Ontology Metadata for Ontology Reuse Elena Simperl

Total Page:16

File Type:pdf, Size:1020Kb

Ontology Metadata for Ontology Reuse Elena Simperl Ontology Metadata for Ontology Reuse 197 Ontology Metadata for Ontology Reuse Elena Simperl* Karlsruhe Institute of Technology, Institute AIFB, Englerstr. 11, Building 11.40, 76128 Karlsruhe, Germany E-mail: [email protected] *Corresponding author Cristina Sarasua Vicomtech-IK4 - Visual Interaction Communication Technologies, Paseo Mikeletegi 57, Parque Tecnologico´ Miramon, 20009 San Sebastian,´ Spain E-mail: [email protected] Rachanee Ungrangsi Shinawatra University, 99 Moo 10 Bangtoey Samkok Pathumthani, 12160, Thailand E-mail: [email protected] Tobias Burger¨ Capgemini, Carl-Wery-Str. 42, 81739 Munich, Germany E-mail: [email protected] Abstract: Most ontologies are poorly documented, thus not being optimally accessible to potential users and ontology reuse services. A first step towards ontology documentation is the development of an explicit schema for the systematic and comprehensive description of ontologies. To provide an informed background for such a schema, we performed a survey of the most recent ontology engineering technology, and the types of information for describing ontologies. We introduce an ontology metadata schema, which as part of the OMV standard, was evaluated through professional reviews. A second step is the provision of automatic techniques to acquire such documentation. For this purpose we have developed the OMEGA (Ontology MEtadata GenerAtion) algorithm, which automatically generates metadata about arbitrary ontologies on the Web and is available as Web application and REST Web service. It was evaluated with very promising results, providing thus a core building block for the realization of fully-fledged ontology location services. Keywords: ontology, metadata, reuse, schema, havervesting, extraction, generation, documentation, repositories, search engine Reference to this paper should be made as follows: Elena Simperl, Cristina Sarasua, Rachanee Ungrangsi. and Tobias Burger.¨ (2011) ‘Ontology Metadata for Ontology Reuse’, Int. J. of Metadata, Semantics and Ontologies, Vol. 1, Nos. 1/1, pp.11–111. 198 Simperl, E. et al. 1 Introduction functionality is negatively influenced by the absence of reuse- relevant information about ontologies in a machine-readable, As semantic technologies mature, an increasing number structured form. A first step towards the alleviation of this of private and public sector organizations are developing situation is the development of an explicit schema for the ontologies to capture their knowledge about a domain of systematic and comprehensive description of ontologies so interest in a machine-understandable way. These ontologies as to enable more effective access, management and usage are expected to act as communication interfaces between of them across the Web. To provide an informed background humans and machines. They are commonly agreed, shared for such a schema, we survey the most recent ontology conceptualizations through which humans express the engineering technology, including ontology repositories, intended meaning of the types of things they talk about in Semantic Web search engines, and ontology documentation a specific domain; at the same time they form the basis for tools, and the types of information they provide to describe the resolution of interoperability issues between IT systems. ontologies. We then introduce an ontology metadata schema, Consequently, it is understandable that the question of how which is not only aligned with the related formats implicitly to ensure the reusability of ontologies beyond the context in or explicitly used by state-of-the-art technology and tools, but which they have been initially developed has often been put in also combines and extends the best elements of these formats relation to the impact semantic technologies might potentially in order to maximize the expressivity and usefulness of the have in various business sectors. This question can be unifying result. As part of the OMV (Ontology Metadata addressed from multiple viewpoints, ranging from knowledge Vocabulary) standard, this metadata schema was evaluated representation languages over ontology reuse technology through professional reviews, and is supported by ontology to community and organizational processes (Simperl 2009, location services such as Oyster1 and Watson.2 A second Simperl & Burger¨ 2010, Pinto & Martins 2000). step towards more informatively documented ontologies is While finding a solution to the problematic trade-off the development and usage of automatic techniques to acquire between application setting-motivated usability and global such documentation in order to scale to the number of reusability is often considered an art more than a science, ontologies constantly being built in various sectors. For the latter can be significantly improved by resorting to this purpose we have developed the OMEGA (Ontology several design principles, which have proved their relevance MEtadata GenerAtion) algorithm, which is available as Web across several fields in computer science confronted with application and REST Web service. The algorithm follows similar challenges: modularity and decomposition along a heuristic approach to automatically generate a wide range abstraction and functionality levels, standards compliance, of metadata information about arbitrary ontologies available careful documentation of the development