Mouse Zfpm1 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Zfpm1 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Zfpm1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Zfpm1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Zfpm1 gene (NCBI Reference Sequence: NM_009569 ; Ensembl: ENSMUSG00000049577 ) is located on Mouse chromosome 8. 10 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 10 (Transcript: ENSMUST00000054052). Exon 4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Zfpm1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-93D6 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygous mutants have poorly vascularized yolk sacs and small, pale livers. Mutants die between embryonic days 10.5 and 12.5 with severe anemia associated with a block in megakaryocyte development. Exon 4 starts from about 10.52% of the coding region. The knockout of Exon 4 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 16058 bp, and the size of intron 4 for 3'-loxP site insertion: 8256 bp. The size of effective cKO region: ~634 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 4 10 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Zfpm1 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7134bp) | A(22.29% 1590) | C(27.17% 1938) | T(22.13% 1579) | G(28.41% 2027) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. Significant high GC-content regions are found. It may be difficult to construct this targeting vector. Page 3 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr8 + 122320451 122323450 3000 browser details YourSeq 26 132 171 3000 89.3% chr17 + 10326900 10326938 39 browser details YourSeq 23 1551 1573 3000 100.0% chr9 - 63735290 63735312 23 browser details YourSeq 23 115 137 3000 100.0% chr4 - 152388165 152388187 23 browser details YourSeq 21 440 460 3000 100.0% chr10 - 76553401 76553421 21 browser details YourSeq 21 1440 1460 3000 100.0% chr15 + 87570746 87570766 21 Note: The 3000 bp section upstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr8 + 122324085 122327084 3000 browser details YourSeq 64 1591 1659 3000 98.6% chr8 + 121235789 121235882 94 browser details YourSeq 56 1598 2141 3000 67.2% chr12 - 88622101 88622264 164 browser details YourSeq 49 1706 2882 3000 74.3% chr1 + 188813624 189203816 390193 browser details YourSeq 47 1597 1658 3000 78.0% chr12 - 110156025 110156074 50 browser details YourSeq 45 1706 1817 3000 72.1% chr17 - 42984238 42984348 111 browser details YourSeq 45 2854 2939 3000 90.6% chr12 + 108028829 108029031 203 browser details YourSeq 44 1304 1812 3000 64.8% chr15 - 87050094 87050476 383 browser details YourSeq 44 1678 1823 3000 62.3% chr9 + 118832197 118832339 143 browser details YourSeq 43 2723 2939 3000 95.8% chr10 + 79617376 79617607 232 browser details YourSeq 42 1757 1816 3000 93.8% chr16 - 22463226 22463285 60 browser details YourSeq 41 1591 2143 3000 57.5% chr18 - 54489396 54489547 152 browser details YourSeq 41 1758 1821 3000 83.7% chr11 - 49676763 49676825 63 browser details YourSeq 41 1593 1659 3000 97.7% chr1 + 172786433 172786587 155 browser details YourSeq 40 1599 2143 3000 52.2% chr12 - 86543058 86543105 48 browser details YourSeq 39 1758 1816 3000 84.4% chr12 + 80595679 80595736 58 browser details YourSeq 38 2735 2934 3000 93.1% chr4 - 136882751 136882965 215 browser details YourSeq 37 1751 1817 3000 91.0% chr1 - 153114032 153114098 67 browser details YourSeq 36 1739 1809 3000 95.0% chr3 - 34603403 34603474 72 browser details YourSeq 35 1597 1660 3000 82.5% chr12 - 29302438 29302497 60 Note: The 3000 bp section downstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. Page 4 of 8 https://www.alphaknockout.com Gene and protein information: Zfpm1 zinc finger protein, multitype 1 [ Mus musculus (house mouse) ] Gene ID: 22761, updated on 12-Aug-2019 Gene summary Official Symbol Zfpm1 provided by MGI Official Full Name zinc finger protein, multitype 1 provided by MGI Primary source MGI:MGI:1095400 See related Ensembl:ENSMUSG00000049577 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as FOG; Fog1 Expression Broad expression in duodenum adult (RPKM 90.0), small intestine adult (RPKM 68.4) and 20 other tissues See more Orthologs human all Genomic context Location: 8; 8 E1 