Apache Ambari Operations (May 17, 2018)

Total Page:16

File Type:pdf, Size:1020Kb

Apache Ambari Operations (May 17, 2018) Hortonworks Data Platform Apache Ambari Operations (May 17, 2018) docs.cloudera.com Hortonworks Data Platform May 17, 2018 Hortonworks Data Platform: Apache Ambari Operations Copyright © 2012-2018 Hortonworks, Inc. Some rights reserved. The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open source platform for storing, processing and analyzing large volumes of data. It is designed to deal with data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the major contributor of code and patches to many of these projects. These projects have been integrated and tested as part of the Hortonworks Data Platform release process and installation and configuration tools have also been included. Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and completely open source. We sell only expert technical support, training and partner-enablement services. All of our technology is, and will remain free and open source. Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For more information on Hortonworks services, please visit either the Support or Training page. Feel free to Contact Us directly to discuss your specific needs. Except where otherwise noted, this document is licensed under Creative Commons Attribution ShareAlike 4.0 License. http://creativecommons.org/licenses/by-sa/4.0/legalcode ii Hortonworks Data Platform May 17, 2018 Table of Contents 1. Ambari Operations: Overview ...................................................................................... 1 1.1. Ambari Architecture .......................................................................................... 1 1.2. Accessing Ambari Web ...................................................................................... 2 2. Understanding the Cluster Dashboard ......................................................................... 5 2.1. Viewing the Cluster Dashboard ......................................................................... 5 2.1.1. Scanning Operating Status ..................................................................... 6 2.1.2. Viewing Details from a Metrics Widget ................................................... 7 2.1.3. Linking to Service UIs ............................................................................. 7 2.1.4. Viewing Cluster-Wide Metrics ................................................................. 8 2.2. Modifying the Cluster Dashboard ...................................................................... 9 2.2.1. Replace a Removed Widget to the Dashboard ...................................... 10 2.2.2. Reset the Dashboard ............................................................................ 10 2.2.3. Customizing Metrics Display ................................................................. 11 2.3. Viewing Cluster Heatmaps .............................................................................. 11 3. Managing Hosts ......................................................................................................... 13 3.1. Understanding Host Status .............................................................................. 13 3.2. Searching the Hosts Page ................................................................................ 14 3.3. Performing Host-Level Actions ......................................................................... 17 3.4. Managing Components on a Host ................................................................... 18 3.5. Decommissioning a Master or Slave ................................................................. 19 3.5.1. Decommission a Component ................................................................ 20 3.6. Delete a Component ....................................................................................... 20 3.7. Deleting a Host from a Cluster ........................................................................ 21 3.8. Setting Maintenance Mode ............................................................................. 21 3.8.1. Set Maintenance Mode for a Service .................................................... 22 3.8.2. Set Maintenance Mode for a Host ........................................................ 22 3.8.3. When to Set Maintenance Mode .......................................................... 23 3.9. Add Hosts to a Cluster .................................................................................... 24 3.10. Establishing Rack Awareness ......................................................................... 25 3.10.1. Set the Rack ID Using Ambari ............................................................. 26 3.10.2. Set the Rack ID Using a Custom Topology Script ................................. 27 4. Managing Services ..................................................................................................... 28 4.1. Starting and Stopping All Services ................................................................... 29 4.2. Displaying Service Operating Summary ............................................................ 29 4.2.1. Alerts and Health Checks ...................................................................... 30 4.2.2. Modifying the Service Dashboard ......................................................... 30 4.3. Adding a Service ............................................................................................. 32 4.4. Performing Service Actions .............................................................................. 36 4.5. Rolling Restarts ............................................................................................... 