Concentrated Solar Power

Total Page:16

File Type:pdf, Size:1020Kb

Concentrated Solar Power Concentrated solar power largest CSP Project in the world has been installed in Abu Dhabi, by Masdar.[5] CSP growth is expected to continue at a fast pace. As of January 2014, Spain had a total capacity of 2,204 MW making this country the world leader in CSP. Interest is also notable in North Africa and the Middle East, as well as India and China. The global market has been domi- nated by parabolic-trough plants, which account for 90% of CSP plants.[4] CSP is not to be confused with concentrated photovoltaics (CPV). In CPV, the concentrated sunlight is converted The PS10 Solar Power Plant concentrates sunlight from a field directly to electricity via the photovoltaic effect. of heliostats onto a central solar power tower. 1 History A legend has it that Archimedes used a “burning glass” to concentrate sunlight on the invading Roman fleet and repel them from Syracuse. In 1973 a Greek scientist, Dr. Ioannis Sakkas, curious about whether Archimedes could really have destroyed the Roman fleet in 212 BC, lined up nearly 60 Greek sailors, each holding an oblong mirror tipped to catch the sun’s rays and direct them at a tar-covered plywood silhouette 160 feet away. The ship caught fire after a few minutes; however, historians con- tinue to doubt the Archimedes story.[6] Part of the 354 MW SEGS solar complex in northern San In 1866, Auguste Mouchout used a parabolic trough to Bernardino County, California. produce steam for the first solar steam engine. The first patent for a solar collector was obtained by the Italian Concentrated solar power (also called concentrating Alessandro Battaglia in Genoa, Italy, in 1886. Over solar power, concentrated solar thermal, and CSP) the following years, inventors such as John Ericsson and systems generate solar power by using mirrors or lenses Frank Shuman developed concentrating solar-powered to concentrate a large area of sunlight, or solar thermal devices for irrigation, refrigeration, and locomotion. In energy, onto a small area. Electricity is generated when 1913 Shuman finished a 55 HP parabolic solar thermal the concentrated light is converted to heat, which drives energy station in Maadi, Egypt for irrigation.[7][8][9][10] a heat engine (usually a steam turbine) connected to an The first solar-power system using a mirror dish was built electrical power generator or powers a thermochemical by Dr. R.H. Goddard, who was already well known for reaction (experimental as of 2013).[1][2][3] his research on liquid-fueled rockets and wrote an article in 1929 in which he asserted that all the previous obsta- CSP is being widely commercialized and the CSP mar- [11] ket has seen about 740 MW of generating capacity added cles had been addressed. between 2007 and the end of 2010. More than half of Professor Giovanni Francia (1911–1980) designed and this (about 478 MW) was installed during 2010, bring- built the first concentrated-solar plant, which entered into ing the global total to 1095 MW. Spain added 400 MW operation in Sant'Ilario, near Genoa, Italy in 1968. This in 2010, taking the global lead with a total of 632 MW, plant had the architecture of today’s concentrated-solar while the US ended the year with 509 MW after adding plants with a solar receiver in the center of a field of solar 78 MW, including two fossil–CSP hybrid plants.[4] The collectors. The plant was able to produce 1 MW with su- Middle East is also ramping up their plans to install CSP perheated steam at 100 bar and 500 °C.[12] The 10 MW based projects and as a part of that Plan, Shams-I the Solar One power tower was developed in Southern Cali- 1 2 2 CURRENT TECHNOLOGY fornia in 1981, but the parabolic-trough technology of the nearby Solar Energy Generating Systems (SEGS), begun in 1984, was more workable. The 354 MW SEGS is still the largest solar power plant in the world, and will remain so until the 390 MW Ivanpah power tower project comes online. 2 Current technology CSP is used to produce electricity (sometimes called so- lar thermoelectricity, usually generated through steam). Concentrated-solar technology systems use mirrors or lenses with tracking systems to focus a large area of sun- light onto a small area. The concentrated light is then Parabolic trough at a plant near Harper Lake, California used as heat or as a heat source for a conventional power plant (solar thermoelectricity). The solar concentrators used in CSP systems can often also be used to provide industrial process heating or cooling, such as in solar air- mercial parabolic trough plant are representative, along- conditioning. side with Plataforma Solar de Almería's SSPS-DCS test facilities in Spain.