Genetic Variation of Southeast Asian Crocodile, Tomistoma Schlegelii Muller, Using Microsatellite and Inter Simple Sequence Repeat Markers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tomistoma Tomistoma Schlegelii Mark R
Tomistoma Tomistoma schlegelii Mark R. Bezuijen1, Bruce M. Shwedick2, Ralf Sommerlad3, Colin Stevenson4 and Robert B. Steubing5 1 PO Box 183, Ferny Creek, Victoria 3786, Australia ([email protected]); 2 Crocodile Conservation Services, PO Box 3176, Plant City, FL 33563, USA ([email protected]); 3 Roedelheimer Landstr. 42, Frankfurt, Hessen 60487, Germany ([email protected]); 4 Crocodile Encounters, 37 Mansfi eld Drive, Merstham, Surrey, UK ([email protected]); 5 10 Locust Hill Road, Cincinnati, OH 45245, USA ([email protected]) Common Names: Tomistoma, sunda gharial, false gharial, 2009 IUCN Red List: EN (Endangered. Criteria: C1: buaya sumpit, buaya senjulung/Julung (Indonesia), takong Population estimate is less than 2500 mature individuals, (Thailand) with continuing decline of at least 25% within 5 years or two generations. Widespread, but in low numbers; IUCN 2009). It is likely that criteria A1(c): “a decline in the area Range: Indonesia (Kalimantan, Sumatra, Java), Malaysia of occupancy, extent of occurrence and/or decline in habitat” (Peninsular Malaysia, Sarawak), Brunei, Thailand also applies, as habitat loss is the key threat to the species. (extirpated?) (Last assessed in 2000). Principal threats: Habitat destruction Ecology and Natural History Tomistoma (Tomistoma schlegelii) is a freshwater, mound- nesting crocodilian with a distinctively long, narrow snout. It is one of the largest of crocodilians, with males attaining lengths of up to 5 m. The current distribution of Tomistoma extends over lowland regions of eastern Sumatra, Kalimantan and western Java (Indonesia) and Sarawak and Peninsular Malaysia (Malaysia), within 5 degrees north and south of the equator (Stuebing et al. 2006). Tomistoma apparently occurred in southern Thailand historically, but there have been no reports since at least the 1970s and it is probably extirpated there (Ratanakorn et al. -
The Contribution of Skull Ontogenetic Allometry and Growth Trajectories to the Study of Crocodylian Relationships
EVOLUTION & DEVELOPMENT 12:6, 568–579 (2010) DOI: 10.1111/j.1525-142X.2010.00442.x The Gavialis--Tomistoma debate: the contribution of skull ontogenetic allometry and growth trajectories to the study of crocodylian relationships Paolo Piras,a,b,Ã Paolo Colangelo,c Dean C. Adams,d Angela Buscalioni,e Jorge Cubo,f Tassos Kotsakis,a,b Carlo Meloro,g and Pasquale Raiah,b aDipartimento di Scienze Geologiche, Universita` Roma Tre, Largo San Leonardo Murialdo, 1, 00146 Roma, Italy bCenter for Evolutionary Ecology, Largo San Leonardo Murialdo, 1, 00146 Roma, Italy cDipartimento di Biologia e Biotecnologie ‘‘Charles Darwin,’’ Universita` di Roma ‘‘La Sapienza’’, via Borelli 50, 00161 Roma, Italy dDepartment of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA eUnidad de Paleontologı´a, Departamento de Biologı´a, Facultad de Ciencias, Universidad Auto´noma de Madrid, 28049 Madrid, Spain fUniversite´ Pierre et Marie Curie-Paris 6, UMR CNRS 7193-iSTeP, Equipe Biomineralisations, 4 Pl Jussieu, BC 19, Paris 75005, France gHull York Medical School, The University of Hull, Cottingham Road, Hull HU6 7RX, UK hDipartimento di Scienze della Terra, Universita‘ degli Studi Federico II, L.go San Marcellino 10, 80138 Napoli, Italy ÃAuthor for correspondence (email: [email protected]) SUMMARY The phylogenetic placement of Tomistoma and stages of development. Based on a multivariate regression of Gavialis crocodiles depends largely upon whether molecular or shape data and size, Tomistoma seems to possess a peculiar morphological data are utilized. Molecular analyses consider rate of growth in comparison to the remaining taxa. However, its them as sister taxa, whereas morphological/paleontological morphology at both juvenile and adult sizes is always closer to analyses set Gavialis apart from Tomistoma and other those of Brevirostres crocodylians, for the entire head shape, crocodylian species. -
