Nasdeluxe Z-Series
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hard Disk Drives
37 Hard Disk Drives The last chapter introduced the general concept of an I/O device and showed you how the OS might interact with such a beast. In this chapter, we dive into more detail about one device in particular: the hard disk drive. These drives have been the main form of persistent data storage in computer systems for decades and much of the development of file sys- tem technology (coming soon) is predicated on their behavior. Thus, it is worth understanding the details of a disk’s operation before building the file system software that manages it. Many of these details are avail- able in excellent papers by Ruemmler and Wilkes [RW92] and Anderson, Dykes, and Riedel [ADR03]. CRUX: HOW TO STORE AND ACCESS DATA ON DISK How do modern hard-disk drives store data? What is the interface? How is the data actually laid out and accessed? How does disk schedul- ing improve performance? 37.1 The Interface Let’s start by understanding the interface to a modern disk drive. The basic interface for all modern drives is straightforward. The drive consists of a large number of sectors (512-byte blocks), each of which can be read or written. The sectors are numbered from 0 to n − 1 on a disk with n sectors. Thus, we can view the disk as an array of sectors; 0 to n − 1 is thus the address space of the drive. Multi-sector operations are possible; indeed, many file systems will read or write 4KB at a time (or more). However, when updating the disk, the only guarantee drive manufacturers make is that a single 512-byte write is atomic (i.e., it will either complete in its entirety or it won’t com- plete at all); thus, if an untimely power loss occurs, only a portion of a larger write may complete (sometimes called a torn write). -
Z/OS ICSF Overview How to Send Your Comments to IBM
z/OS Version 2 Release 3 Cryptographic Services Integrated Cryptographic Service Facility Overview IBM SC14-7505-08 Note Before using this information and the product it supports, read the information in “Notices” on page 81. This edition applies to ICSF FMID HCR77D0 and Version 2 Release 3 of z/OS (5650-ZOS) and to all subsequent releases and modifications until otherwise indicated in new editions. Last updated: 2020-05-25 © Copyright International Business Machines Corporation 1996, 2020. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Figures................................................................................................................ vii Tables.................................................................................................................. ix About this information.......................................................................................... xi ICSF features...............................................................................................................................................xi Who should use this information................................................................................................................ xi How to use this information........................................................................................................................ xi Where to find more information.................................................................................................................xii -
Detection Method of Data Integrity in Network Storage Based on Symmetrical Difference
S S symmetry Article Detection Method of Data Integrity in Network Storage Based on Symmetrical Difference Xiaona Ding School of Electronics and Information Engineering, Sias University of Zhengzhou, Xinzheng 451150, China; [email protected] Received: 15 November 2019; Accepted: 26 December 2019; Published: 3 February 2020 Abstract: In order to enhance the recall and the precision performance of data integrity detection, a method to detect the network storage data integrity based on symmetric difference was proposed. Through the complete automatic image annotation system, the crawler technology was used to capture the image and related text information. According to the automatic word segmentation, pos tagging and Chinese word segmentation, the feature analysis of text data was achieved. Based on the symmetrical difference algorithm and the background subtraction, the feature extraction of image data was realized. On the basis of data collection and feature extraction, the sentry data segment was introduced, and then the sentry data segment was randomly selected to detect the data integrity. Combined with the accountability scheme of data security of the trusted third party, the trusted third party was taken as the core. The online state judgment was made for each user operation. Meanwhile, credentials that cannot be denied by both parties were generated, and thus to prevent the verifier from providing false validation results. Experimental results prove that the proposed method has high precision rate, high recall rate, and strong reliability. Keywords: symmetric difference; network; data integrity; detection 1. Introduction In recent years, the cloud computing becomes a new shared infrastructure based on the network. Based on Internet, virtualization, and other technologies, a large number of system pools and other resources are combined to provide users with a series of convenient services [1]. -
