Genetic Diversity of False Gharial Tomistoma Schlegelii Based on Cytochrome B-Control Region (Cyt B-CR) Gene Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Diversity of False Gharial Tomistoma Schlegelii Based on Cytochrome B-Control Region (Cyt B-CR) Gene Analysis Genetic Diversity of False Gharial Tomistoma schlegelii based on Cytochrome b-Control Region (cyt b-CR) Gene Analysis Muhamad Farhan Bin Badri (34975) Bachelor of Science with Honours (Aquatic Resource Science and Management) 2015 UNIVERSITJ MALAYSIASARAWAK Grade A- Please tick <V) Final Year Project Report Masters PhD DECIA RATJON OF ORIGINAL WORK This declaration is made on the... .;l... day of.. .. ;Jr.,-.v!y" year .....;;;,;;J].C;S:­ Stude nt's Declaration: I .. _ ~~_~!l.~_~.I? .f!J~_~~ __ . ~?.: ___~~e!: .. .J..3_ f:{~~ _./. £~... ____ .....-.---- ..----- ....-------.----......--.--..---­ (PLEASE INDIC TE NAME. MATRIC NO. AND FACULTy) hereby declare that the work entitled. .~ft~ _ !l! ~~.'!.!J - f!~ - ~ b.':>!~.I-- !: --~~-~ ['JJ'.~! - .b.i.'.J--~:! ..~L~.":~B - ~ !.~.- ~ -~~?: is my original work. I have not copied from any other students' work or from any other sources with tbe exception where due reference or acknowledgement is made explicitly in th e text. nor has any part of the work been written for me by another person. r / 7 / :»')1 ~ MV~fI~AO F~IlH~'" p,Itv Il/!PlT G4'11S') Date submitted Name of the student (Mabic No.) Supervisor's Declaration: I,-- -OP,- - ~!!~~..~~!!.. !!~~_~ _ ...............__ .__ (SUPERVISOR'S NAME), herehy certify that the work entitled, q~~~-- ~.'".'!~~ - ~~~ - ~~~.~X: - ~~-~~i. ~}!lg-"'-- ~t_<;t ·~~jdTITLE ) was prepared by the aforementioned or above mentioned student, and was submitted to the "FACULTY' as a * partiaJJfuil fulfillment for the conferment of ._.¥h__J!~!.~..$.~~~_~L ~~A._ ~f!~~~- . - - .. --------­ (PLEASE INDICATE THE DEGREE TITLE), and the aforementioned work, to the best of my knowledge, is the said student's work Received for examination by: o~ M ·lIl ~A II ~H4'" Date: (Name of the supervisor) I declare this Project!Thesis is classified as (Please tick (fJ): o CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)* o RESTRICTED (Contains restricted information as specified by the organisation where research was done)* ,)3OPEN ACCESS I declare this Project/Thesis is to be submitted to the Centre for Academic Information Selvices (CAlS) and uploaded into UNIMAS Institutional Repository (UNIMAS IR) (Please tick (fJ): ~ES Po~~ VaJidation of Pl'ojecttrhesis I hereby duly affirmed with free consent and willingness declared that this said Project!Thesis shall be placed officially in the Centre for Academic Information Selvices with the abide interest and rights as follows: • This Project!Thesis is the sole legal property of Universiti Malaysia Sru'awak (UNIMAS), • The Centre for Academic Information Services has the lawful right to make copies of the Project!Thesis for academic and research purposes only and not for other purposes, • The Centre for Academic Information Services has the lawful right to digitize the content to be uploaded into Local COlltent Database. • The Centre for Academic Information Services has the lawful right to make copies of the Project!Thesis if required for use by other parties for academic purposes or by other Higher Learning Institutes, • No dispute or any claim shall arise from the student hinIself / herself neither a third party on this Project!Thesis once it becomes the sole property of UNlMAS. • This Project!I'hesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student hinIselflherself without first obtaining approval from UNIMAS. Student's signature --,~,,---_=,,---,_____ _ Supervisor"s signature: -'--~--aFte=;)'fIH---- (Date) Notes: * If the Project!Thesis is CONFIDENTIAL or RES1'RICTED, please attach together as aIlllexure a letter from the orgaIIisation with the date of restriction indicated, and