Mathematical Modeling and Ordinary Differential Equations

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Modeling and Ordinary Differential Equations MATHEMATICAL MODELING AND ORDINARY DIFFERENTIAL EQUATIONS I-Liang Chern Department of Mathematics National Taiwan University 2007, 2015 January 6, 2016 2 Contents 1 First-Order Single Differential Equations 1 1.1 What is mathematical modeling? . .1 1.2 Relaxation and Equilibria . .2 1.3 Modeling population dynamics of single species . .6 1.4 Techniques to solve single first-order equations . 17 1.4.1 Linear first-order equation . 17 1.4.2 Separation of variables . 20 1.4.3 Other special classes that are solvable . 21 1.5 Vector Fields and Family of Curves . 22 1.5.1 Vector Fields . 22 1.5.2 Family of curves and Orthogonal trajectories . 27 1.5.3 *Envelop. 29 1.5.4 *An example from thermodynamics – existence of entropy . 31 1.6 Existence and Uniqueness . 33 1.7 *Numerical Methods: First Order Difference Equations . 37 1.7.1 Euler method . 37 1.7.2 First-order difference equation . 38 1.8 Historical Note . 39 2 Second Order Linear Equations 41 2.1 Models for linear oscillators . 41 2.1.1 The spring-mass system . 41 2.1.2 Electric circuit system . 42 2.2 Methods to solve homogeneous equations . 43 2.2.1 Homogeneous equations (complex case) . 43 2.2.2 Homogeneous equation (real case) . 45 2.3 Methods to solve Inhomogeneous equations . 47 2.3.1 Method of underdetermined coefficients . 48 2.3.2 Method of Variation of Constants . 49 2.4 Linear oscillators . 52 2.4.1 Harmonic oscillators . 52 2.4.2 Damping . 53 3 4 CONTENTS 2.4.3 Forcing and Resonance . 54 2.5 2 × 2 linear systems . 57 2.5.1 Independence and Wronskian . 58 2.5.2 Finding the fundamental solutions and Phase Portrait . 60 3 Nonlinear systems in two dimensions 71 3.1 Three kinds of physical models . 71 3.1.1 Lotka-Volterra system . 71 3.1.2 Conservative mechanical system . 72 3.1.3 Dissipative systems . 73 3.2 Autonomous systems . 74 3.3 Equilibria and linearization . 75 3.3.1 Hyperbolic equilibria . 75 3.3.2 The equilibria in the competition model . 79 3.4 Phase plane analysis . 81 3.5 Periodic solutions . 85 3.5.1 Predator-Prey system . 85 3.5.2 van der Pol oscillator . 86 3.6 Heteroclinic and Homoclinic and orbits . 87 4 Linear Systems with Constant Coefficients 93 4.1 Initial value problems for n × n linear systems . 93 4.2 Physical Models . 93 4.2.1 Coupled spring-mass systems . 93 4.2.2 Coupled Circuit Systems . 95 4.3 Linearity and solution space . 97 4.4 Decouping the systems . 99 4.4.1 Linear systems in three dimensions . 99 4.4.2 Rotation in three dimensions . 100 4.4.3 Decoupling the spring-mass systems . 102 4.5 Jordan canonical form . 104 4.5.1 Jordan matrix . 104 4.5.2 Outline of Spectral Theory . 109 4.6 Fundamental Matrices and exp(tA) ......................... 112 4.6.1 Fundamental matrices . 112 4.6.2 Computing exp(A) ............................. 112 4.6.3 Linear Stability Analysis . 117 4.7 Non-homogeneous Linear Systems . 118 5 Methods of Laplace Transforms 121 5.1 Laplace transform . 121 5.1.1 Examples . 122 5.1.2 Properties of Laplace transform . 123 CONTENTS 5 5.2 Laplace transform for differential equations . 125 5.2.1 General linear equations with constant coefficients . 125 5.2.2 Laplace transform applied to differential equations . 126 5.2.3 Generalized functions and Delta function . 