See Zfpm1 in Genome Data Viewer Exon count: 11 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 8 NC_000074.6 (122281856..122337862) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 8 NC_000074.5 (124806041..124861147) Chromosome 8 - NC_000074.6 Page 5 of 8 https://www.alphaknockout.com Transcript information: This gene has 5 transcripts Gene: Zfpm1 ENSMUSG00000049577 Description zinc finger protein, multitype 1 [Source:MGI Symbol;Acc:MGI:1095400] Gene Synonyms Fog1, Friend of GATA-1 Location Chromosome 8: 122,282,141-122,337,251 forward strand. GRCm38:CM001001.2 About this gene This gene has 5 transcripts (splice variants), 170 orthologues, 1 paralogue, is a member of 1 Ensembl protein family and is associated with 44 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Zfpm1-201 ENSMUST00000054052.14 3390 995aa ENSMUSP00000058037.8 Protein coding CCDS22733 O35615 TSL:1 GENCODE basic APPRIS P1 Zfpm1-202 ENSMUST00000176690.1 865 No protein - lncRNA - - TSL:3 Zfpm1-205 ENSMUST00000212315.1 704 No protein - lncRNA - - TSL:5 Zfpm1-204 ENSMUST00000177356.1 559 No protein - lncRNA - - TSL:2 Zfpm1-203 ENSMUST00000176883.1 314 No protein - lncRNA - - TSL:3 Page 6 of 8 https://www.alphaknockout.com 75.11 kb Forward strand 122.28Mb 122.30Mb 122.32Mb 122.34Mb Genes Gm20388-201 >protein coding (Comprehensive set... Zfp469-202 >protein codZinfpgm1-201 >protein coding Gm45353-201 >lncRNA Zfp469-201 >protein coding Zfpm1-203 >lncRNA Zfpm1-204 >lncRNA Zfpm1-202 >lncRNA Zfpm1-205 >lncRNA Contigs < AC121976.2 Regulatory Build 122.28Mb 122.30Mb 122.32Mb 122.34Mb Reverse strand 75.11 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Gene Legend Protein Coding merged Ensembl/Havana Ensembl protein coding Non-Protein Coding RNA gene Page 7 of 8 https://www.alphaknockout.com Transcript: ENSMUST00000054052 55.11 kb Forward strand Zfpm1-201 >protein coding ENSMUSP00000058... PDB-ENSP mappings MobiDB lite Low complexity (Seg) Coiled-coils (Ncoils) Superfamily Zinc finger C2H2 superfamily SMART Zinc finger C2H2-type Pfam Zinc finger C2H2-type PF12874 PROSITE profiles Zinc finger CCHC FOG-type Zinc finger C2H2-type PROSITE patterns Zinc finger C2H2-type PANTHER PTHR12958:SF4 FOG family Gene3D 3.30.160.60 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend inframe insertion inframe deletion missense variant synonymous variant Scale bar 0 100 200 300 400 500 600 700 800 995 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 8 of 8.
Recommended publications
  • Architecture of a Lymphomyeloid Developmental Switch Controlled by PU.1, Notch and Gata3 Marissa Morales Del Real and Ellen V
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors DEVELOPMENT AND STEM CELLS RESEARCH ARTICLE 1207 Development 140, 1207-1219 (2013) doi:10.1242/dev.088559 © 2013. Published by The Company of Biologists Ltd Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3 Marissa Morales Del Real and Ellen V. Rothenberg* SUMMARY Hematopoiesis is a classic system with which to study developmental potentials and to investigate gene regulatory networks that control choices among alternate lineages. T-cell progenitors seeding the thymus retain several lineage potentials. The transcription factor PU.1 is involved in the decision to become a T cell or a myeloid cell, and the developmental outcome of expressing PU.1 is dependent on exposure to Notch signaling. PU.1-expressing T-cell progenitors without Notch signaling often adopt a myeloid program, whereas those exposed to Notch signals remain in a T-lineage pathway. Here, we show that Notch signaling does not alter PU.1 transcriptional activity by degradation/alteration of PU.1 protein. Instead, Notch signaling protects against the downregulation of T-cell factors so that a T-cell transcriptional network is maintained. Using an early T-cell line, we describe two branches of this network. The first involves inhibition of E-proteins by PU.1 and the resulting inhibition of Notch signaling target genes. Effects of E- protein inhibition can be reversed by exposure to Notch signaling. The second network is dependent on the ability of PU.1 to inhibit important T-cell transcription factor genes such as Myb, Tcf7 and Gata3 in the absence of Notch signaling.