the reasons for the confidentiality and restriction. - [The instrument was prepared by The Centre for Academic Information Services] DECLARATION No portion of the work referred to in this dissertation has been submitted in support of an application for another degree qualification in this or any other university or institution of higher learning. Muhamad Farhan Bin Badri Aquatic Resource Science and Management Programme Faculty of Resource Science and Technology Universiti Malaysia Sarawak II Acknowledgement Alhamdulillah and my utmost gratitude to Allah SWT, for giving me strength, wisdom and knowledge to complete this dissertation and to keep me through many obstacles experienced prior the completion of this project. Hereby, I wish to take this opportunity to express my gratitude and appreciation to all those that have assisted, involved and guided me throughout the completion of this project. First of all, special thanks to Dr Ruhana Hassan, the Head of Department of Aquatic Science UNIMAS who is also my supervisor for trusting me to do this project and for giving me constructive advice, encouragement, guidance and assistance along the way until the completion of this project. Thank you very much for being so patient with me. Next, my appreciation goes to all postgraduate students in Aquatic Molecular Lab especially Miss Nursyuhaida Md Shahid and Mr Amirul Arib for their kind assistance in lab work and useful discussion that help me a lot in this project. Both of them had been actively and always been available to advise me and gave their countless help. Thank you very much. I would also like to extend my gratitude to my labmates and friends, especially to Miss Farhah Binti Dzarif for giving me continuous moral support. I could not finish this dissertation without their help. Last but not least, all my love and thanks goes to my family for always being there, giving me their support. Thank you. III Table of Contents Title and Front Cover I Declaration II Acknowledgement III Table of Contents IV List of Abbreviations VII List of Tables VIII List of Figures IX Abstract 1 1.0 Introduction 2 2.0 Literature Review 4 2.1 Taxonomy 4 2.2 Tomistoma schlegelii 4 2.2.1 Description 4 2.2.2 Classification based on Morphology 6 2.2.3 Previous Studies related to Tomistoma 7 2.2.4 Ecology and Habitat 8 2.2.4.1 Historical Distribution 8 2.2.4.2 Current Distribution 9 2.3 Mitochondrial Genes 10 2.3.1 Mitochondrial DNA 10 2.3.2 Cytochrome b Gene 11 IV 2.3.3 mtDNA Control Region 12 2.4 Molecular Study Approach 13 3.0 Materials and Methods 14 3.1 Sampling Site 14 3.2 Field Work 15 3.2.1 Blood Collection and Preservation Method 15 3.3 Laboratory Work 15 3.3.1 Preparation of buffer solution for modified CTAB method 15 (Doyle and Doyle, 1987) 3.3.2 DNA Extraction 17 3.3.3 Agarose Gel Electrophoresis 18 3.3.4 Gel Documentation of DNA Bands 19 3.3.5 Optical Density Reading 19 3.3.6 Polymerase Chain Reaction (PCR) Amplification 20 3.3.7 Sequencing 22 3.3.8 Data Analysis 22 4.0 Results and Discussion 23 4.1 Total Genomic DNA Extraction 23 4.1.1 DNA Extraction of T. schlegelii Blood Sample 23 4.1.1.1 Optical Density Reading 26 4.1.1.2 Comparison of Gel Electrophoresis and Optical Density 28 Reading Values 4.1.2 DNA Extraction of T. schlegelii Fresh Egg Sample 30 V 4.1.2.1 Optical Density Reading 31 4.2 Polymerase Chain Reaction (PCR) 32 4.2.1 Amplification of cyt b-CR gene for T. schlegelii Blood Sample 32 4.2.2 Amplification of cyt b-CR gene for T. schlegelii Fresh Egg Sample 35 4.3 Sequencing Analysis 37 4.4 Genetic Divergence Analysis 40 4.5 Phylogenetic Analysis 43 5.0 Conclusion and Recommendations 46 6.0 References 47 7.0 Appendices 52 VI List of Abbreviations Abbreviation Full Term bp Base pairs CIA Chloroform-Isoamyl Alcohol CITES Convention on International Trade in Endangered Species CTAB Cetyl-trimethyl Ammonium Bromide Cyt b Cytochrome b Cyt b-CR Cytochrome b-control region dNTPs Deoxynucleotide triphosphate DNA Deoxyribonucleic acid EDTA Ethylene diaminetetra-acetic acid EtOH Ethanol EtBr Ethidium bromide g Gram IUCN International Union for Conservation of Nature MgCl2 Magnesium Chloride min Minutes ml Milliliter mtDNA Mitochondrial DNA NaCl Sodium chloride rpm Revolutions per minute s Seconds VNTRs Variable number tandem repeats μl Microliter ºC Degree Celcius VII List of Tables No Title Page Table 3.1 2x CTAB buffer for 500 ml stock. 