Molecular Imaging Using Nanobodies

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Imaging Using Nanobodies Molecular imaging using Nanobodies Tony Lahoutte, MD, PhD Feb 28th 2014 Wetenschappelijke Prijs prof. Roger Van Geen 1. Introduction Molecular imaging using Nanobodies started as a post-doctoral research topic in 2007 at the In vivo Cellular and Molecular Imaging (ICMI) laboratory of the Vrije Universiteit Brussel (VUB) directed by Tony Lahoutte. The idea of combining Nanobody technology with radionuclides to form radiotracers for Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) imaging originated during an interdisciplinary meeting between the nuclear medicine team of the VUB University Hospital (UZ Brussel - prof. Axel Bossuyt, Tony Lahoutte and Vicky Caveliers) and the VUB research group Cellular and Molecular Immunology (prof. De Baetselier, prof. Serge Muyldermans). Since then this combined technology has been investigated extensively in vitro and in vivo in preclinical models to refine the methodology and explore potential applications for both basic and clinical research. In 2011, the first clinical translation of radiolabeled Nanobodies was initiated and a Phase I clinical trial in breast cancer patients is currently ongoing at the department of Nuclear Medicine of UZ Brussel. This memorandum gives an overview of the Nanobody imaging technology and a description of the different applications that we investigated in the last 5 years. 2. Molecular imaging & Nanobodies 2.1 Molecular imaging Molecular imaging is aimed at the study of molecular and cellular events in intact living subjects. It has the unique advantage that the biology of health and disease can be studied non-invasively in its natural environment, offering new insights and opportunities for discovery. Nuclear imaging is at present the most sensitive and accurate method for molecular imaging. It requires the administration of a targeting probe labeled with a radioisotope. This radiolabeled probe or ‘tracer’ then distributes throughout the body, interacts with a specific molecular target and remains onsite while the unbound tracer is eliminated from the body. The most widely used tracer is 18F-Fluorodeoxyglucose or 18F-FDG in combination with PET imaging. 18F-FDG is intensely accumulated in sites with increased glucose metabolism and therefore used for the sensitive detection of cancer. In order to image a more specific marker of cancer it is possible to target antigens expressed on the cell membrane. A radiolabeled version of a ligand of the receptor has been extensively investigated in the last few decades. The use of radiolabeled antibodies for ‘immuno-imaging’ of cancer has received a lot attention in recent years and several radiolabeled conventional antibodies are currently used in clinical trials. The main limitation of this method is that it requires several days before a high contrasted image can be obtained due to the prolonged blood retention of intact antibodies. Imaging at several days after 124 injection requires a radiolabeling with isotopes with a long half-life such as I (t 1/2: 100,3h) and 89 Zr (t1/2:78,4h) resulting in a relatively high radiation dose per scan (20-40 mSv). As a result research has been focused on the use of radiolabeled fragments of immunoglobulins that are more rapidly cleared from the circulation. In our research we investigate Nanobodies that are the smallest possible functional fragments that are derived from antibodies. 