Kraken: Leveraging Live Traffic Tests to Identify and Resolve Resource

Total Page:16

File Type:pdf, Size:1020Kb

Kraken: Leveraging Live Traffic Tests to Identify and Resolve Resource Kraken: Leveraging Live Traffic Tests to Identify and Resolve Resource Utilization Bottlenecks in Large Scale Web Services Kaushik Veeraraghavan, Justin Meza, David Chou, Wonho Kim, Sonia Margulis, Scott Michelson, Rajesh Nishtala, Daniel Obenshain, Dmitri Perelman, and Yee Jiun Song, Facebook Inc. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/veeraraghavan This paper is included in the Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16). November 2–4, 2016 • Savannah, GA, USA ISBN 978-1-931971-33-1 Open access to the Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation is sponsored by USENIX. Kraken: Leveraging Live Traffic Tests to Identify and Resolve Resource Utilization Bottlenecks in Large Scale Web Services Kaushik Veeraraghavan Justin Meza David Chou Wonho Kim Sonia Margulis Scott Michelson Rajesh Nishtala Daniel Obenshain Dmitri Perelman Yee Jiun Song Facebook Inc. Abstract pacity needs of a system, an evolving workload can quickly render models obsolete. Modern web services such as Facebook are made • Infrastructure heterogeneity: Constructing data up of hundreds of systems running in geographically- centers at different points in time leads to a vari- distributed data centers. Each system needs to be allo- ety of networking topologies, different generations cated capacity, configured, and tuned to use data center of hardware, and other physical constraints in each resources efficiently. Keeping a model of capacity allo- location that each affect how systems scale. cation current is challenging given that user behavior and • Changing bottlenecks: Each data center runs hun- software components evolve constantly. dreds of software systems with complex interac- Three insights motivate our work: (1) the live user tions that exhibit resource utilization bottlenecks, traffic accessing a web service provides the most current including performance regressions, load imbalance, target workload possible, (2) we can empirically test the and resource exhaustion, at a variety of scales from system to identify its scalability limits, and (3) the user single servers to entire data centers. The sheer size impact and operational overhead of empirical testing can of the system makes it impossible to understand all be largely eliminated by building automation which ad- the components. In addition, these systems change justs live traffic based on feedback. over time, leading to different bottlenecks present- We build on these insights in Kraken, a new system ing themselves. Thus, we need a way to continually that runs load tests by continually shifting live user traf- identify and fix bottlenecks to ensure that the sys- fic to one or more data centers. Kraken enables empiri- tems scale efficiently. cal testing by monitoring user experience (e.g., latency) and system health (e.g., error rate) in a feedback loop Our key insight is that the live user traffic accessing a between traffic shifts. We analyze the behavior of in- web service provides the most current workload possible, dividual systems and groups of systems to identify re- with natural phenomena like non-uniform request arrival source utilization bottlenecks such as capacity, load bal- rates. As a baseline, the web service must be capable ancing, software regressions, performance tuning, and so of executing its workload within a preset latency and er- on, which can be iteratively fixed and verified in sub- ror threshold. Ideally, the web service should be capable sequent load tests. Kraken, which manages the traffic of handling peak load (e.g., during Super Bowl) when generated by 1.7 billion users, has been in production at unexpected bottlenecks arise, and still achieve good per- Facebook for three years and has allowed us to improve formance. our hardware utilization by over 20%. We propose Kraken, a new system that allows us to 1 Introduction run live traffic load tests to accurately assess the capac- ity of a complex system. In building Kraken, we found Modern web services comprise software systems running that reliably tracking system health is the most important in multiple data centers that cater to a global user base. requirement for live traffic testing. But how do we se- At this scale, it is important to use all available data cen- lect among thousands of candidate metrics? We aim to ter resources as efficiently as possible. Effective resource provide a good experience to all users by ensuring that utilization is challenging because: a user served out of a data center undergoing a Kraken • Evolving workload: The workload of a web ser- test has a comparable experience to users being served vice is constantly changing as its user base grows out of any other data center. We accomplish this goal and new products are launched. Further, individual with a light-weight and configurable monitoring compo- software systems might be updated several times a nent seeded with two topline metrics, the