16 Table 4.1 OD reading of total genomic extraction products from blood sample 27 that involved in this study. Table 4.2 OD reading of total genomic extraction products from egg sample 31 that involved in this study Table 4.3 Summary of genetic distance value in percentage (%) for cyt b-CR 40 gene sequences of T. schlegelii. MW indicates samples from Matang Wildlife Center, MF indicates samples from Miri Crocodile Farm, TS01 indicates sample from Asajaya while CC indicates outgroup sample, C. porosus. VIII List of Figures No Title Page Figure 2.1 Taxonomy of Tomistoma schlegelii (adapted from www.iucnredlist.org). 4 Figure 2.2 The difference of snout between false gharial and Indian gharial. (a) 5 indicates the snout of false gharial while (b) indicates the snout of Indian gharial (both figures were adapted from www.arkive.org). Figure 2.3 Distribution of Tomistoma schlegelii (Bezuijen et al., 2010). 9 Figure 2.4 Mitochondrial DNA (adapted from www.bmb.leeds.ac.uk). 10 Figure 2.5 Location of cyt b gene on mtDNA (adapted from www.nature.com). 11 Figure 3.1 Map of Sarawak showing the the collection sites of Tomistoma samples. 14 (a) indicates Matang Wildlife Center in Kuching while (b) indicates Asajaya, Sarawak. Figure 3.2 Location of the blood sampling site – the supravertebral vein at post 15 occipital site (photo refer to C. porosus, adapted from Kaur et al., 2012). Figure 3.3 Cyt b-CR from the 3’ of cyt b to Domain II, before the B box.
Recommended publications
  • Tomistoma Tomistoma Schlegelii Mark R
    Tomistoma Tomistoma schlegelii Mark R. Bezuijen1, Bruce M. Shwedick2, Ralf Sommerlad3, Colin Stevenson4 and Robert B. Steubing5 1 PO Box 183, Ferny Creek, Victoria 3786, Australia ([email protected]); 2 Crocodile Conservation Services, PO Box 3176, Plant City, FL 33563, USA ([email protected]); 3 Roedelheimer Landstr. 42, Frankfurt, Hessen 60487, Germany ([email protected]); 4 Crocodile Encounters, 37 Mansfi eld Drive, Merstham, Surrey, UK ([email protected]); 5 10 Locust Hill Road, Cincinnati, OH 45245, USA ([email protected]) Common Names: Tomistoma, sunda gharial, false gharial, 2009 IUCN Red List: EN (Endangered. Criteria: C1: buaya sumpit, buaya senjulung/Julung (Indonesia), takong Population estimate is less than 2500 mature individuals, (Thailand) with continuing decline of at least 25% within 5 years or two generations. Widespread, but in low numbers; IUCN 2009). It is likely that criteria A1(c): “a decline in the area Range: Indonesia (Kalimantan, Sumatra, Java), Malaysia of occupancy, extent of occurrence and/or decline in habitat” (Peninsular Malaysia, Sarawak), Brunei, Thailand also applies, as habitat loss is the key threat to the species. (extirpated?) (Last assessed in 2000). Principal threats: Habitat destruction Ecology and Natural History Tomistoma (Tomistoma schlegelii) is a freshwater, mound- nesting crocodilian with a distinctively long, narrow snout. It is one of the largest of crocodilians, with males attaining lengths of up to 5 m. The current distribution of Tomistoma extends over lowland regions of eastern Sumatra, Kalimantan and western Java (Indonesia) and Sarawak and Peninsular Malaysia (Malaysia), within 5 degrees north and south of the equator (Stuebing et al. 2006). Tomistoma apparently occurred in southern Thailand historically, but there have been no reports since at least the 1970s and it is probably extirpated there (Ratanakorn et al.