129 5.2.4 Green’s function . 131 6 Calculus of Variations 135 6.1 A short story about Calculus of Variations . 135 6.2 Problems from Geometry . 135 6.3 Euler-Lagrange Equation . 136 6.4 Problems from Mechanics . 139 6.5 Method of Lagrange Multiplier . 143 6.6 Examples . 146 6.6.1 The hanging rope problem . 146 6.6.2 Isoperimetric inequality . 147 6.6.3 The Brachistochrone . 149 6.6.4 Phase field model . 151 7 Examples of Nonlinear Systems 155 7.1 Hamiltonian systems . 155 7.1.1 Motivation . 155 7.1.2 Trajectories on Phase Plane . 157 7.1.3 Equilibria of a Hamiltonian system . 159 7.2 Gradient Flows . 161 7.3 Simple pendulum . 164 7.3.1 global structure of phase plane . 165 7.3.2 Period . 169 7.4 Cycloidal Pendulum – Tautochrone Problem . 169 7.4.1 The Tautochrone problem . 169 7.4.2 Construction of a cycloidal pendulum . 171 7.5 The orbits of planets and stars . 173 7.5.1 Centrally directed force and conservation of angular momentum . 173 7.6 General Hamiltonian flows . 180 7.6.1 Noether Theorem . 182 n 8 General Theory for ODE in R 183 8.1 Well-postness . 183 8.1.1 Local existence . 183 8.1.2 Uniqueness . 185 8.1.3 Continuous dependence on initial data . 186 8.1.4 A priori estimate and global existence . 188 8.2 Supplementary . 193 8.2.1 Uniform continuity . 193 CONTENTS 1 8.2.2 C(I) is a normed linear space . 194 8.2.3 C(I) is a complete space . 194 9 Stability Analysis 197 9.1 Introduction . 197 9.2 Damping systems . 198 9.3 Local stability . 201 9.4 Lyapunov function . 203 9.5 Poincare-Bendixson´ Theorem . ..
Recommended publications
  • 2.3: Modeling with Differential Equations Some General Comments: a Mathematical Model Is an Equation Or Set of Equations That Mi
    2.3: Modeling with Differential Equations Some General Comments: A mathematical model is an equation or set of equations that mimic the behavior of some phenomenon under certain assumptions/approximations. Phenomena that contain rates/change can often be modeled with differential equations. Disclaimer: In forming a mathematical model, we make various assumptions and simplifications. I am never going to claim that these models perfectly fit physical reality. But mathematical modeling is a key component of the following scientific method: 1. We make assumptions (a hypothesis) and form a model. 2. We mathematically analyze the model. (For differential equations, these are the techniques we are learning this quarter). 3. If the model fits the phenomena well, then we have evidence that the assumptions of the model might be valid. If the model fits the phenomena poorly, then we learn that some of our assumptions are invalid (so we still learn something). Concerning this course: I am not expecting you to be an expect in forming mathematical models. For this course and on exams, I expect that: 1. You understand how to do all the homework! If I give you a problem on the exam that is very similar to a homework problem, you must be prepared to show your understanding. 2. Be able to translate a basic statement involving rates and language like in the homework. See my previous posting on applications for practice (and see homework from 1.1, 2.3, 2.5 and throughout the other assignments). 3. If I give an application on an exam that is completely new and involves language unlike homework, then I will give you the differential equation (you won’t have to make up a new model).