process, as well on the Web or indexed by Semantic Web search engines. as up-to-date, meaningfully organized artifact repositories. It was evaluated in terms of coverage, precision, recall, and Recent research achievements in the Semantic Web area overall user-perceived quality in several studies with very offer a feasible basis for many of these principles to be promising results. The evaluation revealed that automatic put into practice. The usage of knowledge representation ontology metadata generation is feasible to a much larger standards in conjunction with the ubiquitous, URI-based extent than it is done in state-of-the-art Semantic Web search access of Semantic Web resources are a fair starting point engines if the wealth of knowledge resources freely available to facilitate the cross-application usage of ontologies (Bojars on the Web is taken into account in the process, making et al. 2008, Gracia et al. 2010, Heath & Bizer 2011). OMEGA a core building block for the realization of fully- Semantic Web search engines and ontology repositories fledged ontology location services. play an equally important role in this context, as they In a nutshell, the contribution of this work is twofold. provide potential ontology users with the query, search and First, we provide a comprehensive overview of the types browse support they need to identify ontologies potentially of information used in state-of-the-art ontology engineering relevant to their own needs (Fikes & Farquhar 1999, environments to describe ontologies, identifying potential Ding & Fensel 2001, Hartmann et al. 2009, Baclawski & limitations at the level of ontology metadata in current Schneider 2009, Noy et al. 2008). The work presented in ontology repositories, Semantic Web search engines, and this paper provides the theoretical and technical foundations ontology documentation tools. Second, we investigate how to allow ontology engineering environments, including the ontology metadata could be generated algorithmically in two types of systems just mentioned, to solve one of order to prevent the metadata acquisition bottleneck with their currently most stringent limitation: the lack of useful which ontology location tools are typically confronted. metadata describing ontologies; this metadata is an important ingredient for the implementation of useful retrieval and The remainder of this article is organized as follows: navigation functionality. First we review current state-of-the-art ontology engineering Most ontologies, independently of their provenance and technology with respect to ontology metadata they support location, are poorly documented, while additional descriptive and the means to acquire it (Sections 2 to 4). In particular, information is spread across the Web in various forms, we introduce OMV (Ontology Metadata Vocabulary), which thus not being optimally accessible to potential users and is used by our approach for automatic metadata acquisition. ontology reuse services. Available services in this area In Sections 5 and 6 we present the OMEGA algorithm and offer a basic set of search, browse and navigation features its implementation. Its evaluation and main findings are the to the ontological resources administrated. However, their presented in Section 7. We conclude with a short discussion Ontology Metadata for Ontology Reuse 199 of the limitations of the current approach, and sketch the ontologies, as well as the degree of documentation offered by planned future work in Section 8. different ontology environements and tools. 2.1 General-purpose metadata schemas 2 Metadata schemas used to document ontologies Metadata is often defined as data about data. A metadata record generally consists of a set of attributes or elements As a first step of the ontology reuse process the describing a resource. Metadata can be created manually ontology engineering team typically resorts to conventional or automatically. It can be integrated into the actual or Semantic Web-oriented search engines, and browses resource or stored separately in a metadata database. Several repositories of ontological resources in order to build a list of metadata schemas and vocabularies,
Recommended publications
  • Metadata and GIS
    Metadata and GIS ® An ESRI White Paper • October 2002 ESRI 380 New York St., Redlands, CA 92373-8100, USA • TEL 909-793-2853 • FAX 909-793-5953 • E-MAIL [email protected] • WEB www.esri.com Copyright © 2002 ESRI All rights reserved. Printed in the United States of America. The information contained in this document is the exclusive property of ESRI. This work is protected under United States copyright law and other international copyright treaties and conventions. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, except as expressly permitted in writing by ESRI. All requests should be sent to Attention: Contracts Manager, ESRI, 380 New York Street, Redlands, CA 92373-8100, USA. The information contained in this document is subject to change without notice. U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS Any software, documentation, and/or data delivered hereunder is subject to the terms of the License Agreement. In no event shall the U.S. Government acquire greater than RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or FAR §12.211/12.212 (Commercial Technical Data/Computer Software); and DFARS §252.227-7015 (NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable. Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373- 8100, USA.