    [Show full text]
  • The Contribution of Skull Ontogenetic Allometry and Growth Trajectories to the Study of Crocodylian Relationships
    EVOLUTION & DEVELOPMENT 12:6, 568–579 (2010) DOI: 10.1111/j.1525-142X.2010.00442.x The Gavialis--Tomistoma debate: the contribution of skull ontogenetic allometry and growth trajectories to the study of crocodylian relationships Paolo Piras,a,b,Ã Paolo Colangelo,c Dean C. Adams,d Angela Buscalioni,e Jorge Cubo,f Tassos Kotsakis,a,b Carlo Meloro,g and Pasquale Raiah,b aDipartimento di Scienze Geologiche, Universita` Roma Tre, Largo San Leonardo Murialdo, 1, 00146 Roma, Italy bCenter for Evolutionary Ecology, Largo San Leonardo Murialdo, 1, 00146 Roma, Italy cDipartimento di Biologia e Biotecnologie ‘‘Charles Darwin,’’ Universita` di Roma ‘‘La Sapienza’’, via Borelli 50, 00161 Roma, Italy dDepartment of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA eUnidad de Paleontologı´a, Departamento de Biologı´a, Facultad de Ciencias, Universidad Auto´noma de Madrid, 28049 Madrid, Spain fUniversite´ Pierre et Marie Curie-Paris 6, UMR CNRS 7193-iSTeP, Equipe Biomineralisations, 4 Pl Jussieu, BC 19, Paris 75005, France gHull York Medical School, The University of Hull, Cottingham Road, Hull HU6 7RX, UK hDipartimento di Scienze della Terra, Universita‘ degli Studi Federico II, L.go San Marcellino 10, 80138 Napoli, Italy ÃAuthor for correspondence (email: [email protected]) SUMMARY The phylogenetic placement of Tomistoma and stages of development. Based on a multivariate regression of Gavialis crocodiles depends largely upon whether molecular or shape data and size, Tomistoma seems to possess a peculiar morphological data are utilized. Molecular analyses consider rate of growth in comparison to the remaining taxa. However, its them as sister taxa, whereas morphological/paleontological morphology at both juvenile and adult sizes is always closer to analyses set Gavialis apart from Tomistoma and other those of Brevirostres crocodylians, for the entire head shape, crocodylian species.
    [Show full text]
  • Vocalizations in Two Rare Crocodilian Species: a Comparative Analysis of Distress Calls of Tomistoma Schlegelii (Müller, 1838) and Gavialis Gangeticus (Gmelin, 1789)
    NORTH-WESTERN JOURNAL OF ZOOLOGY 11 (1): 151-162 ©NwjZ, Oradea, Romania, 2015 Article No.: 141513 http://biozoojournals.ro/nwjz/index.html Vocalizations in two rare crocodilian species: A comparative analysis of distress calls of Tomistoma schlegelii (Müller, 1838) and Gavialis gangeticus (Gmelin, 1789) René BONKE1,*, Nikhil WHITAKER2, Dennis RÖDDER1 and Wolfgang BÖHME1 1. Herpetology Department, Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), Adenauerallee 160, 53113 Bonn, Germany. 2. Madras Crocodile Bank Trust, P.O. Box 4, Mamallapuram, Tamil Nadu 603 104, S.India. *Corresponding author, R. Bonke, E-mail: [email protected] Received: 07. August 2013 / Accepted: 16. October 2014 / Available online: 17. January 2015 / Printed: June 2015 Abstract. We analysed 159 distress calls of five individuals of T. schlegelii for temporal parameters and ob- tained spectral parameters in 137 of these calls. Analyses of G. gangeticus were based on 39 distress calls of three individuals, of which all could be analysed for temporal and spectral parameters. Our results document differences in the call structure of both species. Distress calls of T. schlegelii show numerous harmonics, whereas extensive pulse trains are present in G. gangeticus. In the latter, longer call durations and longer in- tervals between calls resulted in lower call repetition rates. Dominant frequencies of T. schlegelii are higher than in G. gangeticus. T. schlegelii specimens showed a negative correlation of increasing body size with de- creasing dominant frequencies. Distress call durations increased with body size. T. schlegelii distress calls share only minor structural features with distress calls of G. gangeticus. Key words: Tomistoma schlegelii, Gavialis gangeticus, distress calls, temporal parameters, spectral parameters.