    [Show full text]
  • An Introduction to Mathematical Modelling
    An Introduction to Mathematical Modelling Glenn Marion, Bioinformatics and Statistics Scotland Given 2008 by Daniel Lawson and Glenn Marion 2008 Contents 1 Introduction 1 1.1 Whatismathematicalmodelling?. .......... 1 1.2 Whatobjectivescanmodellingachieve? . ............ 1 1.3 Classificationsofmodels . ......... 1 1.4 Stagesofmodelling............................... ....... 2 2 Building models 4 2.1 Gettingstarted .................................. ...... 4 2.2 Systemsanalysis ................................. ...... 4 2.2.1 Makingassumptions ............................. .... 4 2.2.2 Flowdiagrams .................................. 6 2.3 Choosingmathematicalequations. ........... 7 2.3.1 Equationsfromtheliterature . ........ 7 2.3.2 Analogiesfromphysics. ...... 8 2.3.3 Dataexploration ............................... .... 8 2.4 Solvingequations................................ ....... 9 2.4.1 Analytically.................................. .... 9 2.4.2 Numerically................................... 10 3 Studying models 12 3.1 Dimensionlessform............................... ....... 12 3.2 Asymptoticbehaviour ............................. ....... 12 3.3 Sensitivityanalysis . ......... 14 3.4 Modellingmodeloutput . ....... 16 4 Testing models 18 4.1 Testingtheassumptions . ........ 18 4.2 Modelstructure.................................. ...... 18 i 4.3 Predictionofpreviouslyunuseddata . ............ 18 4.3.1 Reasonsforpredictionerrors . ........ 20 4.4 Estimatingmodelparameters . ......... 20 4.5 Comparingtwomodelsforthesamesystem . .........
    [Show full text]
  • Lecture Notes1 Mathematical Ecnomics
    Lecture Notes1 Mathematical Ecnomics Guoqiang TIAN Department of Economics Texas A&M University College Station, Texas 77843 ([email protected]) This version: August, 2020 1The most materials of this lecture notes are drawn from Chiang’s classic textbook Fundamental Methods of Mathematical Economics, which are used for my teaching and con- venience of my students in class. Please not distribute it to any others. Contents 1 The Nature of Mathematical Economics 1 1.1 Economics and Mathematical Economics . 1 1.2 Advantages of Mathematical Approach . 3 2 Economic Models 5 2.1 Ingredients of a Mathematical Model . 5 2.2 The Real-Number System . 5 2.3 The Concept of Sets . 6 2.4 Relations and Functions . 9 2.5 Types of Function . 11 2.6 Functions of Two or More Independent Variables . 12 2.7 Levels of Generality . 13 3 Equilibrium Analysis in Economics 15 3.1 The Meaning of Equilibrium . 15 3.2 Partial Market Equilibrium - A Linear Model . 16 3.3 Partial Market Equilibrium - A Nonlinear Model . 18 3.4 General Market Equilibrium . 19 3.5 Equilibrium in National-Income Analysis . 23 4 Linear Models and Matrix Algebra 25 4.1 Matrix and Vectors . 26 i ii CONTENTS 4.2 Matrix Operations . 29 4.3 Linear Dependance of Vectors . 32 4.4 Commutative, Associative, and Distributive Laws . 33 4.5 Identity Matrices and Null Matrices . 34 4.6 Transposes and Inverses . 36 5 Linear Models and Matrix Algebra (Continued) 41 5.1 Conditions for Nonsingularity of a Matrix . 41 5.2 Test of Nonsingularity by Use of Determinant .
    [Show full text]
  • Limitations on the Use of Mathematical Models in Transportation Policy Analysis
    Limitations on the Use of Mathematical Models in Transportation Policy Analysis ABSTRACT: Government agencies are using many kinds of mathematical models to forecast the effects of proposed government policies. Some models are useful; others are not; all have limitations. While modeling can contribute to effective policyma king, it can con tribute to poor decision-ma king if policymakers cannot assess the quality of a given application. This paper describes models designed for use in policy analyses relating to the automotive transportation system, discusses limitations of these models, and poses questions policymakers should ask about a model to be sure its use is appropriate. Introduction Mathematical modeling of real-world use in analyzing the medium and long-range ef- systems has increased significantly in the past fects of federal policy decisions. A few of them two decades. Computerized simulations of have been applied in federal deliberations con- physical and socioeconomic systems have cerning policies relating to energy conserva- proliferated as federal agencies have funded tion, environmental pollution, automotive the development and use of such models. A safety, and other complex issues. The use of National Science Foundation study established mathematical models in policy analyses re- that between 1966 and 1973 federal agencies quires that policymakers obtain sufficient infor- other than the Department of Defense sup- mation on the models (e-g., their structure, ported or used more than 650 models limitations, relative reliability of output) to make developed at a cost estimated at $100 million informed judgments concerning the value of (Fromm, Hamilton, and Hamilton 1974). Many the forecasts the models produce.