36 4.5.1. Setting Rolling Restart Parameters ........................................................ 37 4.5.2. Aborting a Rolling Restart .................................................................... 38 4.6. Monitoring Background Operations ................................................................ 38 4.7. Removing A Service ......................................................................................... 40 4.8. Operations Audit ............................................................................................ 40 4.9. Using Quick Links ............................................................................................ 40 4.10. Refreshing YARN Capacity Scheduler ............................................................. 41 4.11. Managing HDFS ............................................................................................ 41 4.11.1. Rebalancing HDFS ............................................................................... 42 iii Hortonworks Data Platform May 17, 2018 4.11.2. Tuning Garbage Collection ................................................................. 42 4.11.3. Customizing the HDFS Home Directory ............................................... 43 4.12. Managing Atlas in a Storm Environment ....................................................... 43 4.13. Enabling the Oozie UI ................................................................................... 44 5. Managing Service High Availability ............................................................................. 46 5.1. NameNode High Availability ............................................................................ 46 5.1.1. Configuring NameNode High Availability .............................................. 46 5.1.2. Rolling Back NameNode HA ................................................................. 51 5.1.3. Managing Journal Nodes ...................................................................... 61 5.2. ResourceManager High Availability ................................................................. 66 5.2.1. Configure ResourceManager High Availability ....................................... 66 5.2.2. Disable ResourceManager High Availability ........................................... 67 5.3. HBase High Availability .................................................................................... 69 5.4. Hive High Availability ...................................................................................... 74 5.4.1. Adding a Hive Metastore Component .................................................. 74 5.4.2. Adding a HiveServer2 Component ........................................................ 74 5.4.3. Adding a WebHCat Server .................................................................... 75 5.5. Storm High Availability .................................................................................... 75 5.5.1. Adding a Nimbus Component .............................................................. 75 5.6. Oozie High Availability .................................................................................... 76 5.6.1. Adding an Oozie Server Component ..................................................... 76 5.7. Apache Atlas High Availability ......................................................................... 77 5.8. Enabling Ranger Admin High Availability ......................................................... 79 6. Managing Configurations ..........................................................................................
Recommended publications
  • Vimal Daga Chief Technical Officer (CTO) – Linuxworld Informatics Pvt Ltd Professional Experience & Certifications
    Vimal Daga Chief Technical Officer (CTO) – LinuxWorld Informatics Pvt Ltd Professional Experience & Certifications: I Professional Experience During this period, has been engaged with various corporate clients on different domains and has been involved in imparting corporate Training programs and Consultancy for various technologies that covers the following: A. Sr. Machine Learning / Deep Learning / Data Scientist / NLP Consultant and Researcher Expertise in the field of Artificial Intelligence, Deep Learning, and Computer Vision and having ability to solve problems such as Face Detection, Face Recognition and Object Detection using Deep Neural Network (CNN, DNN, RNN, Convolution Networks etc.) and Optical Character Detection and Recognition (OCD & OCR) Worked in tools such as Tensorflow, Caffe/Caffe2, Keras, Theano, PyTorch etc. Build prototypes related to deep learning problems in the field of computer vision. Publications at top international conferences/ journals in fields related to computer vision/deep learning/machine learning / AI Experience on tools, frameworks like Microsoft Azure ML, Chat Bot Framework/LUIS . IBM Watson / ConversationService, Google TensorFlow / Python for Machine Learning (e.g. scikit-learn),Open source ML libraries and tools like Apache Spark Highly Worked on Data Science, Big Data,datastructures, statistics , algorithms like Regression, Classification etc. Working knowlegde of Supervised / Unsuperivsed learning (Decision Trees, Logistic Regression, SVMs,GBM, etc) Expertise in Sentiment Analysis, Entity Extraction, Natural Language Understanding (NLU), Intent recognition Strong understanding of text pre-processing and normalization techniques, such as tokenization, POS tagging, and parsing, and how they work at a basic level and NLP toolkits as NLTK, Gensim,, Apac SpaCyhe UIMA etc. I have Hands on experience related to Datasets such as or including text, images and other logs or clickstreams.