    [Show full text]
  • Fauna of Australia 2A
    FAUNA of AUSTRALIA 39. GENERAL DESCRIPTION AND DEFINITION OF THE ORDER CROCODYLIA Harold G. Cogger 39. GENERAL DESCRIPTION AND DEFINITION OF THE ORDER CROCODYLIA Pl. 9.1. Crocodylus porosus (Crocodylidae): the salt water crocodile shows pronounced sexual dimorphism, as seen in this male (left) and female resting on the shore; this species occurs from the Kimberleys to the central east coast of Australia; see also Pls 9.2 & 9.3. [G. Grigg] Pl. 9.2. Crocodylus porosus (Crocodylidae): when feeding in the water, this species lifts the tail to counter balance the head; see also Pls 9.1 & 9.3. [G. Grigg] 2 39. GENERAL DESCRIPTION AND DEFINITION OF THE ORDER CROCODYLIA Pl. 9.3. Crocodylus porosus (Crocodylidae): the snout is broad and rounded, the teeth (well-worn in this old animal) are set in an irregular row, and a palatal flap closes the entrance to the throat; see also Pls 9.1 & 9.2. [G. Grigg] 3 39. GENERAL DESCRIPTION AND DEFINITION OF THE ORDER CROCODYLIA Pl. 9.4. Crocodylus johnstoni (Crocodylidae): the freshwater crocodile is found in rivers and billabongs from the Kimberleys to eastern Cape York; see also Pls 9.5–9.7. [G.J.W. Webb] Pl. 9.5. Crocodylus johnstoni (Crocodylidae): the freshwater crocodile inceases its apparent size by inflating its body when in a threat display; see also Pls 9.4, 9.6 & 9.7. [G.J.W. Webb] 4 39. GENERAL DESCRIPTION AND DEFINITION OF THE ORDER CROCODYLIA Pl. 9.6. Crocodylus johnstoni (Crocodylidae): the freshwater crocodile has a long, slender snout, with a regular row of nearly equal sized teeth; the eyes and slit-like ears, set high on the head, can be closed during diving; see also Pls 9.4, 9.5 & 9.7.
    [Show full text]
  • Phylogenetic Taphonomy: a Statistical and Phylogenetic
    Drumheller and Brochu | 1 1 PHYLOGENETIC TAPHONOMY: A STATISTICAL AND PHYLOGENETIC 2 APPROACH FOR EXPLORING TAPHONOMIC PATTERNS IN THE FOSSIL 3 RECORD USING CROCODYLIANS 4 STEPHANIE K. DRUMHELLER1, CHRISTOPHER A. BROCHU2 5 1. Department of Earth and Planetary Sciences, The University of Tennessee, Knoxville, 6 Tennessee, 37996, U.S.A. 7 2. Department of Earth and Environmental Sciences, The University of Iowa, Iowa City, Iowa, 8 52242, U.S.A. 9 email: [email protected] 10 RRH: CROCODYLIAN BITE MARKS IN PHYLOGENETIC CONTEXT 11 LRH: DRUMHELLER AND BROCHU Drumheller and Brochu | 2 12 ABSTRACT 13 Actualistic observations form the basis of many taphonomic studies in paleontology. 14However, surveys limited by environment or taxon may not be applicable far beyond the bounds 15of the initial observations. Even when multiple studies exploring the potential variety within a 16taphonomic process exist, quantitative methods for comparing these datasets in order to identify 17larger scale patterns have been understudied. This research uses modern bite marks collected 18from 21 of the 23 generally recognized species of extant Crocodylia to explore statistical and 19phylogenetic methods of synthesizing taphonomic datasets. Bite marks were identified, and 20specimens were then coded for presence or absence of different mark morphotypes. Attempts to 21find statistical correlation between trace types, marking animal vital statistics, and sample 22collection protocol were unsuccessful. Mapping bite mark character states on a eusuchian 23phylogeny successfully predicted the presence of known diagnostic, bisected marks in extinct 24taxa. Predictions for clades that may have created multiple subscores, striated marks, and 25extensive crushing were also generated. Inclusion of fossil bite marks which have been positively 26associated with extinct species allow this method to be projected beyond the crown group.