    [Show full text]
  • Chapter 8 Nonlinear Systems
    Chapter 8 Nonlinear systems 8.1 Linearization, critical points, and equilibria Note: 1 lecture, §6.1–§6.2 in [EP], §9.2–§9.3 in [BD] Except for a few brief detours in chapter 1, we considered mostly linear equations. Linear equations suffice in many applications, but in reality most phenomena require nonlinear equations. Nonlinear equations, however, are notoriously more difficult to understand than linear ones, and many strange new phenomena appear when we allow our equations to be nonlinear. Not to worry, we did not waste all this time studying linear equations. Nonlinear equations can often be approximated by linear ones if we only need a solution “locally,” for example, only for a short period of time, or only for certain parameters. Understanding linear equations can also give us qualitative understanding about a more general nonlinear problem. The idea is similar to what you did in calculus in trying to approximate a function by a line with the right slope. In § 2.4 we looked at the pendulum of length L. The goal was to solve for the angle θ(t) as a function of the time t. The equation for the setup is the nonlinear equation L g θ�� + sinθ=0. θ L Instead of solving this equation, we solved the rather easier linear equation g θ�� + θ=0. L While the solution to the linear equation is not exactly what we were looking for, it is rather close to the original, as long as the angleθ is small and the time period involved is short. You might ask: Why don’t we just solve the nonlinear problem? Well, it might be very difficult, impractical, or impossible to solve analytically, depending on the equation in question.
    [Show full text]
  • Introduction to Mathematical Modeling Difference Equations, Differential Equations, & Linear Algebra (The First Course of a Two-Semester Sequence)
    Introduction to Mathematical Modeling Difference Equations, Differential Equations, & Linear Algebra (The First Course of a Two-Semester Sequence) Dr. Eric R. Sullivan [email protected] Department of Mathematics Carroll College, Helena, MT Content Last Updated: January 8, 2018 1 ©Eric Sullivan. Some Rights Reserved. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. You may copy, distribute, display, remix, rework, and per- form this copyrighted work, but only if you give credit to Eric Sullivan, and all deriva- tive works based upon it must be published under the Creative Commons Attribution- NonCommercial-Share Alike 4.0 United States License. Please attribute this work to Eric Sullivan, Mathematics Faculty at Carroll College, [email protected]. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, Cali- fornia, 94105, USA. Contents 0 To the Student and the Instructor5 0.1 An Inquiry Based Approach...........................5 0.2 Online Texts and Other Resources........................7 0.3 To the Instructor..................................7 1 Fundamental Notions from Calculus9 1.1 Sections from Active Calculus..........................9 1.2 Modeling Explorations with Calculus...................... 10 2 An Introduction to Linear Algebra 16 2.1 Why Linear Algebra?............................... 16 2.2 Matrix Operations and Gaussian Elimination................. 20 2.3 Gaussian Elimination: A First Look At Solving Systems........... 23 2.4 Systems of Linear Equations........................... 28 2.5 Linear Combinations............................... 35 2.6 Inverses and Determinants............................ 38 2.6.1 Inverses................................... 40 2.6.2 Determinants..............................
    [Show full text]
  • What Is Game Theory Trying to Accomplish?
    1 What Is Game Theory Trying to Accomplish? 1 Introduction The language of game theory—coalitions, payo¤s, markets, votes— suggests that it is not a branch of abstract mathematics; that it is moti- vated by and related to the world around us; and that it should be able to tell us something about that world. Most of us have long realized that game theory and the ‘‘real world’’ (it might better be called the complex world) have a relationship that is not entirely comfortable; that it is not clear just what it is that we are trying to do when we build a game- theoretic model and then apply solution concepts to it. This is the subject I would like to explore in this paper. I might add that much the same questions apply to economic theory, at least the kind that those of us working in mathematical economics see most often; and that much of my paper will apply, mutatis mutandis, to economic theory as well. There is a branch of philosophy that deals with theory in the social sciences, so some of the things I have to say are unquestionably old hat. But I am not trying to be particularly original: I am only trying to open this topic, which I think concerns all of us, for discussion, and to suggest a particu- lar point of view. No doubt others have thought about these questions more thoroughly and deeply than I have, and are better versed in the history and philosophy of science in general. I will be grateful to anybody who sets me straight when I err, and who gives me references for the things I get right.