Genetic Diversity of False Gharial Tomistoma Schlegelii Based on Cytochrome B-Control Region (Cyt B-CR) Gene Analysis
Genetic Diversity of False Gharial Tomistoma schlegelii based on Cytochrome b-Control Region (cyt b-CR) Gene Analysis Muhamad Farhan Bin Badri (34975) Bachelor of Science with Honours (Aquatic Resource Science and Management) 2015 UNIVERSITJ MALAYSIASARAWAK Grade A- Please tick <V) Final Year Project Report Masters PhD DECIA RATJON OF ORIGINAL WORK This declaration is made on the... .;l... day of.. .. ;Jr.,-.v!y" year .....;;;,;;J].C;S: Stude nt's Declaration: I .. _ ~~_~!l.~_~.I? .f!J~_~~ __ . ~?.: ___~~e!: .. .J..3_ f:{~~ _./. £~... ____ .....-.---- ..----- ....-------.----......--.--..--- (PLEASE INDIC TE NAME. MATRIC NO. AND FACULTy) hereby declare that the work entitled. .~ft~ _ !l! ~~.'!.!J - f!~ - ~ b.':>!~.I-- !: --~~-~ ['JJ'.~! - .b.i.'.J--~:! ..~L~.":~B - ~ !.~.- ~ -~~?: is my original work. I have not copied from any other students' work or from any other sources with tbe exception where due reference or acknowledgement is made explicitly in th e text. nor has any part of the work been written for me by another person. r / 7 / :»')1 ~ MV~fI~AO F~IlH~'" p,Itv Il/!PlT G4'11S') Date submitted Name of the student (Mabic No.) Supervisor's Declaration: I,-- -OP,- - ~!!~~..~~!!.. !!~~_~ _ ...............__ .__ (SUPERVISOR'S NAME), herehy certify that the work entitled, q~~~-- ~.'".'!~~ - ~~~ - ~~~.~X: - ~~-~~i. ~}!lg-"'-- ~t_<;t ·~~jdTITLE ) was prepared by the aforementioned or above mentioned student, and was submitted to the "FACULTY' as a * partiaJJfuil fulfillment for the conferment of ._.¥h__J!~!.~..$.~~~_~L ~~A._ ~f!~~~- -
Vocalizations in Two Rare Crocodilian Species: a Comparative Analysis of Distress Calls of Tomistoma Schlegelii (Müller, 1838) and Gavialis Gangeticus (Gmelin, 1789)
NORTH-WESTERN JOURNAL OF ZOOLOGY 11 (1): 151-162 ©NwjZ, Oradea, Romania, 2015 Article No.: 141513 http://biozoojournals.ro/nwjz/index.html Vocalizations in two rare crocodilian species: A comparative analysis of distress calls of Tomistoma schlegelii (Müller, 1838) and Gavialis gangeticus (Gmelin, 1789) René BONKE1,*, Nikhil WHITAKER2, Dennis RÖDDER1 and Wolfgang BÖHME1 1. Herpetology Department, Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), Adenauerallee 160, 53113 Bonn, Germany. 2. Madras Crocodile Bank Trust, P.O. Box 4, Mamallapuram, Tamil Nadu 603 104, S.India. *Corresponding author, R. Bonke, E-mail: [email protected] Received: 07. August 2013 / Accepted: 16. October 2014 / Available online: 17. January 2015 / Printed: June 2015 Abstract. We analysed 159 distress calls of five individuals of T. schlegelii for temporal parameters and ob- tained spectral parameters in 137 of these calls. Analyses of G. gangeticus were based on 39 distress calls of three individuals, of which all could be analysed for temporal and spectral parameters. Our results document differences in the call structure of both species. Distress calls of T. schlegelii show numerous harmonics, whereas extensive pulse trains are present in G. gangeticus. In the latter, longer call durations and longer in- tervals between calls resulted in lower call repetition rates. Dominant frequencies of T. schlegelii are higher than in G. gangeticus. T. schlegelii specimens showed a negative correlation of increasing body size with de- creasing dominant frequencies. Distress call durations increased with body size. T. schlegelii distress calls share only minor structural features with distress calls of G. gangeticus. Key words: Tomistoma schlegelii, Gavialis gangeticus, distress calls, temporal parameters, spectral parameters. -
