This Dissertation Has Been 62—2136 M Icrofilm Ed Exactly As Received GIELISSE, Peter Jacob M., 1934- INVESTIGATION of PHASE EQ

Total Page:16

File Type:pdf, Size:1020Kb

This Dissertation Has Been 62—2136 M Icrofilm Ed Exactly As Received GIELISSE, Peter Jacob M., 1934- INVESTIGATION of PHASE EQ This dissertation has been 62—2136 microfilmed exactly as received GIELISSE, Peter Jacob M., 1934- INVESTIGATION OF PHASE EQUILIBRIA IN THE SYSTEM ALUMINA-BORON OXIDE-SILICA. The Ohio State University, Ph.D., 1961 M ineralogy University Microfilms, Inc., Ann Arbor, Michigan INVESTIGATION OP PHASE EQUILIBRIA IN THE SYSTEM ALUMINA-BORON OXIDE-SILICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Peter Jacob M. Gielisse, M. S. The Ohio State University 1961 Approved by Adviser Department of Mineralogy ACKNOWLEDGMENTS The writer wishes to extend his sincere thanks to the many people without whose help the preparation of this dissertation would have been impossible. He is indebted in particular to his adviser, Dr. Wilfrid R. Foster, for his invaluable aid, advice and many kindnesses; to the other members of the faculty of the Department of Mineral ogy, Drs. Ernest G. Ehlers, Henry E. Wenden, and Rodney T Tettenhorst; and to his friend and colleague, Thomas J. Rockett. Acknowledgment is also made for financial support re­ ceived under contract No. AF 33(616)-3189, sponsored by Aeronautical Research Laboratories, Air Force Research Division, Wright Patterson Air Force Base, Ohio; as well as for aid received through a Mershon National Graduate Fellowship awarded to the writer by the Mershon Committee on Education in National Security for 1960-‘61'. It goes without saying that he is also most grate­ ful to his wife, Anna, for her excellent help and encour­ agement over the years. TABLE OF CONTENTS Page INTRODUCTION ....................................... 1 PRESENTATION OF THE PROBLEM.......................... 3 LITERATURE S U R V E Y ................................... 3 The Binary S y s t e m s ................................ 3 The Ternary S y s t e m ................................ 9 METHOD OF INVESTIGATION ........................... 11 General Remarks ................................. 11 Raw Materials..................................... 11 Preparation of Samples ........................... 14 Heat Treatment of Samples......................... 16 Phase Identification ............................ 20 PRESENTATION OF EXPERIMENTAL D A T A ................... 22 The Binary System AI2O3-B2O3 ...................... 22 The Ternary System Al2 0 3-B2 0>$-Si0 2 ................ 23 DISCUSSION OF RESULTS .............................. 40 The Binary System AI2O3-B2O3 ...................... 40 Compound stability ........................... 40 Attempted synthesis of jeremejevite ............ 49 Liquidus d a t a .................................. 36 Tentative phase diagram ........................ 37 The Ternary System Al2 0 3-B2 0 3~Si02 ............... 62 Compound formation . 62 Attempted synthesis of sillimanite with boron oxide f l u x .................................. 63 Phase compatibilities......................... 7^ Liquidus data and primary fields ............... 77 Tentative Phase diagram ........................ 80 SUMMARY ............................................ 84 BIBLIOGRAPHY ....................................... 86 AUTOBIOGRAPHY . 90 iii LIST OF TABLES Table Fage 1. Compilation of important optical and x-ray d a t a .......................................... 25 2. Thermal data for firings in the system Na2 0—AI2O3—B2O3 . ........................ 26 3. Selected thermal data for AI2O3-B2OZ mix­ tures ....................................... 27 4-. X-ray results of selected firings on the stability of 2AI2OV.B2O3 in sealed platinum capsules ........................... 29 5. Summary of firing data of selected tour­ malines ....................................... 30 6. Experimental data on attempted sillimanite s y n t h e s i s .................................... 31 7. Compositional and thermal data for solid • state reactions in the system AI0O3-B2O2- S i 0 2 .............................. • • • 33 8 . Experimental data for the determination of liquidus temperatures in the system alumina-boron oxide-silica ............... 36 iv LIST OF ILLUSTRATIONS Figure Page 1 . Diagrammatic presentation of the experiment­ al work carried out in the system alumina- boron oxide ................................... 