2.2. Nanobodies Nanobodies are recombinant proteins that are derived from a particular type of antibodies that exist in the blood of camelids (llama, alpaca, vicuna, guanaco, camel and dromedary). In contrast to conventional antibodies that exist in all mammals (including human beings), the camelid 'heavy-chain antibodies' (HCAbs) lack a light chain (the green domains in the figure below). So, while conventional antibodies bind to foreign structures (the 'antigen') through the assembly of the variable domain of the heavy chain (VH) and that of the light chain (VL), the camelid HCAbs bind to antigen with a single domain called the VHH. This VHH (also called 'nanobody') can be easily produced in bacteria or yeast in large quantities, is very stable and binds to the antigen with high affinities and specificities. Also, Nanobodies are encoded by small DNA fragments and can be manipulated by genetic engineering in multiple formats and fusions. Since they are very small, Nanobodies efficiently penetrate into dense tissues. When they encounter antigen, Nanobodies get trapped, while unbound Nanobody is rapidly removed from the body through filtration by the renal system. As a result, radiolabeled Nanobodies generate very high specific contrast at the targeted site as early as 1 hour after administration. This allows the use of short-lived isotopes such as 68Ga or 18F and a more favorable dosimetry (2-4 mSv per scan) Figure 1. Comparison of conventional IgG antibody (left) and a Camelid heavy-chain-only nanobody (middle). The VHH fragment represents a Nanobody. Related references: Immuno-imaging using Nanobodies. Vaneycken I, D'huyvetter M, Hernot S, De Vos J, Xavier C, Devoogdt N, Caveliers V, Lahoutte T. Curr Opin Biotechnol. 2011 Dec;22(6):877-81 Molecular imaging using Nanobodies: a case study. Devoogdt N, Xavier C, Hernot S, Vaneycken I, D'Huyvetter M, De Vos J, Massa S, De Baetselier P, Caveliers V, Lahoutte T. Methods Mol Biol. 2012;911:559-67 Camelid single-domain antibody-fragment engineering for (pre)clinical in vivo molecular imaging applications: adjusting the bullet to its target. De Vos J, Devoogdt N, Lahoutte T, Muyldermans S. Expert Opin Biol Ther. 2013 May 16 3. Aim of the research The research focused on Molecular imaging using Nanobodies presented here is aimed at the development of new PET tracers for molecular imaging in oncology, inflammatory and cardiovascular diseases. Our major goal is to translate our lab findings into innovative clinical applications for diagnostic PET imaging. However, we also conduct more basic science investigations at our preclinical imaging facilities in order to identify the ideal conditions and formats for nanobodies as probes for molecular imaging. A recently added objective of our studies is to explore the feasibility of radionuclide therapy using the same Nanobody technology. This Nanobody research is embedded in a larger research theme that also includes the development of optical imaging tracers and detectors for image guided surgery. These applications are non-radioactive and beyond the scope of the current proposal. 4. Nanobody applications 4.1 Molecular imaging of cancer Our first research projects were aimed to develop nanobody-tracers for imaging of membrane antigens on cancer cells. Examples of successful projects include those targeting HER2, EGFR and CEA for breast, lung and colon cancer, respectively, and will be described hereunder. We are currently expanding our list of oncology tracers in collaboration with strategically-chosen academic and industrial partners. Targeted oncology biomarkers in the pipeline include CD20 for lymphomas, PSMA for prostate cancer and paraproteins for multiple myeloma. The choice to perform extensive preclinical imaging of cancer biomarkers is mostly based on its clinical relevance: all selected targets on the respective cancer cells have either prognostic value, can stratify patients eligible for receptor-targeted therapies and/or are suitable for nanobody- coupled radionuclide therapy. 