    [Show full text]
  • Supplementary Figure 1. Qrt-PCR Analyses for Measuring the Knockdown Efficiency of Transcription Factors. A549 and U937 Cells Kn
    Supplementary Figure 1. qRT-PCR analyses for measuring the knockdown efficiency of transcription factors. A549 and U937 cells knocking down or overexpressing different transcription factors including NF-κB subunits p65 and p50 (A), HIF1 (B), TCF4 (C), AP-1 subunits c-Jun and c-FOS (D), or FOXP3 (E) were subjected to RNA isolation, followed by qRT-PCR analyses to examine the expression of these transcription factors. **P<0.01 and ***P<0.001. 1 Supplementary Figure 2. Effects of FOXP3 downregulation and overexpression on the expression of NLRP1, IL1B and IL18. A549 and U937 cells were transfected with si-FOXP3 or pCDNA3-2×Flag-FOXP3. After 24 h, cells were subjected to RNA isolation, followed by qRT-PCR analyses to examine the expression of NLRP1 (A), IL1B (B) and IL18 (C). ***P<0.001. 2 Supplementary Figure 3. Effects of CtBP2 downregulation and overexpression on the expression of miR-199a-3p, NLRP1, IL1B and IL18. A549 and U937 cells were transfected with si-CtBP2 or pCDNA3-2×Flag-CtBP2. After 24 h, cells were subjected to RNA isolation, followed by qRT-PCR analyses to examine the expression of miR-199a-3p (A), NLRP1 (B), IL1B (C) and IL18 (D). ***P<0.001. 3 Supplementary Figure 4. CHFTC specifically bond to the promoter of miR-199a-3p. (A and B) Effects of CtBP2 knockdown and overexpression on HDAC1 and FOXP3 protein levels. A549 cells were transfected with two CtBP2-specific shRNAs and pCDNA3-2×Flag-CtBP2 to obtain two CtBP2-knockdown cell lines (KD-1 and KD-2) (A) and two CtBP2-overexpression cells lines (OE-1 and OE-2) (B), respectively.
    [Show full text]
  • A Private 16Q24.2Q24.3 Microduplication in a Boy with Intellectual Disability, Speech Delay and Mild Dysmorphic Features
    G C A T T A C G G C A T genes Article A Private 16q24.2q24.3 Microduplication in a Boy with Intellectual Disability, Speech Delay and Mild Dysmorphic Features Orazio Palumbo * , Pietro Palumbo , Ester Di Muro, Luigia Cinque, Antonio Petracca, Massimo Carella and Marco Castori Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; [email protected] (P.P.); [email protected] (E.D.M.); [email protected] (L.C.); [email protected] (A.P.); [email protected] (M.C.); [email protected] (M.C.) * Correspondence: [email protected]; Tel.: +39-088-241-6350 Received: 5 June 2020; Accepted: 24 June 2020; Published: 26 June 2020 Abstract: No data on interstitial microduplications of the 16q24.2q24.3 chromosome region are available in the medical literature and remain extraordinarily rare in public databases. Here, we describe a boy with a de novo 16q24.2q24.3 microduplication at the Single Nucleotide Polymorphism (SNP)-array analysis spanning ~2.2 Mb and encompassing 38 genes. The patient showed mild-to-moderate intellectual disability, speech delay and mild dysmorphic features. In DECIPHER, we found six individuals carrying a “pure” overlapping microduplication. Although available data are very limited, genomic and phenotype comparison of our and previously annotated patients suggested a potential clinical relevance for 16q24.2q24.3 microduplication with a variable and not (yet) recognizable phenotype predominantly affecting cognition. Comparing the cytogenomic data of available individuals allowed us to delineate the smallest region of overlap involving 14 genes. Accordingly, we propose ANKRD11, CDH15, and CTU2 as candidate genes for explaining the related neurodevelopmental manifestations shared by these patients.