42 2. X-ray diffractometer patterns: (A) the com­ pound 9AI2O3.2B2O3; (B) the compound 2AI2O3. B203 . 48 3. X-ray diffractometer patterns of magnesium tourmalines................................... 55 4. X-ray diffractometer patterns of alkali tourmalines................................... 5 5 5. Tentative phase diagram for the system alumina-boron oxide ........................ 5 9 6. X-ray diffractometer patterns: (A) mullite; (B) sillimanite; (C) sillimanite synthesis. 69 7» X-ray diffractometer patterns: (A) mullite; (B) decomposed alkali tourmaline; (C) sil­ limanite synthesis; (D) 9AI2O3.2B2O3. 72 8 . Preliminary phase diagram for the system alumina-boron oxide-silica .................. 82 v INTRODUCTION This investigation is concerned with the high tem­ perature equilibrium phase relations between the oxides of aluminum, boron and silicon at atmospheric pressure. The elements silicon and aluminum list second and third respectively in abundance of all elements in crust- al rocks, and form, in coordination with oxygen, the ba­ sic building blocks of many minerals. Their oxides are well known for their natural occurrence as quartz and corundum. Not so abundant is the lesser known element boron, which in nature occurs chiefly in such minerals as axinite, tourmaline, dumortierite, kernite and borax. Technologically the properties of the highly re­ fractory AI20^ and SiOg are well known. They become ex­ tremely important when combined into the compounds 3Al2 0^.2Si02 (mullite) and the various polymorphs of A^Oj.SiC^. They are of great value in the ceramic in­ dustry and are used in porcelahs and ceramic ware be­ cause they are highly refractory, have relatively low thermal expansion and good resistance to heat shock (Poster I960). Lastly, boron oxide has long been used as a flux and mineralizer in both ceramic technology 1 2 and experimental mineralogy, and boroaluminate has been suggested as a refractory. Because of its great importance in silicate tech­ nology, the system A^O^-SiO^, has, ever since its first presentation by Bowen and Greig (1924), attracted large numbers of investigators and has consequently been changed and rechanged. However, the lack of available information on the phase relations between these oxides and both binary and ternary, stands in sharp con­ trast with the wealth of data accumulated over the years for the system AlgO^-SiOg* An investigation of the system A^O^-B^O^-SiOg > therefore, is of importance - mineralogically and tech­ nologically - from both the theoretical and the prac­ tical point of view. PRESENTATION OP THE PROBLEM The thermal relations of with many other ox­ ides, both refractory and non-refractory, are well known. Reliable phase diagrams depicting the equilib­ rium relations of boron oxide with these oxides are readily available (Levin et al, 1956). There are, how­ ever a few exceptions. The binary system for example, does not appear to have been thoroughly investigated heretofore, while the only work in the ternary system has been confined to liquidus determinations in the high silica portion of the diagram by Dietzel and Scholze (1954)* High vis­ cosity of the melts, especially in the high SiC^ reg­ ions, and high volatility of boron oxide, especially at the elevated temperatures necessitated by the re­ fractory nature of two of the oxides, is believed to account for the absence of systematic studies of phase equilibria in these systems to date. It is in view of these considerations that the main purpose of this investigation, to develop a suit­ able phase diagram for the systems AlgOj-BgO^ and 5 within limits of the experimental equipment at hand, seems warranted. Furthermore, a most vexing problem in petrology, that of the precise relationship between the polymorphs of AlgO^.SiC^, is bound to receive additional attention in any thermochemical investigation among the oxides in question. Subsequently experiments were carried out to synthesize the mineral sillimanite at atmospheric pres­ sure. They have, however, led to results which cast doubt on the synthesis reported in the literature. Fur­ thermore, a correlation was made between the product of this synthesis and that of the decomposition product of alkali tourmalines, which is believed to be a boron-con­ taining mullite. LITERATURE SURVEY The