    [Show full text]
  • Return of Organization Exempt from Income
    OMB No. 1545-0047 Return of Organization Exempt From Income Tax Form 990 Under section 501(c), 527, or 4947(a)(1) of the Internal Revenue Code (except black lung benefit trust or private foundation) Open to Public Department of the Treasury Internal Revenue Service The organization may have to use a copy of this return to satisfy state reporting requirements. Inspection A For the 2011 calendar year, or tax year beginning 5/1/2011 , and ending 4/30/2012 B Check if applicable: C Name of organization The Apache Software Foundation D Employer identification number Address change Doing Business As 47-0825376 Name change Number and street (or P.O. box if mail is not delivered to street address) Room/suite E Telephone number Initial return 1901 Munsey Drive (909) 374-9776 Terminated City or town, state or country, and ZIP + 4 Amended return Forest Hill MD 21050-2747 G Gross receipts $ 554,439 Application pending F Name and address of principal officer: H(a) Is this a group return for affiliates? Yes X No Jim Jagielski 1901 Munsey Drive, Forest Hill, MD 21050-2747 H(b) Are all affiliates included? Yes No I Tax-exempt status: X 501(c)(3) 501(c) ( ) (insert no.) 4947(a)(1) or 527 If "No," attach a list. (see instructions) J Website: http://www.apache.org/ H(c) Group exemption number K Form of organization: X Corporation Trust Association Other L Year of formation: 1999 M State of legal domicile: MD Part I Summary 1 Briefly describe the organization's mission or most significant activities: to provide open source software to the public that we sponsor free of charge 2 Check this box if the organization discontinued its operations or disposed of more than 25% of its net assets.
    [Show full text]
  • Extended Version
    Sina Sheikholeslami C u rriculum V it a e ( Last U pdated N ovember 2 0 18) Website: http://sinash.ir Present Address : https://www.kth.se/profile/sinash EIT Digital Stockholm CLC , https://linkedin.com/in/sinasheikholeslami Isafjordsgatan 26, Email: si [email protected] 164 40 Kista (Stockholm), [email protected] Sweden [email protected] Educational Background: • M.Sc. Student of Data Science, Eindhoven University of Technology & KTH Royal Institute of Technology, Under EIT-Digital Master School. 2017-Present. • B.Sc. in Computer Software Engineering, Department of Computer Engineering and Information Technology, Amirkabir University of Technology (Tehran Polytechnic). 2011-2016. • Mirza Koochak Khan Pre-College in Mathematics and Physics, Rasht, National Organization for Development of Exceptional Talents (NODET). Overall GPA: 19.61/20. 2010-2011. • Mirza Koochak Khan Highschool in Mathematics and Physics, Rasht, National Organization for Development of Exceptional Talents (NODET). Overall GPA: 19.17/20, Final Year's GPA: 19.66/20. 2007-2010. Research Fields of Interest: • Distributed Deep Learning, Hyperparameter Optimization, AutoML, Data Intensive Computing Bachelor's Thesis: • “SDMiner: A Tool for Mining Data Streams on Top of Apache Spark”, Under supervision of Dr. Amir H. Payberah (Defended on June 29th 2016). Computer Skills: • Programming Languages & Markups: o F luent in Java, Python, Scala, JavaS cript, C/C++, A ndroid Pr ogram Develop ment o Familia r wit h R, SAS, SQL , Nod e.js, An gula rJS, HTM L, JSP •
    [Show full text]
  • Poweredge R640 Apache Hadoop
    A Principled Technologies report: Hands-on testing. Real-world results. The science behind the report: Run compute-intensive Apache Hadoop big data workloads faster with Dell EMC PowerEdge R640 servers This document describes what we tested, how we tested, and what we found. To learn how these facts translate into real-world benefits, read the report Run compute-intensive Apache Hadoop big data workloads faster with Dell EMC PowerEdge R640 servers. We concluded our hands-on testing on October 27, 2019. During testing, we determined the appropriate hardware and software configurations and applied updates as they became available. The results in this report reflect configurations that we finalized on October 15, 2019 or earlier. Unavoidably, these configurations may not represent the latest versions available when this report appears. Our results The table below presents the throughput each solution delivered when running the HiBench workloads. Dell EMC™ PowerEdge™ R640 Dell EMC PowerEdge R630 Percentage more throughput solution solution Latent Dirichlet Allocation 4.13 1.94 112% (MB/sec) Random Forest (MB/sec) 100.66 94.43 6% WordCount (GB/sec) 5.10 3.45 47% The table below presents the minutes each solution needed to complete the HiBench workloads. Dell EMC PowerEdge R640 Dell EMC PowerEdge R630 Percentage less time solution solution Latent Dirichlet Allocation 17.11 36.25 52% Random Forest 5.55 5.92 6% WordCount 4.95 7.32 32% Run compute-intensive Apache Hadoop big data workloads faster with Dell EMC PowerEdge R640 servers November 2019 System configuration information The table below presents detailed information on the systems we tested.