    [Show full text]
  • An Eocene Tomistomine from Peninsular Thailand Jérémy Martin, Komsorn Lauprasert, Haiyan Tong, Varavudh Suteethorn, Eric Buffetaut
    An Eocene tomistomine from peninsular Thailand Jérémy Martin, Komsorn Lauprasert, Haiyan Tong, Varavudh Suteethorn, Eric Buffetaut To cite this version: Jérémy Martin, Komsorn Lauprasert, Haiyan Tong, Varavudh Suteethorn, Eric Buffetaut. An Eocene tomistomine from peninsular Thailand. Annales de Paléontologie, Elsevier Masson, 2019, 10.1016/j.annpal.2019.03.002. hal-02121886 HAL Id: hal-02121886 https://hal.archives-ouvertes.fr/hal-02121886 Submitted on 6 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. An Eocene tomistomine from peninsular Thailand Un tomistominé éocène de la peninsule Thaïlandaise Jeremy E. Martin1, Komsorn Lauprasert2, Haiyan Tong2, Varavudh Suteethorn2 and Eric Buffetaut3 1Laboratoire de Géologie de Lyon: Terre, Planète et Environnement, UMR CNRS 5276 (CNRS, ENS, Université Lyon 1), Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France, email: [email protected] 2Palaeontological Research and Education Centre, Mahasarakham University, Khamrieng, 44150 Thailand 3Laboratoire de Géologie de l’Ecole Normale Supérieure, CNRS (UMR 8538), 24 rue Lhomond, Paris Cedex 05, 75231, France Abstract Skull and mandibular elements of a tomistomine crocodilian are described from the late Eocene to early Oligocene lignite seams of Krabi, peninsular Thailand.
    [Show full text]
  • Phylogenetic Position of the Crocodylian Megadontosuchus Arduini and Tomistomine Palaeobiogeography
    Phylogenetic position of the crocodylian Megadontosuchus arduini and tomistomine palaeobiogeography PAOLO PIRAS, MASSIMO DELFINO, LETIZIA DEL FAVERO, and TASSOS KOTSAKIS Piras, P., Delfino, M., Del Favero, L., and Kotsakis, T. 2007. Phylogenetic position of the crocodylian Megadontosuchus arduini and tomistomine palaeobiogeography. Acta Palaeontologica Polonica 52 (2): 315–328. A cladistic analysis of Megadontosuchus arduini from the middle Eocene of Monte Duello (NE Italy) confirms its tomistomine relationships, but the low number of scorable characters determines a low resolution within the tomistomine clade. However, Megadontosuchus is clearly distinct from the other Eocene European or North African tomistomines, in having a moderate elongated but robust rostrum, massive maxillary and dentary teeth and large supratemporal fenestrae. The rostrum and teeth characteristics could indicate that M. arduini had a degree of feeding specialization intermediate between Maroccosuchus zennaroi and the Eocene European tomistomines. A summary of tomistomine palaeobiogeo− graphy suggests that despite only one species with a rather restricted range survives at present, such a clade had a glorious past with a world wide distribution documented by a conspicuous fossil record that starts at least in the early Eocene. At present, a detailed knowledge of tomistomine palaeobiogeography is hindered by the lack of modern taxonomic revisions of some fossil remains and therefore by the poor understanding of phylogenetic relationships. Key words: Crocodylidae,
    [Show full text]
  • Abstract Book JMIH 2011
    Abstract Book JMIH 2011 Abstracts for the 2011 Joint Meeting of Ichthyologists & Herpetologists AES – American Elasmobranch Society ASIH - American Society of Ichthyologists & Herpetologists HL – Herpetologists’ League NIA – Neotropical Ichthyological Association SSAR – Society for the Study of Amphibians & Reptiles Minneapolis, Minnesota 6-11 July 2011 Edited by Martha L. Crump & Maureen A. Donnelly 0165 Fish Biogeography & Phylogeography, Symphony III, Saturday 9 July 2011 Amanda Ackiss1, Shinta Pardede2, Eric Crandall3, Paul Barber4, Kent Carpenter1 1Old Dominion University, Norfolk, VA, USA, 2Wildlife Conservation Society, Jakarta, Java, Indonesia, 3Fisheries Ecology Division; Southwest Fisheries Science Center, Santa Cruz, CA, USA, 4University of California, Los Angeles, CA, USA Corroborated Phylogeographic Breaks Across the Coral Triangle: Population Structure in the Redbelly Fusilier, Caesio cuning The redbelly yellowtail fusilier, Caesio cuning, has a tropical Indo-West Pacific range that straddles the Coral Triangle, a region of dynamic geological history and the highest marine biodiversity on the planet. Caesio cuning is a reef-associated artisanal fishery, making it an ideal species for assessing regional patterns of gene flow for evidence of speciation mechanisms as well as for regional management purposes. We evaluated the genetic population structure of Caesio cuning using a 382bp segment of the mitochondrial control region amplified from over 620 fish sampled from 33 localities across the Philippines and Indonesia. Phylogeographic