4.1.1 Imaging Epidermal Growth Factor Receptor expression Epidermal Growth Factor Receptor (EGFR) is a membrane receptor of the Epithelial Growth Factor family and a prognostic biomarker for many cancer types. It is targeted by therapeutic antibodies such as Erbitux and by chemical tyrokinase inhibitors such as erlotinib. Anti-EGFR Nanobodies were evaluated as tracers for imaging of EGFR-positive xenografted tumors in mice. In a first hallmark study we showed the potential of the anti-EGFR nanobody 7C12 to target specifically the EGFR in cancer in vivo and demonstrated its applicability for fast non-invasive molecular imaging: 99mTc-labeled Nanobodies were cleared very fast out of blood and non-target organs, and accumulated in A431 EGFR-positive tumors but not in EGFR-negative R1M tumors with high tumor-to-organ ratios (Figure 2). This allowed us to visualize tumors with high contrast on SPECT/CT images within one hour after injection. Comparing two Nanobodies (7C12 and 7D12) that differ only in a few amino acids we showed that these small modifications can result in measurable differences in the general biodistribution and tumor targeting. In a next study we demonstrated that the anti-EGFR nanobody was useful to monitor tumor regression when mice were under therapy with erlotinib. Figure 2. Transverse, coronal, and sagittal views of fused pinhole SPECT and micro-CT images of mice bearing A431 and R1M xenografts. A431 (A) and R1M (C) tumors injected with 99mTc- 7C12. A431 (B) and R1M (D) tumors injected with 99mTc-7D12. Images were acquired at 1 h after injection. NIH white color scale is used, and images are equally scaled down to 10% relative to maximum activity in image. Related references: Correlation between epidermal growth factor receptor-specific nanobody uptake and tumor burden: a tool for noninvasive monitoring of tumor response to therapy. Gainkam LO, Keyaerts M, Caveliers V, Devoogdt N, Vanhove C, Van Grunsven L, Muyldermans S, Lahoutte T. Mol Imaging Biol. 2011 Oct;13(5):940-8. Comparison of the biodistribution and tumor targeting of two 99mTc-labeled anti-EGFR Nanobodies in mice, using pinhole SPECT/micro-CT. Gainkam LO, Huang L, Caveliers V, Keyaerts M, Hernot S, Vaneycken I, Vanhove C, Revets H, De Baetselier P, Lahoutte T. J Nucl Med. 2008 May;49(5):788-95 SPECT imaging with 99mTc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Huang L, Gainkam LO, Caveliers V, Vanhove C, Keyaerts M, De Baetselier P, Bossuyt a, Revets H, Lahoutte T. Mol Imaging Biol. 2008 May-Jun;10(3):167-75 Localization, mechanism and reduction of renal retention of technetium-99m labeled epidermal growth factor receptor-specific nanobody in mice. Gainkam LO, Caveliers V, Devoogdt N, Vanhove C, Xavier C, Boerman O, Muyldermans S, Bossuyt A, Lahoutte T.
Recommended publications
  • Landscape Analysis of Phase 2/3 Clinical Trials of Targeted
    Journal of Nuclear Medicine, published on February 12, 2021 as doi:10.2967/jnumed.120.258103 Landscape analysis of Phase 2/3 clinical trials for Targeted Radionuclide Therapy Erik Mittra1, Amanda Abbott2, and Lisa Bodei3 Affiliations 1. Division of Nuclear Medicine & Molecular Imaging, Oregon Health & Science University, Portland, OR 2. Clinical Trials Network, Society of Nuclear Medicine & Molecular Imaging, Reston, VA 3. Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY Word count without figure: 880 Word count with figure: 971 Key Words: radioisotope therapy, radiopharmaceutical therapy and radioligand therapy Text Within Nuclear Medicine, theranostics has revitalized the field of Targeted Radionuclide Therapy (TRT) and there is a growing number of investigator-initiated and industry-sponsored clinical trials of TRT. This article summarizes the current trials available in the NIH database, the largest trial repository, to provide both an overview of the current landscape and a glimpse towards an undeniably exciting future of theranostics. This landscape analysis was completed by searching the terms “radionuclide therapy”, “radioisotope therapy”, “radiopharmaceutical therapy” and “radioligand therapy” on ClinicalTrials.gov in November 2020. Other terms may provide different results. Phase 1/2, 2, and 3 trials that are currently recruiting and those not yet recruiting were included. Studies. Overall, the results showed 42 clinical trials including 13 Phase 1/2, 26 Phase 2, and three Phase 3. Given this range of phases, the planned enrollment varies widely from 10-813, with an average of 147 participants. Five different radioisotopes, 12 ligands or targets, and 11 different cancer types are represented (Figure 1).