    [Show full text]
  • Creating Permissionless Blockchains of Metadata Records Dejah Rubel
    Articles No Need to Ask: Creating Permissionless Blockchains of Metadata Records Dejah Rubel ABSTRACT This article will describe how permissionless metadata blockchains could be created to overcome two significant limitations in current cataloging practices: centralization and a lack of traceability. The process would start by creating public and private keys, which could be managed using digital wallet software. After creating a genesis block, nodes would submit either a new record or modifications to a single record for validation. Validation would rely on a Federated Byzantine Agreement consensus algorithm because it offers the most flexibility for institutions to select authoritative peers. Only the top tier nodes would be required to store a copy of the entire blockchain thereby allowing other institutions to decide whether they prefer to use the abridged version or the full version. INTRODUCTION Several libraries and library vendors are investigating how blockchain could improve activities such as scholarly publishing, content dissemination, and copyright enforcement. A few organizations, such as Katalysis, are creating prototypes or alpha versions of blockchain platforms and products.1 Although there has been some discussion about using blockchains for metadata creation and management, only one company appears to be designing such a product. Therefore, this article will describe how permissionless blockchains of metadata records could be created, managed, and stored to overcome current challenges with metadata creation and management. LIMITATIONS OF CURRENT PRACTICES Metadata standards, processes, and systems are changing to meet twenty-first century information needs and expectations. There are two significant limitations, however, to our current metadata creation and modification practices that have not been addressed: centralization and traceability.
    [Show full text]
  • A Data-Driven Framework for Assisting Geo-Ontology Engineering Using a Discrepancy Index
    University of California Santa Barbara A Data-Driven Framework for Assisting Geo-Ontology Engineering Using a Discrepancy Index A Thesis submitted in partial satisfaction of the requirements for the degree Master of Arts in Geography by Bo Yan Committee in charge: Professor Krzysztof Janowicz, Chair Professor Werner Kuhn Professor Emerita Helen Couclelis June 2016 The Thesis of Bo Yan is approved. Professor Werner Kuhn Professor Emerita Helen Couclelis Professor Krzysztof Janowicz, Committee Chair May 2016 A Data-Driven Framework for Assisting Geo-Ontology Engineering Using a Discrepancy Index Copyright c 2016 by Bo Yan iii Acknowledgements I would like to thank the members of my committee for their guidance and patience in the face of obstacles over the course of my research. I would like to thank my advisor, Krzysztof Janowicz, for his invaluable input on my work. Without his help and encour- agement, I would not have been able to find the light at the end of the tunnel during the last stage of the work. Because he provided insight that helped me think out of the box. There is no better advisor. I would like to thank Yingjie Hu who has offered me numer- ous feedback, suggestions and inspirations on my thesis topic. I would like to thank all my other intelligent colleagues in the STKO lab and the Geography Department { those who have moved on and started anew, those who are still in the quagmire, and those who have just begun { for their support and friendship. Last, but most importantly, I would like to thank my parents for their unconditional love.
    [Show full text]
  • Studying Social Tagging and Folksonomy: a Review and Framework
    Studying Social Tagging and Folksonomy: A Review and Framework Item Type Journal Article (On-line/Unpaginated) Authors Trant, Jennifer Citation Studying Social Tagging and Folksonomy: A Review and Framework 2009-01, 10(1) Journal of Digital Information Journal Journal of Digital Information Download date 02/10/2021 03:25:18 Link to Item http://hdl.handle.net/10150/105375 Trant, Jennifer (2009) Studying Social Tagging and Folksonomy: A Review and Framework. Journal of Digital Information 10(1). Studying Social Tagging and Folksonomy: A Review and Framework J. Trant, University of Toronto / Archives & Museum Informatics 158 Lee Ave, Toronto, ON Canada M4E 2P3 jtrant [at] archimuse.com Abstract This paper reviews research into social tagging and folksonomy (as reflected in about 180 sources published through December 2007). Methods of researching the contribution of social tagging and folksonomy are described, and outstanding research questions are presented. This is a new area of research, where theoretical perspectives and relevant research methods are only now being defined. This paper provides a framework for the study of folksonomy, tagging and social tagging systems. Three broad approaches are identified, focusing first, on the folksonomy itself (and the role of tags in indexing and retrieval); secondly, on tagging (and the behaviour of users); and thirdly, on the nature of social tagging systems (as socio-technical frameworks). Keywords: Social tagging, folksonomy, tagging, literature review, research review 1. Introduction User-generated keywords – tags – have been suggested as a lightweight way of enhancing descriptions of on-line information resources, and improving their access through broader indexing. “Social Tagging” refers to the practice of publicly labeling or categorizing resources in a shared, on-line environment.
