Mastering Skills
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sailing in Heavy Weather
SAILING IN HEAVY WEATHER John Jourdane As the wind increases you need to reduce sail area the keep the boat under control Why we need smaller sails as the wind builds Think of a weather vane Keep the helm balanced Pac Cup Rules – Heavy Air Sails 1. Mainsail – must be able to reduce luff length by 10% 2. Boat shall carry at least 2 of the following 3 sails: a. A trysail with sail numbers on both sides, which can be set independently of the boom, has an area less than 17.5% of E x P, and which is capable of being attached to the mast. Sails newer than 1/1/2014 must be constructed of highly visible material. b. A storm jib with an alternate means of attachment to the headstay, if the head foil fails, and highly visible material c. A heavy-weather jib of area not greater than 13.5% of the foretriangle squared. The North Pacific High As the wind increases Go to progressively smaller jibs Reef the mainsail Put more reefs in the main Put up the storm jib or storm staysail Deep-reefed main alone Storm trysail and storm jib or storm staysail Heave to with trysail and storm jib or storm staysail Storm trysail or storm staysail alone Reefed Main and Small Jib Storm Sails Should be purpose-built for your boat Need to be made from heavy material to withstand the beating a storm can produce Storm Jib Gale Sail Gale Sail Gale Sail Storm Staysail Storm Jib Stow the storm jib in it’s own bag in an easily accessible place. -
Wooden Boat Building
WOODEN BOAT BUILDING Since 1978, students in the Wooden Boat Building Program at The Landing School have learned to create boats from scratch, producing functional art from plans created by professional yacht designers. As a program graduate, you will perfect skills that range from woodworking and composite fabrication to installing the latest marine systems – equipping you to start your own shop, build your own boat, crew a ship or become a master artisan. Study subjects include: How You’ll Learn Joinery & Refitting Your classwork will combine formal lectures and field trips with hands-on Modern Boat Building projects. Students are assigned to boat-specific teams, working together Techniques: Cold Molding Rigging under highly experienced instructors to learn quality and efficiency in every step of boat construction: lofting, setup, planking, fairing, joinery, spars, Professional Shop Practices rigging, finish work and, ultimately, sea trials. Proper Training in Boat projects are selected not only to match the interests of each team, but Modern & Traditional Tools to teach skills currently in demand within the marine industry. Typical builds include mid-sized boats such as the Flyfisher 22 powerboat, or a sailboat Traditional Boat Building such as the Haven 12½. To round out your skills, you may also construct Techniques: elements of smaller boats, such as a Peapod or Catspaw. Lapstrake Planking Visit us online at landingschool.edu Earning Your Diploma or Degree Additional occupations include: To earn a diploma in the Wooden Boat Building Program, you must attend The Landing School full time for two semesters (about eight months) and Boat Crewing meet all graduation criteria. -
Sailing Skills & Seamanship
Sailing Skills & Seamanship - Course Description The U.S. Coast Guard Auxiliary's Sailing Skills and Seamanship Course (SS&S) is a comprehensive course designed for both experienced and novice sailboat operators. The course, now in its 6 th edition that was published in 2008, is divided into parts: 10 core requirement two-to four-hour lessons plus 6 elective lessons that will enhance the skills required for a safe voyage in all conditions. These courses can be taught in addition to the core courses. TOPICS INCLUDE About Sailboats - Language of the sea; components of a sailboat; standing and running rigging; sails; types of sailboats; boat building materials; guidance on selecting and purchasing a boat. How A Boat Sails - Reading the wind; points of sailing, running, close hauled, reaching, sail shape; sail adjustments; when the wind picks up. Basic Sailboat Maneuvering - Tacking; jibbing; sailing a course; stability and angle of heel; knowing your boat. Rigging And Boat Handling - Stepping the mast; making sail; hoisting the sails; leaving the dock; mooring; controlling the sails; anchoring; weighing anchor. Equipment For Your Boat - Requirements for your boat; your boat's equipment; legal considerations. Trailering Your Sailboat - Legal considerations; practical considerations; selecting your trailer; the towing vehicle; handling your trailer; pre-departure checks; launching; retrieving; raising the mast; storing your boat and trailer; theft prevention; aquatic nuisance species; float plan. Your Highway Signs - Protection of ATONS; buoyage -
Cajune Boats Podcast Transcript Otter.Ai