Binary Systems Of all three binary systems involved, only one, the system Al20 ^-Si0 2 , bas been systematically investigated and presented as a phase diagram. Knowledge of the other two binary systems is limited to direct knowledge from studies made of the thermal behavior of compositions of the oxides or compounds, or deduction from other, chief­ ly ternary systems. As already pointed out, the system AlgO^-BgOj will be described in the present study, while investigations in the system SiO^-B^O^ are currently be­ ing finished and prepared for publication by my colleague Thomas J. Rockett in the mineralogical laboratories of the Ohio State University. The first reliable diagram for the system Alo0 -Si0o d $ £ was prepared as early as 1924 in a classic study by Bowen and Greig. It showed that mullite (3A120^.2Si02), as the only stable compound at high temperatures, melted incon- gruently to corundum and liquid at 1810°C. A eutectic be­ tween Si02 and mullite occurred at a composition
Recommended publications
  • Phase Evolution of Ancient and Historical Ceramics
    EMU Notes in Mineralogy, Vol. 20 (2019), Chapter 6, 233–281 The struggle between thermodynamics and kinetics: Phase evolution of ancient and historical ceramics 1 2 ROBERT B. HEIMANN and MARINO MAGGETTI 1Am Stadtpark 2A, D-02826 Go¨rlitz, Germany [email protected] 2University of Fribourg, Department of Geosciences, Earth Sciences, Chemin du Muse´e 6, CH-1700 Fribourg, Switzerland [email protected] This contribution is dedicated to the memory of Professor Ursula Martius Franklin, a true pioneer of archaeometric research, who passed away at her home in Toronto on July 22, 2016, at the age of 94. Making ceramics by firing of clay is essentially a reversal of the natural weathering process of rocks. Millennia ago, potters invented simple pyrotechnologies to recombine the chemical compounds once separated by weathering in order to obtain what is more or less a rock-like product shaped and decorated according to need and preference. Whereas Nature reconsolidates clays by long-term diagenetic or metamorphic transformation processes, potters exploit a ‘short-cut’ of these processes that affects the state of equilibrium of the system being transformed thermally. This ‘short-cut’ is thought to be akin to the development of mineral-reaction textures resulting from disequilibria established during rapidly heated pyrometamorphic events (Grapes, 2006) involving contact aureoles or reactions with xenoliths. In contrast to most naturally consolidated clays, the solidified rock-like ceramic material inherits non-equilibrium and statistical states best described as ‘frozen-in’. The more or less high temperatures applied to clays during ceramic firing result in a distinct state of sintering that is dependent on the firing temperature, the duration of firing, the firing atmosphere, and the composition and grain-size distribution of the clay.
    [Show full text]
  • Synthesis of Hexacelsian Barium Aluminosilicate by Film Boiling Chemical Vapour Process C
    Synthesis of hexacelsian barium aluminosilicate by film boiling chemical vapour process C. Besnard, A. Allemand, P. David, Laurence Maillé To cite this version: C. Besnard, A. Allemand, P. David, Laurence Maillé. Synthesis of hexacelsian barium aluminosilicate by film boiling chemical vapour process. Journal of the European Ceramic Society, Elsevier, In press, 10.1016/j.jeurceramsoc.2020.02.021. hal-02494032 HAL Id: hal-02494032 https://hal.archives-ouvertes.fr/hal-02494032 Submitted on 28 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Synthesis of hexacelsian barium aluminosilicate by film boiling chemical vapour process C. Besnard1, A. Allemand1-2, P. David2, L. Maillé1* 1University of Bordeaux, CNRS, Safran, CEA, Laboratoire des Composites ThermoStructuraux (LCTS), UMR 5801, F-33600 Pessac 2CEA Le Ripault, F-37260, Monts * Corresponding author, email address: [email protected] Abstract An original oxide/oxide ceramic-matrix composite containing mullite-based fibers and a barium aluminosilicate matrix has been synthesized by the film boiling chemical vapour infiltration process. Alkoxides were used as liquid precursors for aluminum, silicon and barium oxides. The structure and microstructure of the oxide matrix were characterized by Scanning Electron Microscopy, Energy Dispersive Spectroscopy and X-ray diffraction.