    [Show full text]
  • RADIO PHARMACEUTICALS  Production Control  Safety Precautions  Applications  Storage
    RADIO PHARMACEUTICALS Production control Safety precautions Applications Storage. Presented by: K. ARSHAD AHMED KHAN M.Pharm, (Ph.D) Department of Pharmaceutics, Raghavendra Institute of Pharmaceutical Education and Research [RIPER] Anantapur. 1 DEFINITION: Radiopharmaceuticals are the radioactive substances or radioactive drugs for diagnostic or therapeutic interventions. or Radiopharmaceuticals are medicinal formulations containing radioisotopes which are safe for administration in humans for diagnosis or for therapy. 2 COMPOSITION: • A radioactive isotope that can be injected safely into the body, and • A carrier molecule which delivers the isotope to the area to be treated or examined. 3 USAGE/WORKING: 4 BASICS Nuclide: This is a particular nuclear species characterized by its atomic number (No. of protons) and mass 12 23 number (No. of protons + neutrons). 6C , 11Na Isotopes: These are nuclides with same atomic number and different mass number. 1 2 3 Hydrogen has 3 isotopes --- 1H , 1H , 1H . 10 11 12 13 14 Carbon has 5 isotopes ------6C , 6C , 6C , 6C , 6C . 5 • ISOTOPES MAY BE STABLE OR UNSTABLE. • The nucleus is unstable if the number of neutrons is less or greater than the number of protons. • If they are unstable, they under go radioactive decay or disintegration and are known as radioactive isotopes/ radioactive nuclides. Radioactivity: The property of unstable nuclides of emitting radiation by spontaneous transformation of nuclei into other nuclides is called radioactivity. •Radioactive isotopes emit radiations or rays like α, β, γ rays. 6 PRODUCTION CONTROL 7 8 9 10 11 12 13 14 15 Radiopharmaceuticals production occurs in machines like 1. Cyclotron (low energy, high energy) 2.
    [Show full text]
  • Targeted Radiotherapeutics from 'Bench-To-Bedside'
    RadiochemistRy in switzeRland CHIMIA 2020, 74, No. 12 939 doi:10.2533/chimia.2020.939 Chimia 74 (2020) 939–945 © C. Müller, M. Béhé, S. Geistlich, N. P. van der Meulen, R. Schibli Targeted Radiotherapeutics from ‘Bench-to-Bedside’ Cristina Müllera, Martin Béhéa, Susanne Geistlicha, Nicholas P. van der Meulenab, and Roger Schibli*ac Abstract: The concept of targeted radionuclide therapy (TRT) is the accurate and efficient delivery of radiation to disseminated cancer lesions while minimizing damage to healthy tissue and organs. Critical aspects for success- ful development of novel radiopharmaceuticals for TRT are: i) the identification and characterization of suitable targets expressed on cancer cells; ii) the selection of chemical or biological molecules which exhibit high affin- ity and selectivity for the cancer cell-associated target; iii) the selection of a radionuclide with decay properties that suit the properties of the targeting molecule and the clinical purpose. The Center for Radiopharmaceutical Sciences (CRS) at the Paul Scherrer Institute in Switzerland is privileged to be situated close to unique infrastruc- ture for radionuclide production (high energy accelerators and a neutron source) and access to C/B-type labora- tories including preclinical, nuclear imaging equipment and Swissmedic-certified laboratories for the preparation of drug samples for human use. These favorable circumstances allow production of non-standard radionuclides, exploring their biochemical and pharmacological features and effects for tumor therapy and diagnosis, while investigating and characterizing new targeting structures and optimizing these aspects for translational research on radiopharmaceuticals. In close collaboration with various clinical partners in Switzerland, the most promising candidates are translated to clinics for ‘first-in-human’ studies.
    [Show full text]
  • Bispecific Antibody Pretargeting of Radionuclides for Immuno^ Single
    Bispecific Antibody Pretargeting of Radionuclides for Immuno ^ Single-Photon Emission Computed Tomography and Immuno ^ Positron Emission Tomography Molecular Imaging:An Update Robert M. Sharkey,1Habibe Karacay,1William J. McBride,2 Edmund A. Rossi,3 Chien-Hsing Chang,3 and David M. Goldenberg1 Abstract Molecular imaging is intended to localize disease based on distinct molecular/functional characteristics. Much of today’s interest in molecular imaging is attributed to the increased acceptance and role of 18F-flurodeoxyglucose (18F-FDG) imaging in a variety of tumors. The clinical acceptance of 18F-FDG has stimulated research for other positron emission tomography (PET) agents with improved specificity to aid in tumor detection and assessment. In this regard, a number of highly specific antibodies have been described for different cancers. Although scintigraphic imaging with antibodies in the past was helpful in patient management, most antibody-based imaging products have not been able to compete successfully with the sensitivity afforded by 18F-FDG-PET, especially when used in combination with computed tomography. Recently, however, significant advances have been made in reengineering antibodies to improve their targeting properties. Herein, we describe progress being made in using a bispecific antibody pretargeting method for immuno ^ single-photon emission computed tomography and immunoPETapplications, as contrasted to directly radiolabeled antibodies.This approach not only significantly enhances tumor/nontumor ratios but also provides high signal intensity in the tumor, making it possible to visualize micrometastases of colonic cancer as small as 0.1to 0.2 mm in diameter using an anti ^ carcinoembryonic antigen bispecific antibody, whereas FDG failed to localize these lesions in a nude mouse model.