Cajune Boats Podcast Transcript Sat, 2/13 8:21AM 1:02:09 SUMMARY KEYWORDS boat, building, drift, fiberglass, river, dory, flip, wooden boat, big, bottom, panel, frames, design, skiff, fiberglass boats, plywood, advantages, feet, recurve, materials SPEAKERS Dave S, Jason, unknown speaker.... J Jason 00:01 And so I want something with some lower sides but the oarlocks have to be high. And I thought, you know, I think I can do this in a really aesthetic way and curved these sides and instead of having like a straight raised or lock, because at the time people had low sided boats with that raised or locked but it was just kind of a blocky affair. And so I built that first boat with for john and call it the recurve. And from there it was, it's been almost the only hole that I make anymore. Dave S 00:32 That was Jason cajon sharing the recurve story, a feature that has helped him stand out from the crowd. This and how he flipped over a drift boat and whitewater today on the wet fly swing fly fishing show. U unknown speaker.... 00:46 Welcome to the wet fly swing fly fishing show where you discover tips, tricks and tools from the leading names in fly fishing. Today, we'll help you on your fly fishing journey with classic stories covering steelhead fishing, fly tying and much more. Cajune Boats Podcast Transcript Page 1 of 26 Transcribed by https://otter.ai Dave S 01:02 Hey, how's it going today? Thanks for stopping by the fly fishing show. -
The Sharpie –A Personal View 2009
The Sharpie –A Personal View 2009 THE SHARPIE - A PERSONAL VIEW BY MIKE WALLER This article was originally published in Australian Amateur Boat Builder Magazine * * * * * To say that all flat bottomed boats are Sharpies is to say that all animals with four legs are horses. The statement simply does not hold water. It is true that most sharpies have flat bottoms, but the Sharpie is a unique design style which evolved over a specific period of history to fill a particular need, and to which certain well defined rules of design apply. The initial statement also denies the individuality of a multitude of other distinct hull ‘types’ such as the many and varied dory hull forms, skiffs, punts and hunting boats, and ‘near flat bottomed’ boats such as skipjacks, (not all Sharpies have absolutely flat bottoms, for that matter,) which developed in tandem with the Sharpie. A common misconception is that the Sharpie originated in Europe. It is true that many flat bottomed boats have existed in Europe over the years, notably the ‘Metre Sharpies’, but to say that the Sharpie evolved in Europe would make such great figures as Howard Chapelle, the well known maritime historian, turn in his grave. While there will always be differing opinions, the accepted history of the traditional Sharpie as we know it, is that it evolved on the eastern seaboard of the United States of America in the Oyster fisheries of Connecticut. It is largely down to the efforts of Howard Chapelle, who spent a lifetime documenting the development of the simple working boats of the United States, that we can credit most of our current knowledge of the rules and characteristics which define the traditional Sharpie as a distinct vessel style. -
Addendum to CORNISH-WINDSOR BRIDGE HAER No. NH-8 (Page 1)
Addendum to CORNISH-WINDSOR BRIDGE HAER No. NH-8 (Page 1) Introduction The Cornish-Windsor Bridge, the longest surviving covered bridge in the United States and the longest two-span covered bridge in the world, is a rare example of the notched squared timber Town lattice truss design.1 Built in 1866, it is listed on the National Register of Historic Places, and the American Society of Civil Engineers designated it as a National Historic Civil Engineering Landmark in 1970. One of the objectives of this study was to review and summarize the technical bibliography published about Cornish-Windsor Bridge. Since the bridge has an extraordinary span, its history includes a series of reinforcement, rehabilitation, and preservation issues that are worthy of study. The notched squared timber Town lattice truss is important as it represents a specific solution and modification to a known design to achieve a high load-bearing capacity and a high degree of stiffness, or rigidity, in a long structure. Notched squared timber Town lattice trusses, patented by Ithiel Town in 1839, represent a compromise-based solution by including fitted joints in the lattice. The most frequently cited advantage of the Town lattice trusses was that they did not need specialized carpentry work. Replacing overlapped planks and treenail joints with large-section lumber and notched joints meant that this criterion was not totally respected, though scarf (notched) joints–even if the members met at angles other than 90 degrees–were one of the simplest carpentry joints to make. The early development of wooden truss bridges and a general description of the major types, including the Town lattice truss, has been presented in detail in the history report for this bridge, and in materials listed in the bibliography, so they will not be repeated herein.2 The principal objectives of this study were: • to summarize technical information on notched squared timber Town lattice trusses generally and on Cornish-Windsor Bridge in particular. -