Fauna of Australia 2A
FAUNA of AUSTRALIA 39. GENERAL DESCRIPTION AND DEFINITION OF THE ORDER CROCODYLIA Harold G. Cogger 39. GENERAL DESCRIPTION AND DEFINITION OF THE ORDER CROCODYLIA Pl. 9.1. Crocodylus porosus (Crocodylidae): the salt water crocodile shows pronounced sexual dimorphism, as seen in this male (left) and female resting on the shore; this species occurs from the Kimberleys to the central east coast of Australia; see also Pls 9.2 & 9.3. [G. Grigg] Pl. 9.2. Crocodylus porosus (Crocodylidae): when feeding in the water, this species lifts the tail to counter balance the head; see also Pls 9.1 & 9.3. [G. Grigg] 2 39. GENERAL DESCRIPTION AND DEFINITION OF THE ORDER CROCODYLIA Pl. 9.3. Crocodylus porosus (Crocodylidae): the snout is broad and rounded, the teeth (well-worn in this old animal) are set in an irregular row, and a palatal flap closes the entrance to the throat; see also Pls 9.1 & 9.2. [G. Grigg] 3 39. GENERAL DESCRIPTION AND DEFINITION OF THE ORDER CROCODYLIA Pl. 9.4. Crocodylus johnstoni (Crocodylidae): the freshwater crocodile is found in rivers and billabongs from the Kimberleys to eastern Cape York; see also Pls 9.5–9.7. [G.J.W. Webb] Pl. 9.5. Crocodylus johnstoni (Crocodylidae): the freshwater crocodile inceases its apparent size by inflating its body when in a threat display; see also Pls 9.4, 9.6 & 9.7. [G.J.W. Webb] 4 39. GENERAL DESCRIPTION AND DEFINITION OF THE ORDER CROCODYLIA Pl. 9.6. Crocodylus johnstoni (Crocodylidae): the freshwater crocodile has a long, slender snout, with a regular row of nearly equal sized teeth; the eyes and slit-like ears, set high on the head, can be closed during diving; see also Pls 9.4, 9.5 & 9.7. -
An Eocene Tomistomine from Peninsular Thailand Jérémy Martin, Komsorn Lauprasert, Haiyan Tong, Varavudh Suteethorn, Eric Buffetaut
An Eocene tomistomine from peninsular Thailand Jérémy Martin, Komsorn Lauprasert, Haiyan Tong, Varavudh Suteethorn, Eric Buffetaut To cite this version: Jérémy Martin, Komsorn Lauprasert, Haiyan Tong, Varavudh Suteethorn, Eric Buffetaut. An Eocene tomistomine from peninsular Thailand. Annales de Paléontologie, Elsevier Masson, 2019, 10.1016/j.annpal.2019.03.002. hal-02121886 HAL Id: hal-02121886 https://hal.archives-ouvertes.fr/hal-02121886 Submitted on 6 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. An Eocene tomistomine from peninsular Thailand Un tomistominé éocène de la peninsule Thaïlandaise Jeremy E. Martin1, Komsorn Lauprasert2, Haiyan Tong2, Varavudh Suteethorn2 and Eric Buffetaut3 1Laboratoire de Géologie de Lyon: Terre, Planète et Environnement, UMR CNRS 5276 (CNRS, ENS, Université Lyon 1), Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France, email: [email protected] 2Palaeontological Research and Education Centre, Mahasarakham University, Khamrieng, 44150 Thailand 3Laboratoire de Géologie de l’Ecole Normale Supérieure, CNRS (UMR 8538), 24 rue Lhomond, Paris Cedex 05, 75231, France Abstract Skull and mandibular elements of a tomistomine crocodilian are described from the late Eocene to early Oligocene lignite seams of Krabi, peninsular Thailand. -
Abstract Book JMIH 2011