    [Show full text]
  • Metadata Creation Practices in Digital Repositories and Collections
    Metadata Creation Practices in Digital Repositories and Collections: Schemata, Jung-ran Park and Selection Criteria, and Interoperability Yuji Tosaka This study explores the current state of metadata-creation development of such a mediation mechanism calls for practices across digital repositories and collections by an empirical assessment of various issues surrounding metadata-creation practices. using data collected from a nationwide survey of mostly The critical issues concerning metadata practices cataloging and metadata professionals. Results show across distributed digital collections have been rela- that MARC, AACR2, and LCSH are the most widely tively unexplored. While examining learning objects and used metadata schema, content standard, and subject- e-prints communities of practice, Barton, Currier, and Hey point out the lack of formal investigation of the metadata- controlled vocabulary, respectively. Dublin Core (DC) is creation process.2 As will be discussed in the following the second most widely used metadata schema, followed section, some researchers have begun to assess the current by EAD, MODS, VRA, and TEI. Qualified DC’s wider state of descriptive practices, metadata schemata, and use vis-à-vis Unqualified DC (40.6 percent versus 25.4 content standards. However, the literature has not yet developed to a point where it affords a comprehensive percent) is noteworthy. The leading criteria in selecting picture. Given the propagation of metadata projects, it is metadata and controlled-vocabulary schemata are collec- important to continue to track changes in metadata-cre- tion-specific considerations, such as the types of resources, ation practices while they are still in constant flux. Such efforts are essential for adding new perspectives to digital nature of the collection, and needs of primary users and library research and practices in an environment where communities.
    [Show full text]
  • Geotagging Photos to Share Field Trips with the World During the Past Few
    Geotagging photos to share field trips with the world During the past few years, numerous new online tools for collaboration and community building have emerged, providing web-users with a tremendous capability to connect with and share a variety of resources. Coupled with this new technology is the ability to ‘geo-tag’ photos, i.e. give a digital photo a unique spatial location anywhere on the surface of the earth. More precisely geo-tagging is the process of adding geo-spatial identification or ‘metadata’ to various media such as websites, RSS feeds, or images. This data usually consists of latitude and longitude coordinates, though it can also include altitude and place names as well. Therefore adding geo-tags to photographs means adding details as to where as well as when they were taken. Geo-tagging didn’t really used to be an easy thing to do, but now even adding GPS data to Google Earth is fairly straightforward. The basics Creating geo-tagged images is quite straightforward and there are various types of software or websites that will help you ‘tag’ the photos (this is discussed later in the article). In essence, all you need to do is select a photo or group of photos, choose the "Place on map" command (or similar). Most programs will then prompt for an address or postcode. Alternatively a GPS device can be used to store ‘way points’ which represent coordinates of where images were taken. Some of the newest phones (Nokia N96 and i- Phone for instance) have automatic geo-tagging capabilities. These devices automatically add latitude and longitude metadata to the existing EXIF file which is already holds information about the picture such as camera, date, aperture settings etc.
    [Show full text]
  • Ontology-Driven Automation of Iot-Based Human-Machine Interfaces Development?