web server’s day [35] or even continually [27]. While model- 99th percentile response time and HTTP fatal error rate, ing tools [20, 24, 46, 51] can estimate the initial ca- as reliable proxies for user experience. USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 635 We leverage Kraken as part of an iterative methodol- nicated schedules widely to minimize surprise. We en- ogy to improve capacity utilization. We begin by run- couraged engineers to share tips on how to better moni- ning a load test that directs user traffic at a target cluster tor their systems, handle different failure scenarios, and or region. A successful test concludes by hitting the uti- build out levers to mitigate production issues. Further, lization targets without crossing the latency or error rate we used a shared IRC channel to track tests and debug thresholds. Tests can fail in two ways: issues live. Often, we would use tests as an opportunity • We fail to hit the target utilization or exceed a pre- for developers to test or validate improvements, which set threshold. This is the usual outcome following made them an active part of the testing process. Engag- which we drill into test data to identify bottlenecks. ing engineers was critical for success; engaged engineers • Rarely, the load test results in a HTTP error spike or improve their systems quickly and support a frequent test some similar unexpected failure. When this occurs, cadence, allowing us to iterate quickly. we analyze the test data to understand what mon- Our initial remediations to resolve bottlenecks were itoring or system understanding we were missing. mostly capacity allocations to the failing system. As In practice, sudden jumps in HTTP errors or other our understanding of Facebook’s systems has improved, topline metrics almost never happen; the set of aux- our mitigation toolset has also expanded to include con- iliary metrics we add to our monitoring are few in figuration and performance tuning, load balancing im- number and are the result of small incidents rather provements, profiling-guided software changes and oc- than catastrophic failure. casionally a system redesign. Our monitoring has also Each test provides a probe into an initially uncharac- improved and as of October 2016, we have identified terized system, allowing us to learn new things. An un- metrics from 23 critical systems that are bellwethers of successful test provides data that allows us to either make non-linear behavior in our infrastructure. We use these the next test safer to run or increase capacity by remov- metrics as inputs to control Kraken’s behavior. ing a bottleneck. As tests are non-disruptive to users, we Kraken has been in use at Facebook for over three can run them regularly to determine both a data center’s years and has run thousands of load tests on production maximal load (e.g., requests per second, which we term systems using live user traffic. Our contributions: the system’s capacity), and continually identify and fix • Kraken is the first live traffic load testing frame- bottlenecks to improve system utilization. work to test systems ranging in size from individual Our first year of operating Kraken in production ex- servers to entire data centers, to our knowledge. posed several challenges. The first was that the systems • Kraken has allowed us to iteratively increase the ca- often exhibited a non-linear response where a small traf- pacity of Facebook’s infrastructure with an empir- fic shift directed at a data center could trigger an error ical approach that improves the utilization of sys- spike. Our follow-up was to check the health of all the tems at every level of the stack. major systems involved in serving user traffic to deter- • Kraken has allowed us to identify and remediate re- mine which ones were affected most during the test. This gressions, address load imbalance and resource ex- dovetailed into our second challenge which was that sys- haustion across Facebook’s fleet. Our initial tests tems have complex dependencies so it was often unclear stopped at about 70% of theoretical capacity, but which system initially failed and then trigged errors in now routinely exceed 90%, providing a 20% in- seemingly unrelated downstream subsystems. crease in request serving capacity. We addressed both of these challenges by encouraging The Kraken methodology is not applicable to all ser- subsystem developers to identify system-specific coun- vices. These assumptions/caveats underpin our work: ters for performance (e.g., response quality), error rate, • Assumption: stateless servers. We assume that and latency, that could be monitored during a test. We stateless servers handle requests without using focused on these three metrics because they represent the sticky sessions for server affinity. Stateless web contracts that clients of a service rely on—we have found servers provide high availability despite system or that nearly every production system wishes to maintain network failures by routing requests to any avail- or decrease its latency and error rate while maintaining able machine.