    [Show full text]
  • TR-4744: Secure Hadoop Using Apache Ranger with Netapp In
    Technical Report Secure Hadoop using Apache Ranger with NetApp In-Place Analytics Module Deployment Guide Karthikeyan Nagalingam, NetApp February 2019 | TR-4744 Abstract This document introduces the NetApp® In-Place Analytics Module for Apache Hadoop and Spark with Ranger. The topics covered in this report include the Ranger configuration, underlying architecture, integration with Hadoop, and benefits of Ranger with NetApp In-Place Analytics Module using Hadoop with NetApp ONTAP® data management software. TABLE OF CONTENTS 1 Introduction ........................................................................................................................................... 4 1.1 Overview .........................................................................................................................................................4 1.2 Deployment Options .......................................................................................................................................5 1.3 NetApp In-Place Analytics Module 3.0.1 Features ..........................................................................................5 2 Ranger ................................................................................................................................................... 6 2.1 Components Validated with Ranger ................................................................................................................6 3 NetApp In-Place Analytics Module Design with Ranger..................................................................
    [Show full text]
  • Hortonworks Data Platform
    Hortonworks Data Platform Apache Ambari Installation for IBM Power Systems (November 15, 2018) docs.cloudera.com Hortonworks Data Platform November 15, 2018 Hortonworks Data Platform: Apache Ambari Installation for IBM Power Systems Copyright © 2012-2018 Hortonworks, Inc. Some rights reserved. The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open source platform for storing, processing and analyzing large volumes of data. It is designed to deal with data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the major contributor of code and patches to many of these projects. These projects have been integrated and tested as part of the Hortonworks Data Platform release process and installation and configuration tools have also been included. Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and completely open source. We sell only expert technical support, training and partner-enablement services. All of our technology is, and will remain free and open source. Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For more information on Hortonworks services, please visit either the Support or Training page. Feel free to Contact Us directly to discuss your specific needs. Except where otherwise noted, this document is licensed under Creative Commons Attribution ShareAlike 4.0 License.
    [Show full text]
  • Professional Summary Technical Skills
    PROF ESSIONAL SUMMARY • Over 7.5 years of professional IT experience in analysis, design, development and implementation, support of Enterprise Application Integration. • Experience in installation, configuration, deployment and troubleshooting of TIBCO Active Enterprise Suite of applications TIBCO BusinessWorks, TIBCO Designer, TIBCO Rendezvous, TIBCO EMS, TIBCO Administrator and TIBCO Spotfire. • Good hands on experience in Web Services using SOAP, WSDL and Schemas XSD with strong skills in understanding and implementing Service Oriented Architecture (SOA). • Knowledge in using TIBCO Administrator for User Management, Resource Management and Application Management. • Well conversant in using TIBCO messaging standards including EMS and Rendezvous. • Deployed BusinessWorks interfaces for Fault Tolerance and Load balancing modes. • Knowledge and Experience in handling and supporting (L3) ESB architecture. • Having experience in Application development, deployment, debugging and troubleshooting. • Extensively handled overall responsibility Project deployment to SIT, UAT and PROD Environment using UNIX and TIBCO Admin. • Experience of analysing and defect fixing in SIT and UAT Environment. • Well conversant in Handling Technical Interview Sessions. • Experience of Project planning, Tracking, Risk analysis, counter action deployment. • Good Interpersonal, Analytic, Leadership, Verbal and Written skills. • Highly intuitive, self-motivated and energetic team player and adaptable to challenging environments. TECHNICAL SKILLS • Tibco Skills : TIBCO Business works, TIBCO iProcess, TIBCO AMX BPM suites, TIBCO Business Events, TIBCO Spotfire, TIBCO Active Space, TIBCO Administrator, TIBCO EMS, TIBCO RV, TIBCO Adapters, TIBCO Hawk, ESB and SOA frameworks. • Language: Java, J2EE (JDBC, RMI, Servlets, JSP, EJB, JMS), C, C++, C#, SQL, PL/SQL, XML, shell script. • DataBase: Oracle 8, 8i, 9i, 10g,SQL, PostgreSQL • Open Source: Apache Kafka, Apache Nifi, Apache Ambari, HDP Administration.