    [Show full text]
  • Synthetic Mullite Precursors: Preparation, Structure, and Transformation Behaviour
    Synthetic Mullite Precursors: Preparation, Structure, and Transformation Behaviour Habilitationsschrift zur Erlangung der Lehrbefugnis für das Fachgebiet Materialwissenschaften an der Gemeinsamen Fakultät für Bergbau, Hüttenwesen und Maschinenwesen der Technischen Universität Clausthal vorgelegt von: Martin Schmücker Deutsches Zentrum für Luft- und Raumfahrt (DLR) Institut für Werkstoff-Forschung 51147 Köln 2003 2 Vorwort Die vorliegende Habilitationsschrift "Synthetic Mullite Precursors: Preparation, Structure, and Transformation Behaviour" basiert auf meinen Arbeitsschwerpunkten "Struktur nichtkristalliner Aluminiumsilikate" und "Frühstadien der Mullitbildung". Diese Themenbereiche habe ich -neben verschiedenen anderen Aktivitäten- während meiner 10-jährigen Tätigkeit im Institut für Werkstoff-Forschung des DLR konzeptionell entwickelt und kontinuierlich bearbeitet. Die Untersuchungen zur Struktur nichtkristalliner Aluminiumsilikate erfolgten zusammen mit internationalen Kooperationspartnern sowie im Rahmen des DFG-Sonderforschungsbereichs 408 (Anorganische Festkörper ohne Translationssysmmetrie, Univ. Bonn). Während diese Arbeiten überwiegend grundlagenorientiert waren, war der Hintergrund für meine Untersuchungen zur Mullitbildung stärker anwendungsbezogen: Der Einsatz von mullitbasierter Hochleistungskeramik z. B. für thermisch exponierte Bauteile im Bereich von Luftfahrt, Raumfahrt und Antriebstechnik setzt ein tieferes Verständnis der Mullitbildungsmechanismen voraus. Es zeigte sich, daß die Arbeiten zur Mullitbildung und zur Struktur
    [Show full text]
  • The New IMA List of Gem Materials – a Work in Progress – Updated: July 2018
    The New IMA List of Gem Materials – A Work in Progress – Updated: July 2018 In the following pages of this document a comprehensive list of gem materials is presented. The list is distributed (for terms and conditions see below) via the web site of the Commission on Gem Materials of the International Mineralogical Association. The list will be updated on a regular basis. Mineral names and formulae are from the IMA List of Minerals: http://nrmima.nrm.se//IMA_Master_List_%282016-07%29.pdf. Where there is a discrepancy the IMA List of Minerals will take precedence. Explanation of column headings: IMA status: A = approved (it applies to minerals approved after the establishment of the IMA in 1958); G = grandfathered (it applies to minerals discovered before the birth of IMA, and generally considered as valid species); Rd = redefined (it applies to existing minerals which were redefined during the IMA era); Rn = renamed (it applies to existing minerals which were renamed during the IMA era); Q = questionable (it applies to poorly characterized minerals, whose validity could be doubtful). Gem material name: minerals are normal text; non-minerals are bold; rocks are all caps; organics and glasses are italicized. Caveat (IMPORTANT): inevitably there will be mistakes in a list of this type. We will be grateful to all those who will point out errors of any kind, including typos. Please email your corrections to [email protected]. Acknowledgments: The following persons, listed in alphabetic order, gave their contribution to the building and the update of the IMA List of Minerals: Vladimir Bermanec, Emmanuel Fritsch, Lee A.
    [Show full text]
  • Implementation of Mathematical Equation for Calculating Alumina Extraction from Bauxite Tailing Digestion
    International Conference on Applied Mathematics, Simulation and Modelling (AMSM 2016) Implementation of Mathematical Equation for Calculating Alumina Extraction from Bauxite Tailing Digestion Saini Hu Mineral and Coal Technology Research and Development CenterJalan Jenderal Sudirman No. 623 Bandung-Indonesia Abstract—Research on bauxite digesting using pressurized Washing is one of methods that are usually used to upgrade reactor at a capacity of 86,66 kg of feed/batch had been alumina content of bauxite by separating primary mineral conducted. Bauxite with -150 mesh of particle size is reacted impurities like clay, silica, iron, and titanium that are with 42,15 kg of caustic soda with concentration of 433,49 g/l at attached on the surface of crude bauxite [3]. Trommol screen the temperature of 140oC for 1.0 to 2.5 hours using steam as is common equipment to wash and screen coarse bauxite heating media. Lime added are varied from 3 to 9 kg. After from very fine particles size by supporting pressurized spray processing for a certain period of time, slurry product is water. By using water spraying and screening, smaller transferred into a Mixer. To evaluate percent yield of Al2O3 particles attached on the surface of crude bauxite is easy to extraction from this process, measuring the height of slurry separate. Therefore, there are two products of washing, level in the Mixer, densities of the slurry, filtrate, and solid namely washed bauxite having +2mm of particle size with residue are conducted. Head sample of bauxite, filtrate and high content of alumina and tailing having –2mm of particle residue are analysed by using wet method to get Al2O3 content size with lower content of alumina.