Recommended publications
  • Assessment of Pavement Foundation Stiffness Using Cyclic Plate Load Test
    Assessment of Pavement Foundation Stiffness using Cyclic Plate Load Test Mark H. Wayne & Jayhyun Kwon Tensar International Corporation, Alpharetta, U.S.A. David J. White R.L. Handy Associate Professor of Civil Engineering, Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, Iowa ABSTRACT: The quality of the pavement foundation layer is critical in performance and sustainability of the pavement. Over the years, various soil modification or stabilization methods were developed to achieve sufficient bearing performance of soft subgrade. Geogrid, through its openings, confine aggre- gates and forms a stabilized composite layer of aggregate fill and geogrid. This mechanically stabilized layer is used to provide a stable foundation layer for roadways. Traditional density-based QC plans and associated QA test methods such as nuclear density gauge are limited in their ability to assess stiffness of stabilized composite layers. In North America, non-destructive testing methods, such as falling weight de- flectometer (FWD) and light weight deflectometer (LWD) are used as stiffness- or strength-based QA test methods. In Germany and some other European countries, a static strain modulus (Ev2) is more commonly used to verify bearing performance of paving layers. Ev2 is a modulus measured on second load stage of the static plate load test. In general, modulus determined from first load cycle is not reliable because there is too much re-arrangement of the gravel particles. However, a small number of load cycles may not be sufficiently dependable or reliable to be used as a design parameter. Experiments were conducted to study the influence of load cycles in bearing performance.
    [Show full text]
  • Engineering Geological Characterisation and Slope Stability
    Engineering Geological Characterisation and Slope Stability Assessment of Whitehall Quarry, Waikato. A Thesis submitted in partial fulfilment of the requirements of the degree of Master of Science in Engineering Geology at the University of Canterbury by Daniel Rodney Strang UNIVERSITY OF CANTERBURY 2010 I Frontispiece Whitehall Quarry “Over 4,000 tonnes of aggregate goes into every 1 km of a two lane road” II Abstract Whitehall Quarry is located 4 km east of Karapiro, near Cambridge within the Waikato District. Current quarrying operations produce between 150,000 and 300,000 tonnes of aggregate for use in the surrounding region. This study is an investigation into the engineering geological model for the quarry and pit slope stability assessment. Pit slope stability is an integral aspect of quarrying and open-pit mining since slopes should be as steep as possible to minimise waste material which needs to be removed, yet shallow enough to minimise potential hazards to personnel and equipment below pit slopes. This study also assesses the stability of complex wedge located within the north western corner of the quarry. Initial estimates approximate a wedge mass volume of 500,000 m3; failure was triggered during the late 80‟s due a stripping programme at the head of the mass. Field and laboratory investigations were carried out to identify and quantify engineering geological parameters. Photogrammetric and conventional scanline analytical techniques identified two domains within the quarry divided by the Main Quarry Shear Zone (MQSZ). Discontinuity orientations are the key differences between the two domains. Bedding planes appear to have slightly different orientations and each domain has very different joint sets identified.
    [Show full text]
  • Accelerated Load Testing of Pavements HVS-Nordic Tests at VTI Sweden 2003–2004
    VTI rapport 544A www.vti.se/publications Published 2006 Accelerated load testing of pavements HVS-Nordic tests at VTI Sweden 2003–2004 Leif G Wiman Publisher: Publication: VTI rapport 544A Published: Project code: 2006 60813 SE-581 95 Linköping Sweden Project: Accelerated load testing of pavement using Heavy Vehicle Simulator (HVS) Author: Sponsor: Leif G Wiman Swedish Road Administration Title: Accelerated load testing of pavements – HVS-Nordic tests at VTI Sweden 2003–2004 Abstract (background, aim, method, result) max 200 words: During 2003 and 2004 two accelerated load tests were performed at the VTI test facility in Sweden (SE05 and SE06). The objective of SE05 was to investigate the deformation behaviour of two different unbound base materials. Half of the test area was constructed with a base layer of natural granular material and the other half with a base layer of crushed rock aggregate. This means that the two structures were tested simultaneously. The objective of SE06 was to be the third test in a series of structural design tests with stepwise higher bearing capacity. The previous two tests in this series are SE01 and SE02. In the unbound base material test, SE05, the surface rut depth propagation during the accelerated load testing was greater on the crushed rock aggregate structure especially in wet condition. This was not expected and more than half of the difference in surface rut depth was found in the difference in the base layer deformations. One main reason for this unexpected behaviour is believed to be unsatisfactory compaction of the crushed rock aggregate. The performance of the pavement structures SE01, SE02 and SE06 during the accelerated load testing will be analysed in more detail in the future.