December 2007 Crew Journal of the Barque James Craig
December 2007 Crew journal of the barque James Craig Full & By December 2007 Full & By The crew journal of the barque James Craig http://www.australianheritagefleet.com.au/JCraig/JCraig.html Compiled by Peter Davey [email protected] Production and photos by John Spiers All crew and others associated with the James Craig are very welcome to submit material. The opinions expressed in this journal may not necessarily be the viewpoint of the Sydney Maritime Museum, the Sydney Heritage Fleet or the crew of the James Craig or its officers. 2 December 2007 Full & By APEC parade of sail - Windeward Bound, New Endeavour, James Craig, Endeavour replica, One and All Full & By December 2007 December 2007 Full & By Full & By December 2007 December 2007 Full & By Full & By December 2007 7 Radio procedures on James Craig adio procedures being used onboard discomfort. Effective communication Rare from professional to appalling relies on message being concise and clear. - mostly on the appalling side. The radio Consider carefully what is to be said before intercoms are not mobile phones. beginning to transmit. Other operators may The ship, and the ship’s company are be waiting to use the network. judged by our appearance and our radio procedures. Remember you may have Some standard words and phases. to justify your transmission to a marine Affirm - Yes, or correct, or that is cor- court of inquiry. All radio transmissions rect. or I agree on VHF Port working frequencies are Negative - No, or this is incorrect or monitored and tape recorded by the Port Permission not granted. -
Period Homes Magazine – Frame of Reference
One of these drivers is the choice of One way to control costs is to design a wood species. Choosing oak over mahog- hybrid frame that utilizes timber fram- any would dramatically reduce materials ing in the highly visibility areas and uses costs but may not achieve the desired look. stick framing or SIPS construction in the During the design process the team should remainder of the spaces. Often timber- review the characteristics of various species framed great rooms and front porches and tour several timber frames before se- are clad with and then married to SIPS lecting the species. construction. As discussed above, SIPS Another cost driver is the quality of provide structural support. Additionally, the wood, whether green (freshly felled), because of their design, they can be used kiln dried or reclaimed. Each of these can as structural building members, so whole markedly affect the price of the frame, with buildings can be constructed of SIPS. green wood typically the least expensive Another hybrid technique is to include and reclaimed wood the most expensive. A trusses in the design that are supported rule of thumb is that the drier the wood, by SIPS or stick-framed walls. It should the more stable, hence less checking and be recognized though that trusses can be tighter joints over time. These issues rarely structural or decorative, but the cost for have a structural impact on the frame and each will be about the same so they might are usually aesthetic choices. Requiring as well earn their keep. certified woods (Forest Stewardship Coun- In conclusion, timber framing is not only cil certified) sometimes affects price and one of the oldest construction techniques availability of certain species and should known to man, it is also among the most be reviewed during the design process. -
Issue 1, Summer 1984, Page 6
Issue 1, Summer 1984, page 6: “The Aleut Baidarka” by George Dyson: History, Aleut, Baidarka Issue 1, Summer 1984, page 10: “Anatomy of a Baidarka” by David Zimmerly: History, Baidarka, Line drawing, Aleut Issue 1, Summer 1984, page 13: “Confessions of a Hedonist” by John Ince: Bathing, Beach tubs Issue 1, Summer 1984, page 14: “ Coastal Rewards” by Lee Moyer: Environment, Marine mammals, observation of, Food, Foraging, Low impact Issue 1, Summer 1984, page 16: “Taking Aim” Environment, British Columbia, Logging Issue 1, Summer 1984, page 20: “A Sobering Lesson” by Derek Hutchinson: Safety, Accident report, Britain Issue 1, Summer 1984, page 22: “What If?” by Matt Broze: Safety, Accident report, New Hampshire, British Columbia Issue 1, Summer 1984, page 26: “Northwest Passage” Journey, Northwest Territories Issue 1, Summer 1984, page 34: “ Baby Gray” by Art Hohl: Environment, Safety, Accident report, Marine mammals, Whale collision with kayak Issue 1, Summer 1984, page 37: “San Juans” by Steven Olsen: Destination, Washington, San Juan Islands Issue 1, Summer 1984, page 39: “Getting Started” by David Burch: Navigation, Basic equipment Issue 1, Summer 1984, page 41: “Tendonitis” by Rob Lloyd: Health, Tendonitis, Symptoms and treatment Issue 1, Summer 1984, page 45: “To Feather or Not to Feather” by John Dowd: Technique, Feathering paddles Issue 1, Summer 1984, page 46: “New on the Market” Equipment, Paddle float review Issue 2, Fall 1984, page 6: “Of Baidarkas, Whales and Poison Tipped Harpoons” by George Dyson: History, Aleut, Baidarkas -
