLANET RESEARCH PROGRAMS AND TECHNIQUES RON BISSINGER 17 EXOPLANET OBSERVING TIPS BRUCE L. GARY 23 STUDY OF CEPHEID VARIABLES AS A JOINT SPECTROSCOPY PROJECT THOMAS C.