    [Show full text]
  • Kyanite and Related Minerals
    KYANITE AND RELATED MINERALS (Data in metric tons unless otherwise noted) Domestic Production and Use: In Virginia, one firm with integrated mining and processing operations produced an estimated 85,000 tons of kyanite worth $30 million from two hard-rock open pit mines and synthetic mullite by calcining kyanite. Two other companies, one in Alabama and another in Georgia, produced synthetic mullite from materials mined from four sites; each company sourced materials from one site in Alabama and one site in Georgia. Synthetic mullite production data are withheld to avoid disclosing company proprietary data. Commercially produced synthetic mullite is made by sintering or fusing such feedstock materials as kyanite, kaolin, bauxite, or bauxitic kaolin. Natural mullite occurrences typically are rare and not economical to mine. Of the kyanite-mullite output, 90% was estimated to have been used in refractories and 10% in other uses, including abrasive products, such as motor vehicle brake shoes and pads and grinding and cutting wheels; ceramic products, such as electrical insulating porcelains, sanitaryware, and whiteware; foundry products and precision casting molds; and other products. An estimated 60% to 70% of the refractory use was by the iron and steel industries, and the remainder was by industries that manufacture cement, chemicals, glass, nonferrous metals, and other materials. Andalusite was commercially mined from an andalusite-pyrophyllite-sericite deposit in North Carolina and processed as a blend of primarily andalusite for use
    [Show full text]
  • Investigation of Lime Usage Impacts on Bauxite Processability at ETI Aluminyum Plant
    International Journal of Industrial Chemistry (2019) 10:57–66 https://doi.org/10.1007/s40090-019-0171-x RESEARCH Investigation of lime usage impacts on bauxite processability at ETI Aluminyum Plant Hüseyin Arıkan1 · Gökhan K. Demir2 · Sema Vural3 Received: 29 March 2018 / Accepted: 3 February 2019 / Published online: 11 February 2019 © The Author(s) 2019 Abstract ETI Aluminyum A.Ş., the primary aluminium manufacturer of Turkey, is also one of the major integrated plants of the world capable of performing production from mining until end product. The alumina refnery was designed on a certain boehmitic bauxite quality basis. However, bauxite properties have changed over the years, resulting in the urgent need for process opti- mization to not only keep the refnery cost efcient, but also prevent serious bottlenecks in the near future. Lime can be used to overcome problems when using bauxites with specifc and variable chemical and mineralogical characteristics. Although lime is extensively used when processing diasporic bauxites, the studies on boehmitic bauxites and the overall efects on the process are limited. In this paper, lime impact was investigated at all stages of the Bayer process including the efect on alumina quality, energy and raw material consumptions. The results showed signifcant improvements in the product quality as well as recordable savings on consumptions. Keywords Bayer process · Lime usage · Caustic consumption · Digestion · Alumina quality · Boehmitic bauxite Introduction crystalline structure to boehmite. Diferences in ore compo- sition and presence of iron, silicon and titanium impurities The Bayer process is used for producing alumina (Al2O3) infuence their subsequent processing [3, 4]. Thus, it is nec- from bauxite ore.