Boatbuilding Materials for Small-Scale Fisheries in India
BAY OF BENGAL PROGRAMME BOBP/WP/9 Development of Small-Scale Fisheries (G CP/RAS/040/SWE) BOATBUILDING MATERIALS FOR BOBP/WP/9 SMALL-SCALE FISHERIES IN INDIA Executing Agency: Funding Agency: Food and Agriculture Organisation Swedish International of the United Nations Development Authority Development of Small-Scale Fisheries in the Bay of Bengal Madras, India, October 1980 PREFACE This paper summaries a study on the availability and prices of materials used to construct the hulls of fishing craft for the important small-scale fisheries of the East Coast of India. The paper should be of interest to development planners, legislators and administrators. Builders of fishing craft, suppliers of materials, and owners and prospective owners of fishing craft may also find useful the information on trends in prices and availability of boatbuilding materials and the possibilities of alternative materials. The study covered the following boatbuilding materials: timber for kattumarams and boats; fibre-reinforced plastics; ferrocement; steel; and aluminium, which is used forsheathing wooden hulls and is also a construction material in its own right. The study was carried out by Matsyasagar Consultancy Services Private Limited under contract to the Programme for the Development of Small-Scale Fisheries in the Bay of Bengal, GCP/ RAS/040/SWE (usually abbreviated to the Bay of Bengal Programme). The Programme is executed by the Food and Agriculture Organisation of the United Nations (FAO) and funded by the Swedish International Development Authority (SIDA). The main aims of the Bay of Bengal Programme are to develop and demonstrate technologies by which the conditions of small-scale fishermen and the supply of fish from the small-scale sector may be improved, in five of the countries bordering the Bay of Bengal — Bangladesh, India, Malaysia, Sri Lanka and Thailand. -
Utilization of Black Locust
UTILI"ATION OF BLAC"LOCUST B y "O H N B . ( Dru m Associ a te W ood Tech n o l o i st For est P r od u cts L a bor a tor Br a n ch o Res g , y, f ea r ch , For est S er vi ce CO NT ENT S o ) o t 9 c O Int r oduct io n H Utiliz ati on Th e t r ee M Insul at or pins Range M W agon hubs H a b it s an d gr owt h M T r eenails Repr oduction W Fence post s Annual cu t an d pr esent supply Q M ine t i mber s ‘ Cut ting an d mar keting O Poles Th e wood Q M inor uses Appear ance Q Summar y St r uct ur e G A ppendix Pr o per ties N Specifi cat i ons for insul at or pins Specifi cations for t r eenails I N T R O D UC T I O N Ro bi 'n i a seu d oacaci a " The wood of black locust , p , is used chie y for insulator pins , wagon hubs , treenails , fence posts , and mine F r . o timbers these uses it is admirable because of its hardness , A i s strength , and durability . valuable characteristic of the tree its rapid growth on many types of soils during the first 20 to 30 years of its life . This rapid growth and the extensive network of roots developed by black locust make it well suited fo r planting t o check erosion . -
Sea History$3.75 the Art, Literature, Adventure, Lore & Learning of the Sea
No. 109 NATIONAL MARITIME HISTORICAL SOCIETY WINTER 2004-2005 SEA HISTORY$3.75 THE ART, LITERATURE, ADVENTURE, LORE & LEARNING OF THE SEA THE AGE OF SAIL CONTINUES ON PICTON CASTLE Whaling Letters North Carolina Maritime Museum Rediscover the Colonial Periauger Sea History for Kids Carrying the Age of Sail Forward in the Barque Picton Castle by Captain Daniel D. Moreland oday the modern sailing school role of education, particularly maritime. ship is typically a sailing ship op- For example, in 1931 Denmark built the Terated by a charitable organization full-rigger Danmark as a merchant ma- whose mission is devoted to an academic rine school-ship which still sails in that or therapeutic program under sail, either role today. During this time, many other at sea or on coastwise passages. Her pro- maritime nations commissioned school gram uses the structure and environment ships for naval training as well, this time of the sailing ship to organize and lend without cargo and usually with significant themes to that structure and educational academic and often ambassadorial roles agenda. The goal, of course, being a fo- including most of the great classic sailing cused educational forum without neces- ships we see at tall ship events today. sarily being one of strictly maritime edu- These sailing ships became boot cation. Experiential education, leadership camps and colleges at sea. Those “trained training, personal growth, high school or in sail” were valued as problem solvers college credit, youth-at-risk, adjudicated and, perhaps more significantly, problem youth, science and oceanography as well preventers. They learned the wind and sea as professional maritime development are in a way not available to the denizens of often the focus of school ships.