Linux Data Integrity Extensions
Linux Data Integrity Extensions Martin K. Petersen Oracle [email protected] Abstract The software stack, however, is rapidly growing in com- plexity. This implies an increasing failure potential: Many databases and filesystems feature checksums on Harddrive firmware, RAID controller firmware, host their logical blocks, enabling detection of corrupted adapter firmware, operating system code, system li- data. The scenario most people are familiar with in- braries, and application errors. There are many things volves bad sectors which develop while data is stored that can go wrong from the time data is generated in on disk. However, many corruptions are actually a re- host memory until it is stored physically on disk. sult of errors that occurred when the data was originally written. While a database or filesystem can detect the Most storage devices feature extensive checking to pre- corruption when data is eventually read back, the good vent errors. However, these protective measures are al- data may have been lost forever. most exclusively being deployed internally to the de- vice in a proprietary fashion. So far, there have been A recent addition to SCSI allows extra protection infor- no means for collaboration between the layers in the I/O mation to be exchanged between controller and disk. We stack to ensure data integrity. have extended this capability up into Linux, allowing filesystems (and eventually applications) to be able to at- An extension to the SCSI family of protocols tries to tach integrity metadata to I/O requests. Controllers and remedy this by defining a way to check the integrity of disks can then verify the integrity of an I/O before com- an request as it traverses the I/O stack. -
Use External Storage Devices Like Pen Drives, Cds, and Dvds
External Intel® Learn Easy Steps Activity Card Storage Devices Using external storage devices like Pen Drives, CDs, and DVDs loading Videos Since the advent of computers, there has been a need to transfer data between devices and/or store them permanently. You may want to look at a file that you have created or an image that you have taken today one year later. For this it has to be stored somewhere securely. Similarly, you may want to give a document you have created or a digital picture you have taken to someone you know. There are many ways of doing this – online and offline. While online data transfer or storage requires the use of Internet, offline storage can be managed with minimum resources. The only requirement in this case would be a storage device. Earlier data storage devices used to mainly be Floppy drives which had a small storage space. However, with the development of computer technology, we today have pen drives, CD/DVD devices and other removable media to store and transfer data. With these, you store/save/copy files and folders containing data, pictures, videos, audio, etc. from your computer and even transfer them to another computer. They are called secondary storage devices. To access the data stored in these devices, you have to attach them to a computer and access the stored data. Some of the examples of external storage devices are- Pen drives, CDs, and DVDs. Introduction to Pen Drive/CD/DVD A pen drive is a small self-powered drive that connects to a computer directly through a USB port. -
Nanotechnology Trends in Nonvolatile Memory Devices
IBM Research Nanotechnology Trends in Nonvolatile Memory Devices Gian-Luca Bona [email protected] IBM Research, Almaden Research Center © 2008 IBM Corporation IBM Research The Elusive Universal Memory © 2008 IBM Corporation IBM Research Incumbent Semiconductor Memories SRAM Cost NOR FLASH DRAM NAND FLASH Attributes for universal memories: –Highest performance –Lowest active and standby power –Unlimited Read/Write endurance –Non-Volatility –Compatible to existing technologies –Continuously scalable –Lowest cost per bit Performance © 2008 IBM Corporation IBM Research Incumbent Semiconductor Memories SRAM Cost NOR FLASH DRAM NAND FLASH m+1 SLm SLm-1 WLn-1 WLn WLn+1 A new class of universal storage device : – a fast solid-state, nonvolatile RAM – enables compact, robust storage systems with solid state reliability and significantly improved cost- performance Performance © 2008 IBM Corporation IBM Research Non-volatile, universal semiconductor memory SL m+1 SL m SL m-1 WL n-1 WL n WL n+1 Everyone is looking for a dense (cheap) crosspoint memory. It is relatively easy to identify materials that show bistable hysteretic behavior (easily distinguishable, stable on/off states). IBM © 2006 IBM Corporation IBM Research The Memory Landscape © 2008 IBM Corporation IBM Research IBM Research Histogram of Memory Papers Papers presented at Symposium on VLSI Technology and IEDM; Ref.: G. Burr et al., IBM Journal of R&D, Vol.52, No.4/5, July 2008 © 2008 IBM Corporation IBM Research IBM Research Emerging Memory Technologies Memory technology remains an -