    [Show full text]
  • The Evolving Landscape of Therapeutic and Diagnostic Radiopharmaceuticals
    ARTICLE THE EVOLVING LANDSCAPE OF THERAPEUTIC AND DIAGNOSTIC RADIOPHARMACEUTICALS Therapeutic and diagnostic approaches involving the use of radiation and radioactive compounds have a long- standing history in the fields of science and medicine. Radiotherapy was first used in cancer treatments in 1896.1 Since then, the field of radiation has advanced to further understand how radioactive compounds interact with biological tissues and how they can be used in both diagnostic and therapeutic applications. Radiopharmaceuticals are compounds used for medicinal purposes that contain radioactive isotopes (also known as radionuclides) and can be diagnostic or therapeutic in nature, or both.2 They represent a unique category of pharmaceuticals due to their radioactive properties. As such, there are specific guidelines and regulations that impact and direct the study and use of these compounds. Radiopharmaceutical drug development has rapidly expanded over the last decade. Radiopharmaceuticals are widely used in the field of imaging for diagnosis, staging, and follow up; in the realm of therapeutics, their use has increased, most notably, in the area of oncology. In a recent webinar, experts from Medpace’s radiation oncology, imaging, regulatory, and operational teams discussed the growing space of radiopharmaceutical development with respect to their biological use and application, regulatory frameworks that govern their evaluation in support of approvals, operational manufacturing considerations, and associated imaging approaches. BIOLOGICAL MECHANISMS OF ACTION OF RADIONUCLIDES According to Dr. Jess Guarnaschelli, Medical Director, Radiation Oncology, the radioactivity of radionuclides can be employed for both diagnostic and therapeutic medical uses. While external beam ionizing radiation involves radiation emitted in the form of electromagnetic waves or particles, radiopharmaceuticals use radionuclides to deliver localized radiation to specific targets.
    [Show full text]
  • Radiotoxicity After Iodine-131 Therapy for Thyroid Cancer Using the Micronucleus Assay
    Radiotoxicity After Iodine-131 Therapy for Thyroid Cancer Using the Micronucleus Assay Naoto Watanabe, Kunihiko Yokoyama, Seigo Kinuya, Noriyuki Shuke, Masashi Shimizu, Ryusuke Futatsuya, Takatoshi Michigishi, Norihisa Tonami, Hikaru Seto and David A. Goodwin Departments of Radiology and Radiological Science, Toyama Medical and Pharmaceutical University, Toyama; Department of Nuclear Medicine, Kanazawa University, Kanazawa; Department of Radiology, Asahikawa Medical University, Asahikawa, Japan; Nuclear Medicine Service, Veterans Affairs Health Sciences, Palo Alto, California; and Department of Radiology, Stanford University School of Medicine, Stanford, California thrombocytopenia have been reported (6,7). Therefore, in most The purpose of the present study was to evaluate the degree of patients who are treated with a large amount of I3il, the limiting cytological radiation damage to lymphocytes after1311therapy using the cytokinesis-blocked micronucleus assay. The chromosomal factor is the radiation dose to the blood and the bone marrow damage to lymphocytes induced by 131I ¡nvivo should result in (8). Dosimetrie studies have estimated the radiation dose to the augmentation of the cells with micronuclei. Methods: We studied 25 blood and bone marrow with a large amount of radioiodine (3 ). patients with differentiated thyroid carcinoma who were treated with Previous work has been done on cytogenetic changes (9). 3.7 GBq of 131I.Isolated lymphocytes collected from patients 1 wk However, the cytological effects of radiation exposure on the after therapy were harvested and treated according to the cytoki lymphocytes in vivo with large therapeutic doses of radioiodine nesis-blocked method of Fenech and Morley. The micronucleus have not been extensively examined. number of micronuclei per 500 binucleated cells were scored by The purpose of our study was to evaluate the degree of visual inspection.