    [Show full text]
  • HPC-ABDS High Performance Computing Enhanced Apache Big Data Stack
    HPC-ABDS High Performance Computing Enhanced Apache Big Data Stack Geoffrey C. Fox, Judy Qiu, Supun Kamburugamuve Shantenu Jha, Andre Luckow School of Informatics and Computing RADICAL Indiana University Rutgers University Bloomington, IN 47408, USA Piscataway, NJ 08854, USA fgcf, xqiu, [email protected] [email protected], [email protected] Abstract—We review the High Performance Computing En- systems as they illustrate key capabilities and often motivate hanced Apache Big Data Stack HPC-ABDS and summarize open source equivalents. the capabilities in 21 identified architecture layers. These The software is broken up into layers so that one can dis- cover Message and Data Protocols, Distributed Coordination, Security & Privacy, Monitoring, Infrastructure Management, cuss software systems in smaller groups. The layers where DevOps, Interoperability, File Systems, Cluster & Resource there is especial opportunity to integrate HPC are colored management, Data Transport, File management, NoSQL, SQL green in figure. We note that data systems that we construct (NewSQL), Extraction Tools, Object-relational mapping, In- from this software can run interoperably on virtualized or memory caching and databases, Inter-process Communication, non-virtualized environments aimed at key scientific data Batch Programming model and Runtime, Stream Processing, High-level Programming, Application Hosting and PaaS, Li- analysis problems. Most of ABDS emphasizes scalability braries and Applications, Workflow and Orchestration. We but not performance and one of our goals is to produce summarize status of these layers focusing on issues of impor- high performance environments. Here there is clear need tance for data analytics. We highlight areas where HPC and for better node performance and support of accelerators like ABDS have good opportunities for integration.
    [Show full text]
  • Code Smell Prediction Employing Machine Learning Meets Emerging Java Language Constructs"
    Appendix to the paper "Code smell prediction employing machine learning meets emerging Java language constructs" Hanna Grodzicka, Michał Kawa, Zofia Łakomiak, Arkadiusz Ziobrowski, Lech Madeyski (B) The Appendix includes two tables containing the dataset used in the paper "Code smell prediction employing machine learning meets emerging Java lan- guage constructs". The first table contains information about 792 projects selected for R package reproducer [Madeyski and Kitchenham(2019)]. Projects were the base dataset for cre- ating the dataset used in the study (Table I). The second table contains information about 281 projects filtered by Java version from build tool Maven (Table II) which were directly used in the paper. TABLE I: Base projects used to create the new dataset # Orgasation Project name GitHub link Commit hash Build tool Java version 1 adobe aem-core-wcm- www.github.com/adobe/ 1d1f1d70844c9e07cd694f028e87f85d926aba94 other or lack of unknown components aem-core-wcm-components 2 adobe S3Mock www.github.com/adobe/ 5aa299c2b6d0f0fd00f8d03fda560502270afb82 MAVEN 8 S3Mock 3 alexa alexa-skills- www.github.com/alexa/ bf1e9ccc50d1f3f8408f887f70197ee288fd4bd9 MAVEN 8 kit-sdk-for- alexa-skills-kit-sdk- java for-java 4 alibaba ARouter www.github.com/alibaba/ 93b328569bbdbf75e4aa87f0ecf48c69600591b2 GRADLE unknown ARouter 5 alibaba atlas www.github.com/alibaba/ e8c7b3f1ff14b2a1df64321c6992b796cae7d732 GRADLE unknown atlas 6 alibaba canal www.github.com/alibaba/ 08167c95c767fd3c9879584c0230820a8476a7a7 MAVEN 7 canal 7 alibaba cobar www.github.com/alibaba/
    [Show full text]
  • Kylo Data Lakes Configuration Deployed in Public Cloud Environments in Single Node Mode