[20] Concentrating technologies exist in five common forms, namely parabolic trough, enclosed trough, dish Stir- lings, concentrating linear Fresnel reflector, and solar [13] power tower. Although simple, these solar concen- 2.1.1 Enclosed trough trators are quite far from the theoretical maximum concentration.[14][15] For example, the parabolic-trough concentration gives about 1/3 of the theoretical maxi- Enclosed trough systems are used to produce process mum for the design acceptance angle, that is, for the same heat. The design encapsulates the solar thermal system overall tolerances for the system. Approaching the theo- within a greenhouse-like glasshouse. The glasshouse cre- retical maximum may be achieved by using more elabo- ates a protected environment to withstand the elements rate concentrators based on nonimaging optics.[16] that can negatively impact reliability and efficiency of the solar thermal system.[21] Lightweight curved solar- Different types of concentrators produce different peak reflecting mirrors are suspended from the ceiling of the temperatures and correspondingly varying thermody- glasshouse by wires. A single-axis tracking system posi- namic efficiencies, due to differences in the way that they tions the mirrors to retrieve the optimal amount of sun- track the sun and focus light. New innovations in CSP light. The mirrors concentrate the sunlight and focus it on technology are leading systems to become more and more a network of stationary steel pipes, also suspended from [17] cost-effective. the glasshouse structure.[22] Water is carried throughout the length of the pipe, which is boiled to generate steam when intense solar radiation is applied. Sheltering the 2.1 Parabolic trough mirrors from the wind allows them to achieve higher tem- perature rates and prevents dust from building up on the Main article: Parabolic trough mirrors.[21] A parabolic trough consists of a linear parabolic reflector that concentrates light onto a receiver positioned along the reflector’s focal line. The receiver is a tube positioned di- 2.2 Fresnel reflectors rectly above the middle of the parabolic mirror and filled with a working fluid. The reflector follows the sun dur- ing the daylight hours by tracking along a single axis. A Main article: Compact Linear Fresnel Reflector working fluid (e.g. molten salt[18]) is heated to 150–350 °C (423–623 K (302–662 °F)) as it flows through the re- Fresnel reflectors are made of many thin, flat mirror strips ceiver and is then used as a heat source for a power gener- to concentrate sunlight onto tubes through which working ation system.[19] Trough systems are the most developed fluid is pumped. Flat mirrors allow more reflective sur- CSP technology. The Solar Energy Generating Systems face in the same amount of space as a parabolic reflector, (SEGS) plants in California, the world’s first commercial thus capturing more of the available sunlight, and they are parabolic trough plants, Acciona’s Nevada Solar One near much cheaper than parabolic reflectors. Fresnel reflectors Boulder City, Nevada, and Andasol, Europe’s first com- can be used in various size CSPs.[23][24] 3 but they offer higher efficiency and better energy stor- age capability. The Solar Two in Daggett, California and the CESA-1 in Plataforma Solar de Almeria Almeria, Spain, are the most representative demonstration plants. The Planta Solar 10 (PS10) in Sanlucar la Mayor, Spain, is the first commercial utility-scale solar power tower in the world. eSolar's 5 MW Sierra SunTower, located in Lancaster, California, is the only CSP tower facility op- erating in North America. The National Solar Thermal Test Facility, NSTTF located in Albuquerque, NM, is an experimental solar thermal test facility with a heliostat field capable of producing 6 MW. 3 Deployment around the world A dish Stirling Main articles: List of solar thermal power stations and Solar power by country 2.3 Dish Stirling 1,000 2,000 Main article: Dish Stirling 3,000 4,000 A dish Stirling or dish engine system consists of a stand- 1984 alone parabolic reflector that concentrates light onto a re- 1990 ceiver positioned at the reflector’s focal point. The reflec- 1995 tor tracks the Sun along two axes. The working fluid in 2000 the receiver is heated to 250–700 °C (523–973 K (482– 2005 1,292 °F)) and then used by a Stirling engine to gener- 2010 ate power.[19] Parabolic-dish systems provide high solar- Worldwide CSP capacity since 1984 in MW to-electric efficiency (between 31% and 32%), and their modular nature provides scalability. The Stirling Energy The commercial deployment of CSP plants started by Systems (SES), United Sun Systems (USS) and Science 1984 in the US with the SEGS plants until 1990 when Applications International Corporation (SAIC) dishes at the last SEGS plant was completed. From 1991 to 2005 UNLV, and Australian National University's Big Dish in no CSP plants were built anywhere in the world.