    [Show full text]
  • EANM Procedure Guidelines for 131I-Meta-Iodobenzylguanidine (131I-Mibg) Therapy
    Eur J Nucl Med Mol Imaging (2008) 35:1039–1047 DOI 10.1007/s00259-008-0715-3 GUIDELINES EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy Francesco Giammarile & Arturo Chiti & Michael Lassmann & Boudewijn Brans & Glenn Flux Published online: 15 February 2008 # EANM 2008 Abstract Meta-iodobenzylguanidine, or Iobenguane, is an nervous system. The neuroendocrine system is derived from a aralkylguanidine resulting from the combination of the family of cells originating in the neural crest, characterized by benzyl group of bretylium and the guanidine group of an ability to incorporate amine precursors with subsequent guanethidine (an adrenergic neurone blocker). It is a decarboxylation. The purpose of this guideline is to assist noradrenaline (norepinephrine) analogue and so-called nuclear medicine practitioners to evaluate patients who might “false” neurotransmitter. This radiopharmaceutical, labeled be candidates for 131I-meta-iodobenzylguanidine to treat with 131I, could be used as a radiotherapeutic metabolic agent neuro-ectodermal tumours, to provide information for in neuroectodermal tumours, that are derived from the performing this treatment and to understand and evaluate primitive neural crest which develops to form the sympathetic the consequences of therapy. F. Giammarile (*) Keywords Guidelines . Therapy . mIBG CH Lyon Sud, EA 3738, HCL, UCBL, 165 Chemin du Grand Revoyet, Purpose 69495 Pierre Benite Cedex, France e-mail: [email protected] The purpose of this guideline is to assist nuclear medicine A. Chiti practitioners to U.O. di Medicina Nucleare, Istituto Clinico Humanitas, via Manzoni, 56, 1. Evaluate patients who might be candidates for 131I-meta- 20089 Rozzano (MI), Italy iodobenzylguanidine (mIBG) to treat neuro-ectodermal e-mail: [email protected] tumours M.
    [Show full text]
  • Molecular Imaging and Radionuclide Therapy of Pheochromocytoma and Paraganglioma in the Era of Genomic Characterization of Disease Subgroups
    26 11 Theranostics of D Taïeb et al. 26:11 R627–R656 Endocrine-Related pheochromocytoma and Cancer paraganglioma REVIEW Molecular imaging and radionuclide therapy of pheochromocytoma and paraganglioma in the era of genomic characterization of disease subgroups David Taïeb1,*, Abhishek Jha2,*, Giorgio Treglia3,4,5 and Karel Pacak2 1Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France 2Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA 3Clinic of Nuclear Medicine and PET/CT Center, Ente Ospedaliero Cantonale, Bellinzona, Switzerland 4Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland 5Health Technology Assessment Unit, General Directorate, Ente Ospedaliero Cantonale, Bellinzona, Switzerland Correspondence should be addressed to K Pacak: [email protected] *(D Taïeb and A Jha contributed equally to this work) Abstract In recent years, advancement in genetics has profoundly helped to gain a more Key Words comprehensive molecular, pathogenic, and prognostic picture of pheochromocytomas f pheochromocytoma and paragangliomas (PPGLs). Newly discovered molecular targets, particularly those f paraganglioma that target cell membranes or signaling pathways have helped move nuclear medicine f PPGL in the forefront of PPGL precision medicine. This is mainly based on the introduction f succinate dehydrogenase and increasing experience of various PET radiopharmaceuticals across PPGL genotypes complex quickly followed by implementation of novel radiotherapies and revised imaging f SDHB algorithms. Particularly, 68Ga-labeled-SSAs have shown excellent results in the diagnosis f 18F-FDOPA and staging of PPGLs and in selecting patients for PRRT as a potential alternative to f 68Ga-DOTATATE 123/131I-MIBG theranostics.