MRAM Technology Status
National Aeronautics and Space Administration MRAM Technology Status Jason Heidecker Jet Propulsion Laboratory Pasadena, California Jet Propulsion Laboratory California Institute of Technology Pasadena, California JPL Publication 13-3 2/13 National Aeronautics and Space Administration MRAM Technology Status NASA Electronic Parts and Packaging (NEPP) Program Office of Safety and Mission Assurance Jason Heidecker Jet Propulsion Laboratory Pasadena, California NASA WBS: 104593 JPL Project Number: 104593 Task Number: 40.49.01.09 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91109 http://nepp.nasa.gov i This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the National Aeronautics and Space Administration Electronic Parts and Packaging (NEPP) Program. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology. ©2013. California Institute of Technology. Government sponsorship acknowledged. ii TABLE OF CONTENTS 1.0 Introduction ............................................................................................................................................................ 1 2.0 MRAM Technology ................................................................................................................................................ 2 2.1 -
Practical Risk-Based Guide for Managing Data Integrity
1 ACTIVE PHARMACEUTICAL INGREDIENTS COMMITTEE Practical risk-based guide for managing data integrity Version 1, March 2019 2 PREAMBLE This original version of this guidance document has been compiled by a subdivision of the APIC Data Integrity Task Force on behalf of the Active Pharmaceutical Ingredient Committee (APIC) of CEFIC. The Task Force members are: Charles Gibbons, AbbVie, Ireland Danny De Scheemaecker, Janssen Pharmaceutica NV Rob De Proost, Janssen Pharmaceutica NV Dieter Vanderlinden, S.A. Ajinomoto Omnichem N.V. André van der Biezen, Aspen Oss B.V. Sebastian Fuchs, Tereos Daniel Davies, Lonza AG Fraser Strachan, DSM Bjorn Van Krevelen, Janssen Pharmaceutica NV Alessandro Fava, F.I.S. (Fabbrica Italiana Sintetici) SpA Alexandra Silva, Hovione FarmaCiencia SA Nicola Martone, DSM Sinochem Pharmaceuticals Ulrich-Andreas Opitz, Merck KGaA Dominique Rasewsky, Merck KGaA With support and review from: Pieter van der Hoeven, APIC, Belgium Francois Vandeweyer, Janssen Pharmaceutica NV Annick Bonneure, APIC, Belgium The APIC Quality Working Group 3 1 Contents 1. General Section .............................................................................................................................. 4 1.1 Introduction ............................................................................................................................ 4 1.2 Objectives and Scope .............................................................................................................. 5 1.3 Definitions and abbreviations ................................................................................................ -
Data Integrity Sheet2
Tricentis Data Integrity The data behind every business is the product of continuous ingestions from disparate data sources, followed by countless integrations, transformations, and migrations. A slight discrepancy at any step typically remains unnoticed until it impacts the business. At that point, it’s extremely difficult to diagnose and fix. Tricentis Data Integrity provides a powerful way to eliminate data integrity issues before they do any damage. Our end-to-end automation covers everything from the integrity of the data fed into your system, to the accuracy of integrations, transformations, and migrations, to the verification of report logic and presentation. Leading organizations use our solution for: Reducing the time and cost required to Unifying data quality efforts scattered across ensure data quality siloed tools Validating data migrations to Snowflake, Monitoring data for fraud and regulatory S/4HANA + other platforms compliance issues Scaling data verification efforts to cover Ensuring that application updates don’t massive amounts of data negatively impact data Business ETL Layers BI Layers Data Extract Transform Load Consolidation Reporting Aggregation Reports Stage 0 Core DWH Cubes Data Lake Big Data Tricentis Data Integrity SAP Tableau Snowflake Qlik Salesforce PowerBI, etc MSSql Postgres Excel Mongo, etc © 2020 Tricentis GmbH. All Rights Reserved END-TO-END TESTING PRE-SCREENING TESTING End-to-end testing can be performed using The Pre-Screening wizard facilitates the pre-screening tests on files and or early detection of data errors (missing databases; completeness, integrity, and values, duplicates, data formats etc.). Use it reconciliation tests on the inner DWH to ensure that the data loaded into the layers; and UI tests on the reporting layer. -
Can We Store the Whole World's Data in DNA Storage?