    Ontology-Driven Automation of IoT-Based Human-Machine Interfaces Development? Konstantin Ryabinin1[0000−0002−8353−7641], Svetlana Chuprina1[0000−0002−2103−3771], and Konstantin Belousov1[0000−0003−4447−1288] Perm State University, Bukireva Str. 15, 614990, Perm, Russia [email protected], [email protected], [email protected] Abstract. The paper is devoted to the development of high-level tools to automate tangible human-machine interfaces creation bringing to- gether IoT technologies and ontology engineering methods. We propose using ontology-driven approach to enable automatic generation of firmware for the devices and middleware for the applications to design from scratch or transform the existing M2M ecosystem with respect to new human needs and, if necessary, to transform M2M systems into human-centric ones. Thanks to our previous research, we developed the firmware and middleware generator on top of SciVi scientific visualization system that was proven to be a handy tool to integrate different data sources, in- cluding software solvers and hardware data providers, for monitoring and steering purposes. The high-level graphical user SciVi interface en- ables to design human-machine communication in terms of data flow and ontological specifications. Thereby the SciVi platform capabilities are sufficient to automatically generate all the necessary components for IoT ecosystem software. We tested our approach tackling the real-world problems of creating hardware device turning human gestures into se- mantics of spatiotemporal deixis, which relates to the verbal behavior of people having different psychological types. The device firmware gener- ated by means of SciVi tools enables researchers to understand complex matters and helps them analyze the linguistic behavior of users of so- cial networks with different psychological characteristics, and identify patterns inherent in their communication in social networks.
    [Show full text]
  • Folksonomies - Cooperative Classification and Communication Through Shared Metadata
    Folksonomies - Cooperative Classification and Communication Through Shared Metadata Adam Mathes Computer Mediated Communication - LIS590CMC Graduate School of Library and Information Science University of Illinois Urbana-Champaign December 2004 Abstract This paper examines user-generated metadata as implemented and applied in two web services designed to share and organize digital me- dia to better understand grassroots classification. Metadata - data about data - allows systems to collocate related information, and helps users find relevant information. The creation of metadata has generally been approached in two ways: professional creation and author creation. In li- braries and other organizations, creating metadata, primarily in the form of catalog records, has traditionally been the domain of dedicated profes- sionals working with complex, detailed rule sets and vocabularies. The primary problem with this approach is scalability and its impracticality for the vast amounts of content being produced and used, especially on the World Wide Web. The apparatus and tools built around professional cataloging systems are generally too complicated for anyone without spe- cialized training and knowledge. A second approach is for metadata to be created by authors. The movement towards creator described docu- ments was heralded by SGML, the WWW, and the Dublin Core Metadata Initiative. There are problems with this approach as well - often due to inadequate or inaccurate description, or outright deception. This paper examines a third approach: user-created metadata, where users of the documents and media create metadata for their own individual use that is also shared throughout a community. 1 The Creation of Metadata: Professionals, Con- tent Creators, Users Metadata is often characterized as “data about data.” Metadata is information, often highly structured, about documents, books, articles, photographs, or other items that is designed to support specific functions.
    [Show full text]
  • XML Metadata Standards and Topic Maps Outline
    XML Metadata Standards and Topic Maps Erik Wilde 16.7.2001 XML Metadata Standards and Topic Maps 1 Outline what is XML? z a syntax (not a data model!) what is the data model behind XML? z XML Information Set (basically, trees...) what can be described with XML? z describing the content syntactically (schemas) z describing the content abstractly (metadata) XML metadata is outside of XML documents ISO Topic Maps z a "schema language" for meta data 16.7.2001 XML Metadata Standards and Topic Maps 2 1 Extensible Markup Language standardized by the W3C in February 1998 a subset (aka profile) of SGML (ISO 8879) coming from a document world z data are documents defined in syntax z no abstract data model problems in many real-world scenarios z how to compare XML documents z attribute order, white space, namespace prefixes, ... z how to search for data within documents z query languages operate on abstract data models z often data are not documents 16.7.2001 XML Metadata Standards and Topic Maps 3 Why XML at all? because it's simple z easily understandable, human-readable because of the available tools z it's easy to find (free) XML software because of improved interoperability z all others do it! z easy to interface with other XML applications because it's versatile z the data model behind XML is very versatile 16.7.2001 XML Metadata Standards and Topic Maps 4 2 XML Information Set several XML applications need a data model z style sheets for XML (CSS, XSL) z interfaces to programming languages (DOM) z XML transformation languages (XSLT) z XML
    [Show full text]
  • Extending the Role of Metadata in a Digital Library System*
    Extending the Role of Metadata in a Digital Library System* Alexa T. McCray, Marie E. Gallagher, Michael A. Flannick National Library of Medicine Bethesda, MD, USA {mccray,gallagher,flannick}@nlm.nih.gov Abstract Metadata efforts often fall into the trap of We describe an approach to the development of a digital trying to create a universal metadata schema. library system that is founded on a number of basic Such efforts fail to recognize the basic nature principles. In particular, we discuss the critical role of of metadata: namely, that it is far too diverse metadata in all aspects of the system design. We begin by to fit into one useful taxonomy...the creation, describing how the notion of metadata is sometimes administration, and enhancement of individual interpreted and go on to discuss some of our early metadata forms should be left to the relevant experiences in a digital conversion project. We report on communities of expertise. Ideally this would the Profiles in Science project, which is making the occur within a framework that will support archival collections of prominent biomedical scientists interoperability across data and domains. available on the World Wide Web. We discuss the [4:277] principles that are used in our system design, illustrating Roszkowski and Lukas describe an approach for these throughout the discussion. Our approach has linking distributed collections of metadata so that they are involved interpreting metadata in its broadest sense. We searchable as a single collection [5], and Baldonado et al. capture data about the items in our digital collection for a describe an architecture that facilitates metadata a variety of purposes and use those data to drive the compatibility and interoperability [6].