    [Show full text]
  • Systematic Integration of GATA Transcription Factors and Epigenomes Via IDEAS Paints the Regulatory Landscape of Hematopoietic Cells
    Received: 2 July 2019 Accepted: 17 October 2019 DOI: 10.1002/iub.2195 CRITICAL REVIEW Systematic integration of GATA transcription factors and epigenomes via IDEAS paints the regulatory landscape of hematopoietic cells Ross C. Hardison1 | Yu Zhang1 | Cheryl A. Keller1 | Guanjue Xiang1 | Elisabeth F. Heuston2 | Lin An1 | Jens Lichtenberg2 | Belinda M. Giardine1 | David Bodine2 | Shaun Mahony1 | Qunhua Li1 | Feng Yue3 | Mitchell J. Weiss4 | Gerd A. Blobel5 | James Taylor6 | Jim Hughes7 | Douglas R. Higgs7 | Berthold Göttgens8 1Departments of Biochemistry and Molecular Biology and of Statistics, The Abstract Pennsylvania State University, University Members of the GATA family of transcription factors play key roles in the dif- Park, PA ferentiation of specific cell lineages by regulating the expression of target 2 Genetics and Molecular Biology Branch, genes. Three GATA factors play distinct roles in hematopoietic differentiation. Hematopoiesis Section, National Institutes of Health, NHGRI, Bethesda, MD In order to better understand how these GATA factors function to regulate 3Department of Biochemistry and genes throughout the genome, we are studying the epigenomic and transcrip- Molecular Biology, The Pennsylvania State tional landscapes of hematopoietic cells in a model-driven, integrative fashion. University College of Medicine, Hershey, PA We have formed the collaborative multi-lab VISION project to conduct ValI- 4Hematology Department, St. Jude dated Systematic IntegratiON of epigenomic data in mouse and human hema- Children's Research Hospital, topoiesis. The epigenomic data included nuclease accessibility in chromatin, Memphis, TN CTCF occupancy, and histone H3 modifications for 20 cell types covering 5Children's Hospital of Philadelphia, hematopoietic stem cells, multilineage progenitor cells, and mature cells across Philadelphia, PA 6Departments of Biology and of Computer the blood cell lineages of mouse.
    [Show full text]
  • Genomic Profiling of Short- and Long-Term Caloric Restriction Effects in the Liver of Aging Mice
    Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice Shelley X. Cao, Joseph M. Dhahbi, Patricia L. Mote, and Stephen R. Spindler* Department of Biochemistry, University of California, Riverside, CA 92521 Edited by Bruce N. Ames, University of California, Berkeley, CA, and approved July 11, 2001 (received for review June 19, 2001) We present genome-wide microarray expression analysis of 11,000 aging and CR on gene expression. Control young (7-month-old; n ϭ genes in an aging potentially mitotic tissue, the liver. This organ has 3) and old (27-month-old; n ϭ 3) mice were fed 95 kcal of a a major impact on health and homeostasis during aging. The effects semipurified control diet (Harlan Teklad, Madison, WI; no. of life- and health-span-extending caloric restriction (CR) on gene TD94145) per week after weaning. Long-term CR (LT-CR) young expression among young and old mice and between long-term CR (7-month-old; n ϭ 3) and old (27-month-old; n ϭ 3) mice were fed (LT-CR) and short-term CR (ST-CR) were examined. This experimental 53 kcal of a semipurified CR diet (Harlan Teklad; no. TD94146) per design allowed us to accurately distinguish the effects of aging from week after weaning. Short-term CR (ST-CR) mice were 34-month- those of CR on gene expression. Aging was accompanied by changes old control mice that were switched to 80 kcal of CR diet for 2 in gene expression associated with increased inflammation, cellular weeks, followed by 53 kcal for 2 weeks (n ϭ 3).