    [Show full text]
  • 117 Anuário Do Instituto De Geociências
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br Huge Miocene Crocodilians From Western Europe: Predation, Comparisons with the “False Gharial” and Size Crocodilos Miocênicos de Grande Tamanho do Oeste Europeu: Predação, Analogias com “Falsos Gaviais” e Tamanho Miguel Telles Antunes 1, 2, 3 1Academia das Ciências de Lisboa, R. da Academia das Ciências, 19/ 1249-122 Lisboa, Portugal 2 European Academy of Sciences, Arts and Humanities, Paris. 3 CICEGE, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa E-mail: [email protected] Recebido em: 15/09/2017 Aprovado em: 13/10/2017 DOI: http://dx.doi.org/10.11137/2017_3_117_130 Resumo Dentes de mastodonte mordidos, inéditos, demonstram que a predação pelos enormes Tomistoma lusitanica, que existiram na região de Lisboa e Península de Setúbal do Miocénico inferior ao início do superior, incluía os maiores mamíferos terrestres de então: os mastodontes Gomphotherium angustidens, mesmo adultos e senis, um dos quais teria, em estimativa não rigorosa, uns 50 anos à morte. São discutidos efeitos de dentadas, bem como os caracteres de impressões devidas ao impacte, intenso atrito e eventual esmagamento. A dentição de indivíduos de porte muito grande desempenharia papel de preensão e, também, de verdadeiros moinhos de dentes para triturar peças duras. Efeitos de esmagamento, não derivado de causas tectónicas, foram também observados num suídeo. Os resultados podem significar que a razão básica da ictiofagia prevalecente nos “falsos-gaviais” actuais, Tomistoma schlegelii, pode estar relacionada com a pressão humana que os inibe de atingirem o máximo tamanho possível e, por conseguinte, de capturarem presas maiores. É realçada a importância da imigração a partir da Ásia e das afinidades biogeográficas, a qual parece óbvia dada a presença simultânea de Tomistoma e Gavialis no extremo ocidental da Eurásia.
    [Show full text]
  • Breeding of False Gharial (Tomistoma Schlegelii) at Zoo Negara, Malaysia
    Breeding of False Gharial ( Tomistoma schlegelii ) at Zoo Negara, Malaysia Abraham Mathew, M. Ganesan, Rozwan A. Majid and Claire Beastall Introduction The False Gharial ( Tomistoma schlegelii ) is a large fresh water crocodilian species. It lives in dense secluded areas of the rainforest fringes, mainly near slow moving rivers, swamps and lakes (Steel. R, 1989). With its long snout and cutting edge teeth, its diet primarily comprises fish, but small mammals may be consumed when the opportunity arises. This secretive animal spends most of its time submerged in water with just the nostrils and eyes visible. They also can be found in wallows or mud-holes. This once widespread species currently can be found only in Peninsular Malaysia, West Borneo, Java and Sumatra (Ross. C.A. and Magnusson. W.E .). With habitat destruction being the main contributor to their disappearance, it is believed that there are fewer than 2500 individuals left in the wild. The species is listed on Appendix 1 (Endangered) of the Convention of International Trade of Endangered Species (CITES) (Steel. R, 1989). In addition to this they are listed on Schedule 1 of the Wildlife Protection Act 1972, thereby afforded totally protected status within Peninsular Malaysia by the Department of Wildlife and National Parks (DWNP). Little is known of the biology of this species in the wild, and so captive breeding represents a great challenge. Animals and Behaviour Zoo Negara currently houses three adult males and one adult female. Three individuals were purchased from Singapore in 1989. Two additional animals were purchased the following year, one from the Singapore and the other from a local dealer.