    [Show full text]
  • Getting Oral Or Systemic Radiation Therapy
    cancer.org | 1.800.227.2345 Getting Oral or Systemic Radiation Therapy What is systemic radiation therapy? Systemic therapy involves treatment that travels through your entire body rather than being aimed at one area. Systemic radiation therapy uses radioactive drugs (called radiopharmaceuticals or radionuclides) to treat certain types of cancer, including thyroid, bone, and prostate cancer. These are liquid drugs made up of a radioactive substance. They can be given by mouth or put into a vein; they then travel throughout the body. Although these drugs travel through your whole body, they can find and collect in places where the cancer cells are located. This helps them deliver radiation doses exactly to the tumor or area where the cancer cells are found. In some cases, a radioactive drug might be used to help find cancer, such as bone metastasis (when cancer has spread to the bone). There are also radioactive drugs that are used to help diagnose other non-cancer health problems. Radioimmunotherapy One type of radiopharmaceutical is called radioimmunotherapy. This treatment combines a small amount of radioactive material with a special drug called a monoclonal antibody1. The radioactive material acts as a tracer that can find and attach to cancer cells, then the monoclonal antibody is delivered directly to the cells. Peptide receptor radionuclide therapy (PRRT) Another type of radiopharmaceutical is called peptide receptor radionuclide therapy (PRRT). This treatment combines radioactive material with a special protein called a peptide to make a radiopeptide. When given, the radiopeptide finds and attaches to 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 certain types of cancer cells, then delivers a high dose of radiation directly to the cells.
    [Show full text]
  • Dosimetry and Dosimetric Tools in Radionuclide Therapy, Including Results from a European Survey
    Dosimetry and dosimetric tools in radionuclide therapy, including results from a European survey KATARINA SJÖGREEN GLEISNER MEDICAL RADIATION PHYSICS, LUND UNIVERSITY, SWEDEN Radionuclide therapies • Thyroid – 131I NaI for benign conditions – 131I NaI for thyroid cancer Oral • Adult neuroendocrine disease – 131I mIBG, 177Lu or 90Y radiopeptides intravenous • Neuroblastoma - 131I mIBG • Non-Hodgkins lymphoma – 177Lu or 90Y labelled mAbs • Bone metastases - 153Sm, 89Sr, 223Ra • Prostate cancer - 177Lu-PSMA (trial) • Myeloproliferative disease - 32P • Intra-arterial treatment in liver : – 90Y microspheres, 166Ho Local administration • Joints - Radiation synovectomy 90Y, 186Re, 169Er • 169Er, 67Cu, 188Re,227Th, 225Ac, 211At …. Systemically administered • Thyroid – 131I NaI for benign conditions – 131I NaI for thyroid cancer • Adult neuroendocrine disease – 131I mIBG, 177Lu or 90Y radiopeptides • Neuroblastoma - 131I mIBG • Non-Hodgkins lymphoma – 177Lu or 90Y labelled mAbs • Bone metastases - 153Sm, 89Sr, 223Ra • Prostate cancer - 177Lu-PSMA (trial) • Myeloproliferative disease - 32P • Intra-arterial treatment in liver : – 90Y microspheres, 166Ho • Joints - Radiation synovectomy 90Y, 186Re, 169Er • 169Er, 67Cu, 188Re,227Th, 225Ac, 211At …. Systemically administered Systemically administered Autoradiography: intratumoral distribution of monoclonal antibody in rat Örbom et al J Nucl Med 2013 AD Definition of absorbed dose (ICRU 85 and 86) • The absorbed dose is the mean energy imparted, , to the matter in an infinitesimal volume, , with mass unit gray (Gy) ; 1 Gy = 1 J/kg. • The mean absorbed dose in a target region with mass ) ℳ ICRU Report 85: Fundamental quantities and units for ionizing radiation, Journal of the ICRU 11 1 (2011). ICRU Report 86: Quantification and reporting of low-dose and other heterogeneous exposures, Journal of the ICRU 11 2 (2011). Internal dosimetry - The absorbed fraction Source * Target is the absorbed fraction, i.e.