    [Show full text]
  • FOG1 (ZFPM1) Rabbit Polyclonal Antibody – TA590381 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA590381 FOG1 (ZFPM1) Rabbit Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: ELISA Recommended Dilution: WB: 1:5000-1:20000; ELISA: 1:100-1:2000 Reactivity: Human Host: Rabbit Isotype: IgG Clonality: Polyclonal Immunogen: DNA immunization. This antibody is specific for the N Terminus Region of the target protein. Formulation: 20 mM Potassium Phosphate, 150 mM Sodium Chloride, pH 7.0 Concentration: 1.24526 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Gene Name: zinc finger protein, FOG family member 1 Database Link: NP_722520 Entrez Gene 161882 Human Q8IX07 Background: FOG1/ZFPM1 was identified in a yeast two-hybrid screen for GATA-1 interacting proteins. GATA-1 is zinc finger transcription factor whose expression is restricted to hematopoietic cells and plays and essential role in erythroid development. FOG1/ZFPM1 is highly expressed in erythroid cells and megakaryocytes and appears to play both a GATA-1-dependent and independent role in erythropoiesis and megakaryopoiesis. FOG1/ZFPM1 associates with GATA-1 as well as GATA-2 and GATA-3 as a heterodimer to activate or repress transcription. Synonyms: FOG; FOG1; ZC2HC11A; ZNF89A; ZNF408 Note: This antibody was generated by SDIX's Genomic Antibody Technology ® (GAT). Learn about GAT This product is to be used for laboratory only.
    [Show full text]
  • GATA Transcription Factors and Their Co-Regulators Guide the Development Of
    GATA transcription factors and their co-regulators guide the development of GABAergic and serotonergic neurons in the anterior brainstem Laura Tikker Molecular and Integrative Biosciences Research Programme Faculty of Biological and Environmental Sciences Doctoral Programme Integrative Life Science University of Helsinki ACADEMIC DISSERTATION Doctoral thesis, to be presented for public examination, with the permission of the Faculty of Biological and Environmental Sciences of the University of Helsinki, in Raisio Hall (LS B2) in Forest Sciences building, Latokartanonkaari 7, Helsinki, on the 3rd of April, 2020 at 12 noon. Supervisor Professor Juha Partanen University of Helsinki (Finland) Thesis Committee members Docent Mikko Airavaara University of Helsinki (Finland) Professor Timo Otonkoski University of Helsinki (Finland) Pre-examinators Docent Satu Kuure University of Helsinki (Finland) Research Scientist Siew-Lan Ang, PhD The Francis Crick Institute (United Kingdom) Opponent Research Scientist Johan Holmberg, PhD Karolinska Institutet (Sweden) Custos Professor Juha Partanen University of Helsinki (Finland) The Faculty of Biological and Environmental Sciences, University of Helsinki, uses the Urkund system for plagiarism recognition to examine all doctoral dissertations. ISBN: 978-951-51-5930-4 (paperback) ISBN: 978-951-51-5931-1 (PDF) ISSN: 2342-3161 (paperback) ISSN: 2342-317X (PDF) Printing house: Painosalama Oy Printing location: Turku, Finland Printed on: 03.2020 Cover artwork: Serotonergic neurons in adult dorsal raphe (mouse).
    [Show full text]
  • Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders
    177 Arch Neuropsychitry 2020;57:177−191 RESEARCH ARTICLE https://doi.org/10.29399/npa.24890 Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders Hakan GÜRKAN1 , Emine İkbal ATLI1 , Engin ATLI1 , Leyla BOZATLI2 , Mengühan ARAZ ALTAY2 , Sinem YALÇINTEPE1 , Yasemin ÖZEN1 , Damla EKER1 , Çisem AKURUT1 , Selma DEMİR1 , Işık GÖRKER2 1Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey 2Faculty of Medicine, Department of Child and Adolescent Psychiatry, Trakya University, Edirne, Turkey ABSTRACT Introduction: Aneuploids, copy number variations (CNVs), and single in 39 (39/123=31.7%) patients. Twelve CNV variant of unknown nucleotide variants in specific genes are the main genetic causes of significance (VUS) (9.75%) patients and 7 CNV benign (5.69%) patients developmental delay (DD) and intellectual disability disorder (IDD). were reported. In 6 patients, one or more pathogenic CNVs were These genetic changes can be detected using chromosome analysis, determined. Therefore, the diagnostic efficiency of CMA was found to chromosomal microarray (CMA), and next-generation DNA sequencing be 31.7% (39/123). techniques. Therefore; In this study, we aimed to investigate the Conclusion: Today, genetic analysis is still not part of the routine in the importance of CMA in determining the genomic etiology of unexplained evaluation of IDD patients who present to psychiatry clinics. A genetic DD and IDD in 123 patients. diagnosis from CMA can eliminate genetic question marks and thus Method: For 123 patients, chromosome analysis, DNA fragment analysis alter the clinical management of patients. Approximately one-third and microarray were performed. Conventional G-band karyotype of the positive CMA findings are clinically intervenable.