Abstract Book JMIH 2011 Abstracts for the 2011 Joint Meeting of Ichthyologists & Herpetologists AES – American Elasmobranch Society ASIH - American Society of Ichthyologists & Herpetologists HL – Herpetologists’ League NIA – Neotropical Ichthyological Association SSAR – Society for the Study of Amphibians & Reptiles Minneapolis, Minnesota 6-11 July 2011 Edited by Martha L. Crump & Maureen A. Donnelly 0165 Fish Biogeography & Phylogeography, Symphony III, Saturday 9 July 2011 Amanda Ackiss1, Shinta Pardede2, Eric Crandall3, Paul Barber4, Kent Carpenter1 1Old Dominion University, Norfolk, VA, USA, 2Wildlife Conservation Society, Jakarta, Java, Indonesia, 3Fisheries Ecology Division; Southwest Fisheries Science Center, Santa Cruz, CA, USA, 4University of California, Los Angeles, CA, USA Corroborated Phylogeographic Breaks Across the Coral Triangle: Population Structure in the Redbelly Fusilier, Caesio cuning The redbelly yellowtail fusilier, Caesio cuning, has a tropical Indo-West Pacific range that straddles the Coral Triangle, a region of dynamic geological history and the highest marine biodiversity on the planet. Caesio cuning is a reef-associated artisanal fishery, making it an ideal species for assessing regional patterns of gene flow for evidence of speciation mechanisms as well as for regional management purposes. We evaluated the genetic population structure of Caesio cuning using a 382bp segment of the mitochondrial control region amplified from over 620 fish sampled from 33 localities across the Philippines and Indonesia. Phylogeographic -
Breeding of False Gharial (Tomistoma Schlegelii) at Zoo Negara, Malaysia
Breeding of False Gharial ( Tomistoma schlegelii ) at Zoo Negara, Malaysia Abraham Mathew, M. Ganesan, Rozwan A. Majid and Claire Beastall Introduction The False Gharial ( Tomistoma schlegelii ) is a large fresh water crocodilian species. It lives in dense secluded areas of the rainforest fringes, mainly near slow moving rivers, swamps and lakes (Steel. R, 1989). With its long snout and cutting edge teeth, its diet primarily comprises fish, but small mammals may be consumed when the opportunity arises. This secretive animal spends most of its time submerged in water with just the nostrils and eyes visible. They also can be found in wallows or mud-holes. This once widespread species currently can be found only in Peninsular Malaysia, West Borneo, Java and Sumatra (Ross. C.A. and Magnusson. W.E .). With habitat destruction being the main contributor to their disappearance, it is believed that there are fewer than 2500 individuals left in the wild. The species is listed on Appendix 1 (Endangered) of the Convention of International Trade of Endangered Species (CITES) (Steel. R, 1989). In addition to this they are listed on Schedule 1 of the Wildlife Protection Act 1972, thereby afforded totally protected status within Peninsular Malaysia by the Department of Wildlife and National Parks (DWNP). Little is known of the biology of this species in the wild, and so captive breeding represents a great challenge. Animals and Behaviour Zoo Negara currently houses three adult males and one adult female. Three individuals were purchased from Singapore in 1989. Two additional animals were purchased the following year, one from the Singapore and the other from a local dealer. -
Comparison of Serum Phospholipase A2 Activities of All Known Extant Crocodylian Species