Can We Store the Whole World’s Data in DNA Storage? Bingzhe Li†, Nae Young Song†, Li Ou‡, and David H.C. Du† †Department of Computer Science and Engineering, University of Minnesota, Twin Cities ‡Department of Pediatrics, University of Minnesota, Twin Cities {lixx1743, song0455, ouxxx045, du}@umn.edu, Abstract DNA storage can achieve a theoretical density of 455 EB/g [9] and has a long-lasting property of several centuries [10,11]. The total amount of data in the world has been increasing These characteristics of DNA storage make it a great candi- rapidly. However, the increase of data storage capacity is date for archival storage. Many research studies focused on much slower than that of data generation. How to store and several research directions including encoding/decoding asso- archive such a huge amount of data becomes critical and ciated with error correction schemes [11–18], DNA storage challenging. Synthetic Deoxyribonucleic Acid (DNA) storage systems with microfluidic platforms [19–21], and applications is one of the promising candidates with high density and long- such as database on top of DNA storage [9]. Moreover, sev- term preservation for archival storage systems. The existing eral survey papers [22,23] on DNA storage mainly focused works have focused on the achievable feasibility of a small on the technology reviews of how to store data in DNA (in amount of data when using DNA as storage. In this paper, vivo or in vitro) including the encoding/decoding and synthe- we investigate the scalability and potentials of DNA storage sis/sequencing processes. In fact, the major focus of these when a huge amount of data, like all available data from the studies was to demonstrate the feasibility of DNA storage world, is to be stored. -
The Future of DNA Data Storage the Future of DNA Data Storage
The Future of DNA Data Storage The Future of DNA Data Storage September 2018 A POTOMAC INSTITUTE FOR POLICY STUDIES REPORT AC INST M IT O U T B T The Future O E P F O G S R IE of DNA P D O U Data LICY ST Storage September 2018 NOTICE: This report is a product of the Potomac Institute for Policy Studies. The conclusions of this report are our own, and do not necessarily represent the views of our sponsors or participants. Many thanks to the Potomac Institute staff and experts who reviewed and provided comments on this report. © 2018 Potomac Institute for Policy Studies Cover image: Alex Taliesen POTOMAC INSTITUTE FOR POLICY STUDIES 901 North Stuart St., Suite 1200 | Arlington, VA 22203 | 703-525-0770 | www.potomacinstitute.org CONTENTS EXECUTIVE SUMMARY 4 Findings 5 BACKGROUND 7 Data Storage Crisis 7 DNA as a Data Storage Medium 9 Advantages 10 History 11 CURRENT STATE OF DNA DATA STORAGE 13 Technology of DNA Data Storage 13 Writing Data to DNA 13 Reading Data from DNA 18 Key Players in DNA Data Storage 20 Academia 20 Research Consortium 21 Industry 21 Start-ups 21 Government 22 FORECAST OF DNA DATA STORAGE 23 DNA Synthesis Cost Forecast 23 Forecast for DNA Data Storage Tech Advancement 28 Increasing Data Storage Density in DNA 29 Advanced Coding Schemes 29 DNA Sequencing Methods 30 DNA Data Retrieval 31 CONCLUSIONS 32 ENDNOTES 33 Executive Summary The demand for digital data storage is currently has been developed to support applications in outpacing the world’s storage capabilities, and the life sciences industry and not for data storage the gap is widening as the amount of digital purposes. -
Computer Files & Data Storage
STORAGE & FILE CONCEPTS, UTILITIES (Pages 6, 150-158 - Discovering Computers & Microsoft Office 2010) I. Computer files – data, information or instructions residing on secondary storage are stored in the form of a file. A. Software files are also called program files. Program files (instructions) are created by a computer programmer and generally cannot be modified by a user. It’s important that we not move or delete program files because your computer requires them to perform operations. Program files are also referred to as “executables”. 1. You can identify a program file by its extension:“.EXE”, “.COM”, “.BAT”, “.DLL”, “.SYS”, or “.INI” (there are others) or a distinct program icon. B. Data files - when you select a “save” option while using an application program, you are in essence creating a data file. Users create data files. 1. File naming conventions refer to the guidelines followed while assigning file names and will vary with the operating system and application in use (see figure 4-1). File names in Windows 7 may be up to 255 characters, you're not allowed to use reserved characters or certain reserved words. File extensions are used to identify the application that was used to create the file and format data in a manner recognized by the source application used to create it. FALL 2012 1 II. Selecting secondary storage media A. There are three type of technologies for storage devices: magnetic, optical, & solid state, there are advantages & disadvantages between them. When selecting a secondary storage device, certain factors should be considered: 1. Capacity - the capacity of computer storage is expressed in bytes.