    [Show full text]
  • High Pressure Behavior of Mullite-Type Oxides: Phase Transitions, Amorphization, Negative Linear Compressibility and Microstructural Implications
    UNLV Theses, Dissertations, Professional Papers, and Capstones 5-1-2015 High Pressure Behavior of Mullite-Type Oxides: Phase Transitions, Amorphization, Negative Linear Compressibility and Microstructural Implications Patricia Kalita University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Ceramic Materials Commons, Condensed Matter Physics Commons, and the Engineering Science and Materials Commons Repository Citation Kalita, Patricia, "High Pressure Behavior of Mullite-Type Oxides: Phase Transitions, Amorphization, Negative Linear Compressibility and Microstructural Implications" (2015). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2369. http://dx.doi.org/10.34917/7645928 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. HIGH PRESSURE BEHAVIOR OF MULLITE-TYPE OXIDES: PHASE TRANSITIONS, AMORPHIZATION, NEGATIVE LINEAR COMPRESSIBILITY AND MICROSTRUCTURAL IMPLICATIONS by Patricia E. Kalita Bachelor of Sciences in Physics University of Nevada Las Vegas 2006 Master of Sciences in Physics University of Nevada Las Vegas 2008 A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy – Physics Department of Physics and Astronomy College of Sciences Graduate College University of Nevada, Las Vegas May 2015 Copyright by Patricia E.
    [Show full text]
  • Mineral Collectors and Researchers Need a Permit from the Mandarine Garnet, Kaokoveld Ministry of Mines and Energy for All Material Collected Or Purchased
    N A M I B I A G 3 E 0 ARE YOU A COLLECTOR O 9 1 L - O Y G E I V C R A U OF MINERALS OR FOSSILS? L S Here is what you need to know about collecting in Namibia Famous for its exceptional variety in precious and semi-precious stones, Namibia hosts such world-renowned mineral localities as Spitzkoppe, Erongo and Brandberg, amongst others, which Azurite (left) and malachite are being visited by many professional and hobby (below) from Tsumeb Mine collectors each year. But while we are proud to share this heritage with those who appreciate it, there are certain rules and regulations to be fol- Vanadinite, Otavi Mountains lowed, when exporting minerals. Elbaite (Tourmaline, right), Dioptase, Otjua Mine, near Karibib Omaue Mine, Kaokoland Smithsonite, Tsumeb Fluorite, Okorusu Mine Claims for semi-precious stones Jeremejevite are reserved for Namibian nationals, many of whom make a living by dig- ging for gemstones, amongst which Beryl, var. Aquamarine tourmaline, topaz, aquamarine, gar- from the Erongo Mountains net and amethyst are the most com- mon, and selling them in roadside stalls. Collectors’ specimens are also Fluorite sold by a number of formal stores in Windhoek and Swakopmund. Monazite, Eureka Carbonatite Private mineral collectors and researchers need a permit from the Mandarine garnet, Kaokoveld Ministry of Mines and Energy for all material collected or purchased, while the export of mineral speci- Andradite, var. Demantoid, Erongo mens for commercial purposes in Quartz crystal with tourmaline needles, Gamsberg (above) addition requires a permit from the Amethyst, Brandberg Ministry of Trade and Industry (it is Gypsum “rose”, advisable to allow two working Namib Desert days for the issuing of the permit).