Advances in Biological Chemistry, 2017, 7, 151-160 http://www.scirp.org/journal/abc ISSN Online: 2162-2191 ISSN Print: 2162-2183 Comparison of Serum Phospholipase A2 Activities of All Known Extant Crocodylian Species Mark Merchant1*, Charles McAdon1, Stephanie Mead1, Justin McFatter1, Caleb D. McMahan2, Rebeckah Griffith3, Christopher M. Murray4 1Department of Chemistry, McNeese State University, Lake Charles, LA, USA 2The Field Museum of Natural History, Chicago, IL, USA 3Department of Math, Computer Science, and Statistics, McNeese State University, Lake Charles, LA, USA 4Department of Biology, Tennessee Technological University, Cookeville, TN, USA How to cite this paper: Merchant, M., Abstract McAdon, C., Mead, S., McFatter, J., McMahan, C.D., Griffith, R. and Murray, C.M. (2017) Serum samples from all 23 extant crocodilian species were tested for phospholipase Comparison of Serum Phospholipase A 2 A2 (PLA2) activity against nine different bacterial species. The data were used Activities of All Known Extant Crocodylian to generate a PLA activity profile for each crocodilian species, and the data were Species. Advances in Biological Chemistry, 2 7, 151-160. used to compare the activities of the three main lineages (Alligatoridae, Crocody- https://doi.org/10.4236/abc.2017.74010 lidae, and Gavialidae), the seven different genera, and to compare all of the 23 individual species. The data revealed that the three lineages of crocodilians (Alli- Received: July 22, 2017 Accepted: August 25, 2017 gatoridae, Crocodylidae, and Gavialidae) exhibited PLA2 activities toward nine spe- Published: August 28, 2017 cies of bacteria that were statistically distinguishable. In addition, the PLA2 activi- ties of crocodilians in a specific genus tended to be more similar to other mem- Copyright © 2017 by authors and bers in their genus than to members of other crocodilian genera. -
Niche Partitioning Between Juvenile Sympatric Crocodilians in Mesangat Lake, East Kalimantan, Indonesia
Staniewicz et al.: Niche partitioning in crocodiles Conservation & Ecology RAFFLES BULLETIN OF ZOOLOGY 66: 528–537 Date of publication: 21 September 2018 http://zoobank.org/urn:lsid:zoobank.org:pub:53236B97-7623-413C-B05E-E3327A353861 Niche partitioning between juvenile sympatric crocodilians in Mesangat Lake, East Kalimantan, Indonesia Agata Staniewicz1*, Natascha Behler2,3, Soeimah Dharmasyah4, Gareth Jones1 Abstract. Crocodilians are apex predators and sympatric species are likely to have different ecologies or morphologies in order to minimise competition between species, i.e., niche partitioning. Here, we examined the ecological niche factors that may affect competition between juvenile Siamese crocodiles (Crocodylus siamensis) and Tomistoma (Tomistoma schlegelii) in Mesangat Lake — the only documented area where the two species co-exist. This location has also been subjected to recent disturbance from logging and oil palm development. We identified and compared preferred habitats and stomach contents of each species. Tomistoma schlegelii were found predominantly in flooded forests, whileC. siamensis were mainly in open areas. However, overlap in prey choice between juvenile T. schlegelii and C. siamensis was significantly higher than expected by chance and invertebrates were the most frequent prey items in both species. High overlap in prey choice between the two species suggests that juvenile T. schlegelii and C. siamensis are generalist predators. Furthermore, the evidence of separation of habitat combined with overlap in prey choice indicates competition-driven niche partitioning between C. siamensis and T. schlegelii. This paper provides basis for co-ordinated conservation efforts for the two threatened species in this unique ecosystem. Key words. Crocodiles, tropical wetlands, diet, Sunda gharial, Borneo INTRODUCTION lead to cascading changes in community dynamics (Estes et al., 2011). -