Recommended publications
  • Global Optimization of Solar Power Tower Systems Using a Monte Carlo Algorithm
    Global optimization of solar power tower systems using a Monte Carlo algorithm: Application to a redesign of the PS10 solar thermal power plant Olivier Farges, Jean-Jacques Bézian, Mouna El-Hafi To cite this version: Olivier Farges, Jean-Jacques Bézian, Mouna El-Hafi. Global optimization of solar power tower systems using a Monte Carlo algorithm: Application to a redesign of the PS10 solar thermal power plant. Renewable Energy, Elsevier, 2018, 119, pp.345-353. 10.1016/j.renene.2017.12.028. hal-01660563 HAL Id: hal-01660563 https://hal.archives-ouvertes.fr/hal-01660563 Submitted on 26 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Global optimization of Solar Power Tower systems using a Monte Carlo algorithm: application to a redesign of the PS10 solar thermal power plant O. Fargesa,b,c,∗, J.J. Bézianc, M. El Hafic aUniversité de Lorraine, LEMTA, UMR 7563, Vandoeuvre-lès-Nancy, F-54500, France bCNRS, LEMTA, UMR 7563, Vandoeuvre-lès-Nancy, F-54500, France cUniversité Fédérale de Toulouse Midi-Pyrénées, Mines Albi, UMR CNRS 5302, Centre RAPSODEE, Campus Jarlard, F-81013 Albi CT Cedex 09, France Abstract There is a need to enhance the performance of Solar Power Tower (SPT) systems in view of their significant capital costs.
    [Show full text]
  • Potentials of Thermal Energy Storage Integrated Into Steam Power Plants
    energies Article Potentials of Thermal Energy Storage Integrated into Steam Power Plants Michael Krüger 1,* , Selman Muslubas 2, Thomas Loeper 3, Freerk Klasing 4, Philipp Knödler 1 and Christian Mielke 3 1 German Aerospace Center (DLR), Institute of Engineering Thermodynamics, 70569 Stuttgart, Germany; [email protected] 2 Chair of Environmental Process Engineering and Plant Design, University of Duisburg-Essen, 45141 Essen, Germany; [email protected] 3 Siemens AG, Power and Gas Division, 91058 Erlangen, Germany; [email protected] (T.L.); [email protected] (C.M.) 4 German Aerospace Center (DLR), Institute of Engineering Thermodynamics, 51147 Köln, Germany; [email protected] * Correspondence: [email protected] Received: 21 January 2020; Accepted: 22 April 2020; Published: 3 May 2020 Abstract: For conventional power plants, the integration of thermal energy storage opens up a promising opportunity to meet future technical requirements in terms of flexibility while at the same time improving cost-effectiveness. In the FLEXI- TES joint project, the flexibilization of coal-fired steam power plants by integrating thermal energy storage (TES) into the power plant process is being investigated. In the concept phase at the beginning of the research project, various storage integration concepts were developed and evaluated. Finally, three lead concepts with different storage technologies and integration points in the power plant were identified. By means of stationary system simulations, the changes of net power output during charging and discharging as well as different storage efficiencies were calculated. Depending on the concept and the operating strategy, a reduction of the minimum load by up to 4% of the net capacity during charging and a load increase by up to 5% of the net capacity during discharging are possible.