    [Show full text]
  • Development of Novel Analysis and Data Integration Systems to Understand Human Gene Regulation
    Development of novel analysis and data integration systems to understand human gene regulation Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakult¨atf¨urMathematik und Informatik der Georg-August-Universit¨atG¨ottingen im PhD Programme in Computer Science (PCS) der Georg-August University School of Science (GAUSS) vorgelegt von Raza-Ur Rahman aus Pakistan G¨ottingen,April 2018 Prof. Dr. Stefan Bonn, Zentrum f¨urMolekulare Neurobiologie (ZMNH), Betreuungsausschuss: Institut f¨urMedizinische Systembiologie, Hamburg Prof. Dr. Tim Beißbarth, Institut f¨urMedizinische Statistik, Universit¨atsmedizin, Georg-August Universit¨at,G¨ottingen Prof. Dr. Burkhard Morgenstern, Institut f¨urMikrobiologie und Genetik Abtl. Bioinformatik, Georg-August Universit¨at,G¨ottingen Pr¨ufungskommission: Prof. Dr. Stefan Bonn, Zentrum f¨urMolekulare Neurobiologie (ZMNH), Referent: Institut f¨urMedizinische Systembiologie, Hamburg Prof. Dr. Tim Beißbarth, Institut f¨urMedizinische Statistik, Universit¨atsmedizin, Korreferent: Georg-August Universit¨at,G¨ottingen Prof. Dr. Burkhard Morgenstern, Weitere Mitglieder Institut f¨urMikrobiologie und Genetik Abtl. Bioinformatik, der Pr¨ufungskommission: Georg-August Universit¨at,G¨ottingen Prof. Dr. Carsten Damm, Institut f¨urInformatik, Georg-August Universit¨at,G¨ottingen Prof. Dr. Florentin W¨org¨otter, Physikalisches Institut Biophysik, Georg-August-Universit¨at,G¨ottingen Prof. Dr. Stephan Waack, Institut f¨urInformatik, Georg-August Universit¨at,G¨ottingen Tag der m¨undlichen Pr¨ufung: der 30. M¨arz2018
    [Show full text]
  • Bromodomain Protein Brd3 Associates with Acetylated GATA1 to Promote
    Bromodomain protein Brd3 associates with acetylated PNAS PLUS GATA1 to promote its chromatin occupancy at erythroid target genes Janine M. Lamonicaa,b, Wulan Denga,c,1, Stephan Kadaukea,b,1, Amy E. Campbella,b, Roland Gamsjaegerd, Hongxin Wanga, Yong Chenge, Andrew N. Billinf, Ross C. Hardisone, Joel P. Mackayd, and Gerd A. Blobela,b,2 aDivision of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104; bUniversity of Pennsylvania School of Medicine, Philadelphia, PA 19104; cDepartment of Biology, University of Pennsylvania, Philadelphia, PA; dSchool of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2006, Australia; eDepartment of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; and fGlaxoSmithKline, Research Triangle Park, Durham, NC 27709 Edited* by Mark T. Groudine, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved March 31, 2011 (received for review February 8, 2011) Acetylation of histones triggers association with bromodomain- mediated acetylation of GATA1 can be antagonized by the mye- containing proteins that regulate diverse chromatin-related pro- loid transcription factor PU.1 (17) that promotes myeloid differ- cesses. Although acetylation of transcription factors has been ap- entiation at the expense of erythroid development in part by preciated for some time, the mechanistic consequences are less inhibiting GATA1 (18). The oncogenic fusion protein AML1- well understood. The hematopoietic transcription factor GATA1 ETO also inhibits acetylation of GATA1, which might account is acetylated at conserved lysines that are required for its stable for the inhibition of erythroid development associated with association with chromatin. We show that the BET family protein t(8;21) myeloid leukemias (19).