    [Show full text]
  • Final Addendum Geotechnical Report No.2 Ground Anchor Design White Point Landslide W.O
    Final Addendum Geotechnical Report No.2 Ground Anchor Design White Point Landslide W.O. E1907483 Task Order Solicitation 11-087 San Pedro District Los Angeles, California April 17, 2013 Submitted to: Mr. Christopher F. Johnson, P.E., G.E. Geotechnical Engineering Group 1149 S. Broadway, Suite 120 Los Angeles, CA 90015 By: Shannon & Wilson, Inc. 664 West Broadway Glendale, California 91204 51-1-10052-031 TABLE OF CONTENTS Page 1.0 INTRODUCTION ..................................................................................................................1 2.0 SCOPE OF SERVICES .........................................................................................................1 3.0 PROJECT DOCUMENTATAION ........................................................................................2 3.1 Shannon & Wilson Reports ........................................................................................2 3.2 Final Report: ...............................................................................................................2 3.3 Addendum-1 Report: ..................................................................................................2 3.4 Plans and Specifications .............................................................................................3 3.5 Existing County of Los Angeles Storm Drains ..........................................................3 4.0 SUBSURFACE CONDITIONS .............................................................................................4 4.1 General .......................................................................................................................4
    [Show full text]
  • Slope Stability Analysis of Bench In
    An Interdisciplinary Response to Mine Water Challenges - Sui, Sun & Wang (eds) ©2014 China University of Mining and Technology Press, Xuzhou, ISBN 978-7-5646-2437-8 Slope Stability Analysis of Bench in Complete Construction Solid Concentrate (Quarry) Limited, Ilorin, Nigeria Agbalajobi Sunday Ayodele1, Bello W.A.2 1 Department of Mineral Resources Engineering, Kwara State Polytechnic, Ilorin, Nigeria 2 Department of Mining Engineering, Federal University of Technology, Akure, Nigeria Email: [email protected] +2348035766493 Abstract The slope stability of Complete Construction Solid Concentrate (Quarry) Limited has been carried out using DIPS software version 6.0. A kinematic analysis of planar discontinuity sets in a gneiss deposit was carried out to ascertain the degree of slope stability. Two hundred and fifty three dip and dip direction values were obtained using compass clinometer. Joints along the discontinuities were mapped. The average result of physical and mechanical properties such as specific gravity, unit weight, uniaxial compressive strength, point load index, and Schmidt rebound value was 2.64 g/m3, 25.95 kN/m3,156 MPa, 6.5 MPa, and 53.12 respectively. Also, a statistical model equation relating the rock strength such as unit weight, uniaxial compressive strength, and Schmidt rebound value was developed.The results of the investigation revealed evidence of potential slope failures from the two joint sets identified in the study area. Three possible types of slope failure (planar, wedge and toppling) were examined. The analyses stated that the rock face was susceptible to wedge failures having all the geometrical conditions associated with the occurrence of such failures were noticeable while planar and toppling had no noticeable failure.
    [Show full text]
  • Geometry Assessment and Strength/Stiffness Monitoring of Lime
    GEOMETRY ASSESSMENT AND STRENGTH/STIFFNESS MONITORING OF LIME AND CEMENT MODIFIED SOILS VIA CHARACTERIZATION OF CURING-INDUCED PROPERTY CHANGES ESTIMATED FROM SEISMIC WAVE PROPAGATION TECHNIQUES AND ELECTRICAL RESISTIVITY by Richard G. Bearce A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Civil and Environmental Engineering) Golden, CO Date _______________ Signed _____________________________ Richard G. Bearce Signed _____________________________ Dr. Michael Mooney Thesis Advisor Golden, CO Date _______________ Signed _____________________________ Dr. John McCray Professor and Head Department of Civil and Environmental Engineering ii ABSTRACT Soil modification via binding additives such as lime and cement grout is a commonly used practice for improving the engineering properties of soil in civil and underground construction applications. Such additives change the properties of the soil by forming cementing agents that bond soil grains together. This cementing process increases the strength/stiffness and reduces the hydraulic conductivity of the modified soil. To ensure adequate performance of chemically modified soil, assessment of both engineering properties and the spatial extent of modification is vitally important. A variety of performance verification techniques are used to assess engineering properties and geometry by industry, but these techniques have inherent limitations. For roadway subgrade soil stabilized with lime and/or cement, an improved performance verification approach would utilize non-destructive monitoring of strength/stiffness growth of subgrade soils cured under field temperature conditions. This research employs wave propagation techniques to monitor the strength/stiffness growth of lime/cement stabilized subgrade and formulates a maturity function to predict modulus growth as a simultaneous function of both time and temperature.