    [Show full text]
  • A Short Introduction to Game Theory
    A Short Introduction to Game Theory Heiko Hotz CONTENTS 1 Contents 1 Introduction 2 1.1 Game Theory – What is it? . 2 1.2 Game Theory – Where is it applied? . 2 2 Definitions 3 2.1 Normal Form Games . 3 2.2 Extensive Form Games . 3 2.3 Nash Equilibrium . 4 2.3.1 Best Response . 4 2.3.2 Localizing a Nash Equilibrium in a Payoff-matrix . 4 2.4 Mixed Strategies . 5 3 Games 5 3.1 Prisoner’s Dilemma (PD) . 5 3.1.1 Other Interesting Two-person Games . 6 3.2 The Ultimatum Game . 7 3.3 Public Good Game . 7 3.4 Rock, Paper, Scissors . 8 4 Evolutionary Game Theory 8 4.1 Why EGT? . 8 4.2 Evolutionary Stable Strategies . 9 4.2.1 ESS and Nash Equilibrium . 9 4.2.2 The Hawk-Dove Game . 9 4.2.3 ESS of the Hawk-Dove Game . 10 4.3 The Replicator Dynamics . 11 4.4 ESS and Replicator Dynamics . 11 5 Applications 12 5.1 Evolution of cooperation . 12 5.2 Biodiversity . 12 A Mathematical Derivation 14 A.1 Normal form games . 14 A.2 Nash equilibrium and best answer . 14 A.3 Evolutionary stable strategies (ESS) . 14 A.4 Replicator equation . 15 A.5 Evolutionary stable state of the Hawk-Dove game . 15 B Pogram Code 17 B.1 Spatial PD . 17 B.2 Hawk-Dove game . 19 1 INTRODUCTION 2 1 Introduction This description leads to a widespred definition of game theory: This paper gives a brief overview of game theory. Therefore in the first section I The subject of game theory want to outline what game theory gener- are situations, where the re- ally is and where it is applied.
    [Show full text]
  • Mathematical Model of Gravitational and Electrostatic Forces
    Mathematical Model of Gravitational and Electrostatic Forces Alexei Krouglov Email: [email protected] ABSTRACT Author presents mathematical model for acting-on-a-distance attractive and repulsive forces based on propagation of energy waves that produces Newton expression for gravitational and Coulomb expression for electrostatic forces. Model uses mathematical observation that difference between two inverse exponential functions of the distance asymptotically converges to function proportional to reciprocal of distance squared. Keywords: Gravitational Force; Electrostatic Force; Field Theory 2 1. Introduction Author described his Dual Time-Space Model of Wave Propagation in work [2]. He tries to express physical phenomena based only on concept of energy. Model asserts that when at some point in space and in time local energy value is different from global energy level in surrounding area, energy disturbance is created at this point. Energy disturbance propagates both in time and in space as energy wave, and oscillates. Author used the model to describe both propagation of energy waves in physics [3] – [5] and fluctuations of demand and supply in economics [6], [7]. Author presented in [3] mathematical model for attractive and repulsive forces that demonstrated how gravitational and electrostatic forces are created on a distance based on instrument of Dual Time-Space Model of Wave Propagation. However paper [3] didn’t explain one important point. It described forces acting on a distance as being proportional to inverse exponential function of distance. Lately author realized that difference between two inverse exponential functions of distance is asymptotically converging to function that is proportional to reciprocal of distance squared. Thus result provided by the model is in agreement with experimentally obtained formulas for forces acting on a distance such as gravitational and electrostatic forces.