    [Show full text]
  • The Role of Csf1 and Zfpm1 in the Preimplantation Mouse Development
    Author Schnabellehner Sarah Christina Submission Department of Molecular Biology Thesis Supervisor Alexander W. Bruce, Ph.D. Month Year May 2016 THE ROLE OF CSF1 AND ZFPM1 IN THE PREIMPLANTATION MOUSE DEVELOPMENT Bachelor’s Thesis to confer the academic degree of Bachelor of Science University of South Bohemia in České Budějovice Branišovská 1645/31a 370 05 České Budějovice Schnabellehner S. C., 2016: The role of Csf1 and Zfpm1 in the preimplantation mouse development. BSc. Thesis in English, 48p., Faculty of Science, University of South Bohemia, České Budějovice, Czech. Annotation The aim of this thesis was to investigate the potential roles of Csf1 and Zfpm1 during the preimplantation mouse development, as those are considered as potential determinants. Affirmation I hereby declare that I have worked on my bachelor's thesis independently and used only the sources listed in the bibliography. I hereby declare that, in accordance with Article 47b of Act No. 111/1998 in the valid wording, I agree with the publication of my bachelor thesis, in form resulting from to be kept in the Faculty of Science archive, in electronic form in publicly accessible part of the STAG database operated by the University of South Bohemia in České Budějovice accessible through its web pages. Further, I agree to the electronic publication of the comments of my supervisor and thesis opponents and the record of the proceedings and results of the thesis defence in accordance with aforementioned Act No. 111/1998. I also agree to the comparison of the text of my thesis with the Theses.cz thesis database operated by the National Registry of University Theses and a plagerism detection system.
    [Show full text]
  • Inactivation of the GATA Cofactor ZFPM1 Results in Abnormal
    Research Articles: Development/Plasticity/Repair Inactivation of the GATA cofactor ZFPM1 results in abnormal development of dorsal raphe serotonergic neuron subtypes and increased anxiety-like behaviour https://doi.org/10.1523/JNEUROSCI.2252-19.2020 Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.2252-19.2020 Received: 20 September 2019 Revised: 17 September 2020 Accepted: 25 September 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 the authors 1 Inactivation of the GATA cofactor ZFPM1 results in abnormal development of dorsal raphe 2 serotonergic neuron subtypes and increased anxiety-like behaviour 3 Laura Tikker1, Plinio Casarotto2, Parul Singh1, Caroline Biojone2, Petteri Piepponen3, Nuri Estartús1, 4 Anna Seelbach1, Ravindran Sridharan1, Liina Laukkanen2, Eero Castrén2, Juha Partanen1* 5 1Molecular and Integrative Biosciences Research Programme, P.O. Box 56, Viikinkaari 9, FIN-00014, 6 University of Helsinki, Helsinki, Finland 7 2Neuroscience Center, P.O.Box 63, Haartmaninkatu 8, FIN-00014, University of Helsinki, Helsinki, 8 Finland 9 3Division of Pharmacology and Pharmacotherapy, P.O. Box 56, Viikinkaari 5, FIN-00014, University 10 of Helsinki, Helsinki, Finland 11 *Corresponding author: Juha Partanen, [email protected] 12 Abbreviated title: ZFPM1 and serotonergic neuron development 13 Number of pages: 40 14 Number of figures: 7 15 Number of tables: 1 16 Number of words for abstract: 206 17 Number of words for introduction: 635 18 Number of words for discussion: 1258 19 Conflict of Interest: The authors declare no competing financial interests 20 Acknowledgments: 21 This work has been supported by Jane and Aatos Erkko Foundation, Sigrid Juselius Foundation and the 22 Academy of Finland.
    [Show full text]