    [Show full text]
  • Nuclear Medicine Is a Medicinal Specialty Involving the Application of Radioactive Substances in the Diagnosis and Treatment of Disease
    NUCLEAR CMEDICINE Prof. Ramesh Chandra Department of Chemistry University of Delhi Medically reviewed by Alana Biggers, MD, MPH on April 10, 2017 — Written by Yvette Brazier Radioactive agents may be swallowed in pills form, inhaled or injected as part of person’s treatment After having radioactive treatment, a person should avoid physical contact with other people as much as possible for 2-5 days which may involve taking time off work INTRODUCTION • Nuclear medicine is a medicinal specialty involving the application of radioactive substances in the diagnosis and treatment of disease. • Nuclear medicine, in a sense is radiology done inside out or endoradiology because it records radiation emitting from within the body rather than radiation that is generated by external source like X-rays. • Nuclear medicine scans differ from radiology as the emphasis is not on imaging anatomy but the physiological function of the system being investigated and for this reason, it is called a physiology imaging modality. • Nuclear medicine procedures permit the determination of medical information that may otherwise be unavailable, require surgery, or necessitate more expensive and invasive diagnostic tests. Why is it called nuclear medicine? • Nuclear medicine refers to medicine(a pharmaceutical)that is attached to a small quantity of radioactive material (a radioisotope). This combination is called a radiopharmaceutical. • There are many different radiopharmaceuticals available to study different parts of the body. Which radiopharmaceutical is used will depend upon the condition to be diagnosed or treated. The Father of Nuclear Medicine • George Charles de Hevesy. • A Hungarian radiochemist, got Nobel Prize in 1943 in Chemistry. • He has a vital role in the development of radioactive tracers to study chemical processes such as in the metabolism of animals.
    [Show full text]
  • Clinical Development Safety Considerations
    Safety Assessment for Radiotherapeutics Denise Casey, MD Office of Oncologic Diseases FDA NRC Workshop October 14, 2020 Radiopharmaceuticals: Safety Considerations • Acute toxicity – Hematologic, renal, hormonal (neuroendocrine tumors) • Long-term toxicity – Hematologic, renal, secondary malignancies • Risk mitigation – Safety monitoring and supportive care – Labeling – Post-marketing requirements FDA NRC Workshop October 14, 2020 2 Recent Radiotherapeutic Approvals for Oncology Indications Radium Ra 223 dichloride (XOFIGO®) 2013 for the treatment of patients with castration-resistant prostate cancer, symptomatic bone metastases and no known visceral metastatic disease 3.6 month improvement in median OS; delay in time to first symptomatic skeletal event Lutetium Lu-177 dotatate (LUTATHERA®) 2018 for the treatment of somatostatin receptor-positive gastroenteropancreatic neuroendocrine tumors (GEP-NETs), including foregut, midgut, and hindgut neuroendocrine tumors in adults Improved PFS: HR 0.21 (0.13, 0.32); improved median OS: HR 0.52 (0.32, 0.84) Iobenguane I-131 (AZEDRA®) 2018 for the treatment of adult and pediatric patients 12 years and older with iobenguane scan positive, unresectable, locally advanced or metastatic pheochromocytoma or paraganglioma who require systemic anticancer therapy 25% of patients had anti-HTN meds dose reduced by at least 50% for at least 6 mo; ORR 22% (14, 33) FDA NRC Workshop October 14, 2020 3 Bone Marrow Toxicity FDA NRC Workshop October 14, 2020 4 Acute/Subacute Hematologic Toxicity • Bone marrow
    [Show full text]