    [Show full text]
  • KOSO: a Metadata Ontology for Knowledge Organization Systems
    KOSO: A Metadata Ontology for Knowledge Organization Systems Katrin Weller Heinrich-Heine-University Düsseldorf, Dept. of Information Science, Universitätsstr.1, Building 23.21.04, 40547 Düsseldorf, Germany [email protected] Abstract. This poster paper introduces KOSO, an ontology to structure expert knowledge about different types of knowledge organization systems (KOS). It serves as a metadata vocabulary for describing ontologies and other KOS and helps to capture cross-concordances and interrelations between them.1 Keywords: Metadata, ontology, knowledge organization systems. 1 Introduction: Motivation and Objectives Motivated by the need for effective methods to organize the ever-growing number of available ontologies, some efforts have begun to create categorizations or establish metadata for describing ontologies, e.g. [1], [2], [3], [4]. Within a comparable approach, we now want to include the whole spectrum of knowledge organization systems (KOS): from collaborative folksonomies over traditional classification systems and thesauri to heavyweight ontologies. Different KOS can be used in interaction. For example using both a professional thesaurus as well as a user-generated folksonomy for indexing a document collection (or alternatively: two competing or complementary ontologies) helps to support multiple perspectives in retrieval systems. Furthermore, the lightweight KOS types often provide a useful starting point for creating more complex representations [5], [6] and should thus be made easily accessible for reuse and
    [Show full text]
  • Patterns in Ontology Engineering: Classification of Ontology Patterns
    PATTERNS IN ONTOLOGY ENGINEERING: CLASSIFICATION OF ONTOLOGY PATTERNS Eva Blomqvist School of Engineering, Jonk¨ oping¨ University P.O. Box 1026, SE-551 11 Jonk¨ oping,¨ Sweden [email protected] Kurt Sandkuhl School of Engineering, Jonk¨ oping¨ University P.O. Box 1026, SE-551 11 Jonk¨ oping,¨ Sweden [email protected] Keywords: Ontology Engineering, Ontology Patterns, Pattern Classification. Abstract: In Software Engineering, patterns are an accepted way to facilitate and support reuse. This paper focuses on patterns in the field of Ontology Engineering and proposes a classification scheme for ontology patterns. The scheme divides ontology patterns into five levels: Application Patterns, Architecture Patterns, Design Patterns, Semantic Patterns, and Syntactic Patterns. Semantic and Syntactic Patterns are quite well-researched but the higher levels of pattern abstraction are so far almost unexplored. To illustrate the possibilities of patterns on these levels some examples are discussed, together with ideas of future work. 1 INTRODUCTION 2 ONTOLOGY PATTERNS TODAY Recent developments in the area of Ontology En- Ontology is a popular term today, used in many ar- gineering involve semi-automatic ontology construc- eas and defined in many different ways. In this paper tion to reduce time and effort of constructing an on- ontology is defined as: tology. In particular for small-scale application con- texts, reduction of effort and expert involvement is an An ontology is a hierarchically structured set of important requirement. concepts describing a specific domain of knowledge that can be used to create a knowledge base. An on- Ways of reducing this effort are to further facil- tology contains concepts, a subsumption hierarchy, itate semi-automatic construction of ontologies, but arbitrary relations between concepts, and axioms.
    [Show full text]