    [Show full text]
  • Phylogenetic Analysis of a New Morphological Dataset Elucidates the Evolutionary History of Crocodylia and Resolves the Long-Standing Gharial Problem
    Phylogenetic analysis of a new morphological dataset elucidates the evolutionary history of Crocodylia and resolves the long-standing gharial problem Jonathan P. Rio1 and Philip D. Mannion2* 1Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK 2Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK *Corresponding author (email address: [email protected]) ABSTRACT First appearing in the latest Cretaceous, Crocodylia is a clade of mostly semi-aquatic, predatory reptiles, defined by the last common ancestor of extant alligators, caimans, crocodiles, and gharials. Despite large strides in resolving extant and fossil crocodylian interrelationships over the last three decades, several outstanding problems persist in crocodylian systematics. Most notably, there has been persistent discordance between morphological and molecular datasets surrounding the affinities of the extant gharials, Gavialis gangeticus and Tomistoma schlegelii. Whereas molecular data consistently support a sister relationship between the extant gharials, which appear to be more closely related to crocodylids than to alligatorids, morphological data indicate that Gavialis is the sister taxon to all other extant crocodylians. Here we present a new morphological dataset for Crocodylia, based on a critical reappraisal of published crocodylian character data matrices and extensive first-hand observations of a global sample of crocodylians. This comprises the most taxonomically comprehensive crocodylian dataset to date (144 OTUs scored for 330 characters) and includes a new, illustrated character list with modifications to the construction and scoring of characters, and 46 novel characters. Under a maximum parsimony framework, our analyses robustly recover Gavialis as more closely related to Tomistoma than to other extant crocodylians for the first time based on morphology alone.
    [Show full text]
  • Comparison of Serum Phospholipase A2 Activities of All Known Extant Crocodylian Species
    Advances in Biological Chemistry, 2017, 7, 151-160 http://www.scirp.org/journal/abc ISSN Online: 2162-2191 ISSN Print: 2162-2183 Comparison of Serum Phospholipase A2 Activities of All Known Extant Crocodylian Species Mark Merchant1*, Charles McAdon1, Stephanie Mead1, Justin McFatter1, Caleb D. McMahan2, Rebeckah Griffith3, Christopher M. Murray4 1Department of Chemistry, McNeese State University, Lake Charles, LA, USA 2The Field Museum of Natural History, Chicago, IL, USA 3Department of Math, Computer Science, and Statistics, McNeese State University, Lake Charles, LA, USA 4Department of Biology, Tennessee Technological University, Cookeville, TN, USA How to cite this paper: Merchant, M., Abstract McAdon, C., Mead, S., McFatter, J., McMahan, C.D., Griffith, R. and Murray, C.M. (2017) Serum samples from all 23 extant crocodilian species were tested for phospholipase Comparison of Serum Phospholipase A 2 A2 (PLA2) activity against nine different bacterial species. The data were used Activities of All Known Extant Crocodylian to generate a PLA activity profile for each crocodilian species, and the data were Species. Advances in Biological Chemistry, 2 7, 151-160. used to compare the activities of the three main lineages (Alligatoridae, Crocody- https://doi.org/10.4236/abc.2017.74010 lidae, and Gavialidae), the seven different genera, and to compare all of the 23 individual species. The data revealed that the three lineages of crocodilians (Alli- Received: July 22, 2017 Accepted: August 25, 2017 gatoridae, Crocodylidae, and Gavialidae) exhibited PLA2 activities toward nine spe- Published: August 28, 2017 cies of bacteria that were statistically distinguishable. In addition, the PLA2 activi- ties of crocodilians in a specific genus tended to be more similar to other mem- Copyright © 2017 by authors and bers in their genus than to members of other crocodilian genera.
    [Show full text]