    Master of Science in Computer Science September 2019 Kylo Data Lakes Configuration deployed in Public Cloud environments in Single Node Mode Rong Peng Faculty of Computing, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in partial fulfilment of the requirements for the degree of Master of Science in Computer Science. The thesis is equivalent to 20 weeks of full time studies. The authors declare that they are the sole authors of this thesis and that they have not used any sources other than those listed in the bibliography and identified as references. They further declare that they have not submitted this thesis at any other institution to obtain a degree. Contact Information: Author(s): Rong Peng E-mail: [email protected] University advisor: Dr. Emiliano Casalicchio Department of Computer Science Industrial advisors: Kim Hindart Daniel Gustafsson City Network Hosting AB Faculty of Computing Internet : www.bth.se Blekinge Institute of Technology Phone : +46 455 38 50 00 SE-371 79 Karlskrona, Sweden Fax : +46 455 38 50 57 2 ABSTRACT Data Lake is a platform for centralized storage of massive, multiple sources and multiple types of data, and can quickly process and analyze data. It is essentially an advanced enterprise data architecture. The high demand for big data storage and analytics leads data lake emerging nowadays. Organizations hope to generate business profit from their data by building a data lake. However, it is worth noting that the promising concept of data lake is still evolving today.
    [Show full text]
  • Trafficcontrol Documentation
    trafficcontrol Documentation Release 3 jvd Jun 19, 2018 Contents 1 CDN Basics 3 1.1 CDN Basics...............................................3 2 Traffic Control Overview 11 2.1 Traffic Control Overview......................................... 11 3 Administrator’s Guide 21 3.1 Administrator’s Guide.......................................... 21 4 Developer’s Guide 131 4.1 Developer’s Guide............................................ 131 5 APIs 157 5.1 APIs................................................... 157 6 FAQ 521 6.1 FAQ.................................................... 521 7 Indices and Tables 525 7.1 Glossary................................................. 525 i ii trafficcontrol Documentation, Release 3 The vast majority of today’s Internet traffic is media files being sent from a single source to many thousands or even millions of destinations. Content Delivery Networks make that one-to-many distribution possible in an economical way. Traffic Control is an Open Source implementation of a Content Delivery Network. The following documentation sections are available: Contents 1 trafficcontrol Documentation, Release 3 2 Contents CHAPTER 1 CDN Basics A review of the basic functionality of a Content Delivery Network. 1.1 CDN Basics Traffic Control is a CDN control plane, see the topics below to familiarize yourself with the basic concepts of a CDN. 1.1.1 Content Delivery Networks The vast majority of today’s Internet traffic is media files (often video or audio) being sent from a single source (the Content Provider) to many thousands or even millions of destinations (the Content Consumers). Content Delivery Networks are the technology that make that one-to-many distribution possible in an economical way. A Content De- livery Network (CDN) is a distributed system of servers for delivering content over HTTP.
    [Show full text]
  • Apache Ambari Troubleshooting (May 19, 2017)
    Hortonworks Data Platform Apache Ambari Troubleshooting (May 19, 2017) docs.cloudera.com hdp-ambari-troubleshooting May 19, 2017 Hortonworks Data Platform: Apache Ambari Troubleshooting Copyright © 2012-2016 Hortonworks, Inc. All rights reserved. The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open source platform for storing, processing and analyzing large volumes of data. It is designed to deal with data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the major contributor of code and patches to many of these projects. These projects have been integrated and tested as part of the Hortonworks Data Platform release process and installation and configuration tools have also been included. Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and completely open source. We sell only expert technical support, training and partner-enablement services. All of our technology is, and will remain free and open source. Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For more information on Hortonworks services, please visit either the Support or Training page. Feel free to Contact Us directly to discuss your specific needs. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License.
    [Show full text]