    [Show full text]
  • What Is Mathematical Modeling?
    1 What Is Mathematical Modeling? We begin this book with a dictionary definition of the word model: model (n): a miniature representation of something; a pattern of some- thing to be made; an example for imitation or emulation; a description or analogy used to help visualize something (e.g., an atom) that cannot be dir- ectly observed; a system of postulates, data and inferences presented as a mathematical description of an entity or state of affairs This definition suggests that modeling is an activity, a cognitive activity in which we think about and make models to describe how devices or objects of interest behave. There are many ways in which devices and behaviors can be described. We can use words, drawings or sketches, physical models, computer pro- grams, or mathematical formulas. In other words, the modeling activity can be done in several languages, often simultaneously. Since we are par- ticularly interested in using the language of mathematics to make models, 3 4 Chapter 1 What Is Mathematical Modeling? we will refine the definition just given: mathematical model (n): a representation in mathematical terms of the behavior of real devices and objects We want to know how to make or generate mathematical representations or models, how to validate them, how to use them, and how and when their use is limited. But before delving into these important issues, it is worth talking about why we do mathematical modeling. 1.1 WhyDo We Do Mathematical Modeling? Since the modeling of devices and phenomena is essential to both engi- neering and science, engineers and scientists have very practical reasons for doing mathematical modeling.
    [Show full text]
  • Mathematical Modeling of Control Systems
    OGATA-CH02-013-062hr 7/14/09 1:51 PM Page 13 2 Mathematical Modeling of Control Systems 2–1 INTRODUCTION In studying control systems the reader must be able to model dynamic systems in math- ematical terms and analyze their dynamic characteristics.A mathematical model of a dy- namic system is defined as a set of equations that represents the dynamics of the system accurately, or at least fairly well. Note that a mathematical model is not unique to a given system.A system may be represented in many different ways and, therefore, may have many mathematical models, depending on one’s perspective. The dynamics of many systems, whether they are mechanical, electrical, thermal, economic, biological, and so on, may be described in terms of differential equations. Such differential equations may be obtained by using physical laws governing a partic- ular system—for example, Newton’s laws for mechanical systems and Kirchhoff’s laws for electrical systems. We must always keep in mind that deriving reasonable mathe- matical models is the most important part of the entire analysis of control systems. Throughout this book we assume that the principle of causality applies to the systems considered.This means that the current output of the system (the output at time t=0) depends on the past input (the input for t<0) but does not depend on the future input (the input for t>0). Mathematical Models. Mathematical models may assume many different forms. Depending on the particular system and the particular circumstances, one mathemati- cal model may be better suited than other models.
    [Show full text]
  • Basic Concepts and Approaches*
    Educational Sciences: Theory & Practice • 14(4) • 1621-1627 ©2014 Educational Consultancy and Research Center www.edam.com.tr/estp DOI: 10.12738/estp.2014.4.2039 Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches* Ayhan Kürşat ERBAŞa Mahmut KERTİLb Middle East Technical University Marmara University Bülent ÇETİNKAYAc Erdinç ÇAKIROĞLUd Middle East Technical University Middle East Technical University Cengiz ALACACIe Sinem BAŞf İstanbul Medeniyet University İstanbul Aydın University Abstract Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and learning mathematics in terms of definitions of models and modeling, the theoretical backgrounds of modeling, and the nature of questions used in teaching modeling. This study focuses on two issues. The first section attempts to develop a unified perspective about mathematical modeling. The second section analyzes and discusses two approaches to the use of modeling in mathematics education, namely modeling as a means of teaching mathematics and modeling as an aim of teaching mathematics. Keywords Mathematics Education, Mathematical Model, Mathematical Modeling, Problem Solving. * Work reported here is based on a research project supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under grant number 110K250. Opinions expressed are those of the authors and do not necessarily represent those of TUBITAK. Ayhan Kursat Erbas is supported by the Turkish Academy of Sciences through the Young Scientist Award Program (A.K.E./TÜBA-GEBİP/2012-11).
    [Show full text]