    [Show full text]
  • Fall 2001 Gems & Gemology
    Fall 2001 VOLUME 37, NO. 3 EDITORIAL 173 Shedding Light on “Fire” William E. Boyajian FEATURE ARTICLE 174 Modeling the Appearance of the Round Brilliant Cut Diamond: An Analysis of Fire, and More About Brilliance Ilene M. Reinitz, Mary L. Johnson, T. Scott Hemphill, Al M. Gilbertson, Ron H. Geurts, Barak D. Green, and James E. Shigley GIA’s latest research on diamond cut introduces a metric for fire, DCLR, and reveals that all facets of a round brilliant affect its fire and brilliance. pg. 175 NOTES AND NEW TECHNIQUES 198 Pyrope from the Dora Maira Massif, Italy Alessandro Guastoni, Federico Pezzotta, Margherita Superchi, and Francesco Demartin A report on the unusual pale purple to purplish pink garnets from the Western Alps of Italy. 206 Jeremejevite: A Gemological Update Kenneth Scarratt, Donna Beaton, and Garry DuToit pg. 207 A detailed examination of this rare gemstone, using both standard and advanced testing methods. REGULAR FEATURES 212 Gem Trade Lab Notes •Gem baddeleyite •Conch “pearls” •13 ct datolite •Carved “Hamsa” dia- mond •Heat-treated black diamonds •Update on blue and pink HPHT- annealed diamonds •Fracture-filled “bloodshot” iolite •Maw-sit-sit beads •Two unusual opals •Unusual star sapphire 220 2001 Challenge Winners 222 Gem News International •2nd World Diamond Conference •Diamonds from Copeton,Australia •Maxixe-type beryls •Gems from Pala,California •Vanadium-colored pg. 216 green beryl from China •Statuette with a large natural blister pearl •Carpet shell pearl •Tahitian “keshi” cultured pearls•Pearl culturing in northwest Australia •Chilean powellite •Anhydrite inclusion in ruby •Ruby and sapphire from Australia and northern Myanmar •“Spider” quartz •Nigerian tourmaline •Langasite and a related material •Synthetic ruby “crystal” from Sri Lanka •Medieval sapphire imitations 246 Book Reviews 249 Gemological Abstracts pg.
    [Show full text]
  • Development and Properties of New Mullite Based Refractory Grog
    materials Article Development and Properties of New Mullite Based Refractory Grog David Zemánek 1,2 , Karel Lang 2, Lukáš Tvrdík 2, Dalibor Všianský 3, Lenka Nevˇrivová 1,2, Petr Štursa 2,3, Pavel Kováˇr 3, Lucie Keršnerová 3 and Karel Dvoˇrák 1,* 1 Faculty of Civil Engineering, Brno University of Technology, Veveˇrí 331/95, 602 00 Brno, Czech Republic; [email protected] (D.Z.); [email protected] (L.N.) 2 P-D Refractories CZ JSC, Nádražní 218, 679 63 Velké Opatovice, Czech Republic; [email protected] (K.L.); [email protected] (L.T.); [email protected] (P.Š.) 3 Department of Geological Sciences, Faculty of Science, Masaryk University, Kotláˇrská 267/2, 602 00 Brno, Czech Republic; [email protected] (D.V.); [email protected] (P.K.); [email protected] (L.K.) * Correspondence: [email protected]; Tel.: +420-54114-7511 (ext. 8067) Abstract: The presented study is focused on optimization and characterization of a high-alumina refractory aggregate based on natural raw materials—kaolins, claystone, and mullite dust by-product (used to increase the alumina and mullite contents, respectively). In total, four individual formulas with the Al2O3 contents between 45 and 50 wt.% were designed; the samples were subsequently fired, both in a laboratory oven and an industrial tunnel furnace. The effects of repeated firing were examined during industrial pilot tests. Mineral and chemical compositions and microstructures, of both the raw materials and designed aggregates, were thoroughly investigated by the means of X-ray fluorescence spectroscopy, powder X-ray diffraction, and optical and scanning electron microscopies.
    [Show full text]
  • Chemicals Used for Treatment of Water Intended for Human Consumption — Sodium Aluminate BS EN 882:2016 BRITISH STANDARD
    BS EN 882:2016 BSI Standards Publication Chemicals used for treatment of water intended for human consumption — Sodium aluminate BS EN 882:2016 BRITISH STANDARD National foreword This British Standard is the UK implementation of EN 882:2016. It supersedes BS EN 882:2004 which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee CII/59, Chemicals for drinking water treatment. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2016. Published by BSI Standards Limited 2016 ISBN 978 0 580 90466 0 ICS 13.060.20; 71.100.80 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 April 2016. Amendments issued since publication Date Text affected BS EN 882:2016 EUROPEAN STANDARD EN 882 NORME EUROPÉENNE EUROPÄISCHE NORM March 2016 ICS 71.100.80 Supersedes EN 882:2004 English Version Chemicals used for treatment of water intended for human consumption - Sodium aluminate Produits chimiques utilisés pour le traitement de l'eau Produkte zur Aufbereitung von Wasser für den destinée à la consommation humaine - Aluminate de menschlichen Gebrauch - Natriumaluminat sodium This European Standard was approved by CEN on 18 January 2016. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
    [Show full text]