False Gharial (Tomistoma Schlegelii) Surveys in Southeast Sumatra, Indonesia (1995-2002)
FALSE GHARIAL (TOMISTOMA SCHLEGELII) SURVEYS IN SOUTHEAST SUMATRA, INDONESIA (1995-2002) Wildlife Management In ternational Pty Limited PROJECT SPONSORS Fauna & Flora International Cleveland Zoological Society (Cleveland Metroparks Zoo) Wildlife Management International Pty Limited Wetlands International (Greater Berbak – Sembilang Integrated Coastal Wetland Conservation Project) Sophie Danforth Conservation Biology Fund (Roger Williams Park Zoo) Mark R. Bezuijen1, Ferry Hasudungan2, Riza Kadarisman3, Grahame J.W. Webb1, Suryanto Adi Wardoyo2, S. Charlie Manolis1 and Samedi4 November 2002 1Wildlife Management International Pty Limited, PO Box 530, Sanderson, Northern Territory, Australia 0812. Email: [email protected]; 2Wetlands International, Jl. Sumpah Pemuda Blok K-3 Kel. Lorok Pakjo, Palembang 30137, South Sumatra Province, Sumatra, Indonesia; 3Balai Konservasi Sumber Daya Alam Sumatera Selatan, Departemen Kehutanan, Jln. Kol. H. Barlian, Punti Kayu km 6, No. 79, Palembang, South Sumatra Province, Sumatra, Indonesia; Perlindungan Hutan dan Pelestarian Alam (PHKA), Manggala Wanabakti Blok VII Lt 7, Jakarta Report citation: Bezuijen, M.R., Hasudungan, F., Kadarisman, R., Webb, G.J.W., Wardoyo, S.A., Manolis, S.C. and Samedi (2002). False Gharial (Tomistoma schlegelii) surveys in southeast Sumatra, Indonesia (1995-2002). Unpublished Report, Wildlife Management International Pty Limited, Darwin. Cover photos (M. Bezuijen): The Merang River, South Sumatra Province. Lower reaches (top left) & upper reaches (bottom left, showing intensive -
Gharial Gavialis Gangeticus Colin Stevenson1 and Romulus Whitaker2
Gharial Gavialis gangeticus Colin Stevenson1 and Romulus Whitaker2 1 Crocodile Encounters, 37 Mansfi eld Drive, Merstham, Surrey, UK ([email protected]); 2 Ex-Offi cio Trustee, Madras Crocodile Bank Trust, PO Box 21, Chengalpattu, Tamil Nadu 603001, India ([email protected]) Common Names: Gharial, Indian Gharial, gavial regarded as an adaptation to a predominantly fi sh diet. It is one of the largest of the living crocodilians (males up to 6 Range: India, Nepal, Bangladesh (extinct?), Bhutan (extinct), m, and average weight of around 160 kg). The species is Myanmar (extinct), Pakistan (extinct) the only member of the Family Gavialidae, although recent molecular evidence suggests that Tomistoma schlegelii also belongs to this family (Densmore 1983; Willis et al. 2007). The Gharial is arguably the most thoroughly aquatic of the extant crocodilians, and adults apparently do not have the ability to walk in a semi-upright stance as other crocodilians do (Bustard and Singh 1978; Whitaker and Basu 1983). Adult males grow a bulbous nasal appendage, which resembles an Indian pot called a ‘ghara’, from which the species derives its name. Figure 1. Distribution of Gavialis gangeticus. Conservation Overview CITES: Appendix I CSG Action Plan: Availability of survey data: Inadequate Figure 2. Gavialis gangeticus, featuring the distinctive ’ghara’ Need for wild population recovery: Highest of adult males. Photograph: Grahame Webb. Potential for sustainable management: Low 2009 IUCN Red List: CR (Critically Endangered. Criteria Historically, G. gangeticus was found in the northern part of A2bc. C1. A2: population decline ≥80% over the last 10 years the Indian subcontinent, in the Indus (Pakistan), Ganges (India or 3 generations (whichever is longer); C1: population size and Nepal), Mahanadi (India) and Brahmaputra (Bangladesh, estimated at less than 250 breeding adults; IUCN 2009) (last India and Bhutan) River systems.