    [Show full text]
  • Bi-Directional Static Load Testing – State of the Art
    Bi-directional Static Load Testing – State of the Art M. England BSc MSc PhD MIC Loadtest, 14 Scotts Avenue, Sunbury, TW16 7HZ, UK Keywords: Loadtest, Osterberg cell, O-Cell, static load tests ABSTRACT: The use of static load testing in optimising design and providing verification of suitability and constructability continues to be unsurpassed in the foundation industry. The utilisation of top load reaction testing appears to be that with which most European engineers are familiar, but a variation on this, which has become just as conventional in some parts of the world, is the use of bi-directional testing allowing tests to near ultimate capacity to be performed more conveniently, economically and safer. A purpose build jack, (such as an Osterberg Cell) is cast within the pile at a chosen location typically half way down the “capacity length” of the pile in a manner in which the upper and lower portions of the pile are tested against each other. Techniques for computer controlled loading and remote control by GSM links can readily be applied and the quality of data recorded and reliability is excellent. The numerous applications and methods of analysis are described. Where the confidence in prediction of capacity is not high, a technique using O-cells™ arranged at two different levels maximises the information that can be retrieved from a single test pile by sequentially loading from one level and subsequently loading at the other. A review of the advantages and disadvantages is presented and how some of the perceived shortcomings have been overcome together with an appraisal of current usage around the world.
    [Show full text]
  • Load-Deflection Characteristics of Soil-Cement Pavements
    Load-Deflection Characteristics of Soil-Cement Pavements P. J . NUSSBAUM and T. J. LARSEN Respectively, Development Engineer and Associate Development Engineer, Paving Development Section, Portland Cement Association A comprehensive research program to develop a thickness design procedure for soil-cement pavements is in progress at the laboratories of the Portland Cement Association. The program has been divided into the following areas of study: (a) the establishment of a relationship between load and deflec­ tion for soil-cement pavement, and (b) an evaluation of the fatigue properties of soil-cement. Data from these studies may be correlated by theoretical concepts to formulate a thickness design procedure. This paper reports the findings of the study to develop a relationship between load and deflec­ tion for soil-cement. An equation was derived which predicts load capacity as a function of deflection, thickness of soil­ cement, radius of bearing area, and modulus of subgrade re­ action. Neither the type of material stabilized nor the cement content was statistically significant in determining the param­ eters of the equation for soil-cement. This suggests that if ASTM procedures are followed and PCA criteria are met, a material with unique structural characteristics is produced. A comparison between the load capacity of soil-cement and a high­ quality granular material indicated that if deflections were maintained equal, the capacity of soil-cement was 1. 5 times greater for the 4-in. and 3. 3 times greater for the 10-in. base thicknesses. •SOIL-CEMENT is a compacted mixture of pulverized soil, portland cement, and water. It is used in the constructfon of base courses and subbases for streets, roads, highways, shoulders, airfield pavements, and pa1·king areas to provide a firm, durable pavement layer with considerable bearing strength which distributes imposed traffic loads to the under lying weaker subgrade.
    [Show full text]
  • Load Testing Handbook (Including Pile Testing Datasheets)
    this document downloaded from Terms and Conditions of Use: All of the information, data and computer software (“information”) presented on this web site is for general vulcanhammer.net information only. While every effort will be made to insure its accuracy, this information should not be used or relied on Since 1997, your complete for any specific application without independent, competent online resource for professional examination and verification of its accuracy, suitability and applicability by a licensed professional. Anyone information geotecnical making use of this information does so at his or her own risk and assumes any and all liability resulting from such use. engineering and deep The entire risk as to quality or usability of the information contained within is with the reader. In no event will this web foundations: page or webmaster be held liable, nor does this web page or its webmaster provide insurance against liability, for The Wave Equation Page for any damages including lost profits, lost savings or any other incidental or consequential damages arising from Piling the use or inability to use the information contained within. Online books on all aspects of This site is not an official site of Prentice-Hall, soil mechanics, foundations and Pile Buck, the University of Tennessee at marine construction Chattanooga, or Vulcan Foundation Equipment. All references to sources of software, equipment, parts, service Free general engineering and or repairs do not constitute an geotechnical software endorsement. And much more..
    [Show full text]
  • Granular Soil by Dropping a Heavy Weight from Air Onto Ground
    TOURING LECTURES T.C. GROUND IMPROVEMENT AUSTRALIA Perth, Adelaïde, Melbourne, Hobart, Sydney, Newcastle, Brisbane ConceptConcept andand ParametersParameters relatedrelated toto GroundGround ImprovementImprovement illustratedillustrated byby CaseCase HistoriesHistories Presented by Serge VARAKSIN Chairman of T.C.G.I. State of the Art Report 17TH International Conference on Soil Mechanics & Geotechnical Engineering State of the Art Report Construction Processes Procédés de Construction Jian Chu Nanyang Technological University, Singapore Serge Varaksin Menard, France Ulrich Klotz Zublin International GmbH, Germany Patrick Mengé Dredging International n.v., DEME, Belgium Alexandria, Egypt 5-9 October 2009 NOTA : TC 17 meeting ground improvement – 07/10/2009 Website : www.bbri.be/go/tc17 Touring lectures 2010 2 Category Method Principle A1. Dynamic compaction Densification of granular soil by dropping a heavy weight from air onto ground. A. Ground A2. Vibrocompaction Densification of granular soil using a vibratory probe inserted into ground. improvement A3. Explosive compaction Shock waves and vibrations are generated by blasting to cause granular soil ground without to settle through liquefaction or compaction. admixtures in non-cohesive A4. Electric pulse compaction Densification of granular soil using the shock waves and energy generated by electric soils or fill pulse under ultra-high voltage. materials A5. Surface compaction (including rapid Compaction of fill or ground at the surface or shallow depth using a variety of impact compaction). compaction machines. B1. Replacement/displacement (including Remove bad soil by excavation or displacement and replace it by good soil or rocks. load reduction using light weight materials) Some light weight materials may be used as backfill to reduce the load or earth pressure.
    [Show full text]
  • Field Model Tests for the Prediction of Foundation Settlement Nathaniel Sill Fox Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1966 Field model tests for the prediction of foundation settlement Nathaniel Sill Fox Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Civil Engineering Commons Recommended Citation Fox, Nathaniel Sill, "Field model tests for the prediction of foundation settlement " (1966). Retrospective Theses and Dissertations. 5364. https://lib.dr.iastate.edu/rtd/5364 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. I This dissertation has been microfihned exactly as received 67-5586 FOX, Nathaniel SiU, 1938- FIELD MODEL TESTS FOR THE PREDICTION OF FOUNDATION SETTLEMENT. Iowa State University of Science and Technology, Ph.D,, 1966 Engineering, civil University Microfilms, Inc., Ann Arbor, Michigan (2) Copyright by NATHANIEL SILL POX 1967 FIELD MODEL TESTS FOR THE PREDICTION OP FOUNDATION SETTLEMENT by Nathaniel Sill Fox A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OP PHILOSOPHY Major Subject; Soil Engineering Approved» Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major D rtment Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1966 il TABLE OF CONTENTS Page I. INTRODUCTION 1 II. REVIEW OP LITERATURE 5 A.
    [Show full text]
  • Forklift Test & Monitoring Equipment Catalog
    ® Testing and Monitoring Equipment for Motive Power • Testing Equipment 1-800-554-2243 • Battery Monitoring www.sbsbattery.com • Data Loggers • Hydrometers [email protected] Rev. 10-15 Motive Power Batteries Testing & Monitoring Catalog Batteries are the heart of your equipment. When batteries are undercharged, used with low water or with elevated temperatures, not just battery life is shortened but it can cause malfunction of the equipment and affect its performance. In opportunity and fast-charging environments battery management becomes even more critical. Surface voltage can “confuse” battery discharge indicators or controllers. As a result, a fault condition may exist but will not be recognized which can result in component damage and downtime of equipment. As equipment control systems get more sophisticated, a poor battery can cause fault conditions and some fault codes that are difficult to diagnose. If batteries are discharged/charged to optimum level and watered properly, you can increase productivity and extend battery life. Battery monitoring can detect problems in early stages and eliminates guessing when planning new applications. Enables you to monitor these 24 hours a day: • Utilization • Temperatures • Cycle counts • Performance Table of Contents Hydrogen Detector 1–2 • SBS-H2 Hydrogen Detector For safety, monitor hydrogen in your battery room Pg. 1–2 Data Loggers 3 • PowerTrac SP Battery monitoring system 3–4 • TOBi Data Loggers Maximize battery lifetime 5 • CellTrac Diagnose and isolate battery problems Pg. 3 Pg. 3-4 Pg. 5 TABLE OF CONTENTS OF TABLE Hydrometers 6 • Z-1G Hydrometer Manual hydrometer and thermometer 7–8 • SBS-2003 Hydrometer Digital hydrometer w/ auto downloading Pg.
    [Show full text]