    [Show full text]
  • The New Energy Primer
    September 2011 The New Energy Primer A guide to the future of power generation Important disclosures, including any required research certifications, are provided on the last two pages of this report. Your guide to the report Entrée Energy – the big picture More energy = higher standard of living – p.7 Global energy demand likely to further increase over the next 20 years – p.9 New Energy needed to maintain economic growth – p.13 Main course Power capacity, generation and investments – p.18-19 Energy return on energy invested – p.21 The cookbook – mature technologies Biomass (combustion) – p. 24, CCGT (CBM) – p.26, CCGT (Shale Gas) – p.28, Geothermal – p.30, Waste-to-energy – p.32, Advanced Nuclear – p.34, Small Hydro – p.36, Solar Crystalline – p.38, Solar Thin Film – p.40, Onshore Wind – p.42, Offshore Wind – p.44 The cookbook – up & coming Biomass (Anaerobic Digestion) – p.46, Carbon Capture & Storage – p.47, Solar CLFR – p.48, Solar Parabolic – p.49, Solar Towers – p.50, Tidal – p.51, Wave – p.52, Wind power - micro – p.53 Wind energy overview – p.55 Solar energy overview – p.63 China vs. India The two energy-consuming monsters – p.72 A face-off format comparing demand, supply, policy support to clean energy, and current challenges – p.74 Desserts New Energy supply forecasts – p.84 The 2020 New Energy mix – p.85 Company list – p.88 Available for take-out: Daiwa World Energy Map (insert) The New Energy Primer September 2011 Table of contents Introduction 1 1 Energy – the big picture 3 2 New Energy 15 New Energy cookbook 22 3 Wind energy
    [Show full text]
  • Receiver Design Methodology for Solar Tower Power Plants
    Department of Energy Technology Receiver Design Methodology for Solar Tower Power Plants Master Thesis Joseph Stalin Maria Jebamalai Supervisors: Dipl.-Ing. Peter Sch¨ottl,Internal Supervisor, Fraunhofer ISE, Freiburg Dr. Bj¨ornLaumert, External Supervisor, KTH Royal Institute of Technology KTH School of Industrial Engineering and Management Department of Energy Technology Division of Heat and Power Technology SE - 100 44, Stockholm August 2016 Master of Science Thesis EGI_2016: 070 MSC EKV1157 Receiver Design Methodology for Solar Tower Power Plants Joseph Stalin Maria Jebamalai Approved Examiner Supervisor 16th August 2016 Dr. Björn Laumert Dipl.-Ing. Peter Schöttl Dr. Björn Laumert Commissioner Contact person Dr. Björn Laumert Abstract – Swedish Centrala solmottagarsystem (CRS) är på frammarsch på grund av deras höga koncentrationsfaktor och höga potential att minska kostnaderna genom att öka kapacitetsfaktorn av solkraftanläggningar med lagring. I CRS kraftanläggningar är solljuset fokuserat på mottagaren genom arrangemanget av tusentals speglar för att omvandla solstrålning till värme för att driva värmecykler. Solmottagare används för att överföra värmeflux från solen till arbetsmediet. Generellt arbetar solmottagare i driftpunkter med hög temperatur och därför genereras strålningsförluster. Vidare har solmottagaren en betydande påverkan på den totala kostnaden för kraftverket. Således har konstruktion och modellering av mottagaren en signifikant påverkan på kraftanläggningseffektivitet och kostnad. Målet med detta examensarbete är att utveckla en designmetodik för att beräkna geometrin hos solmottagaren och dess verkningsgrad. Denna designmetodik riktar sig främst till stora kraftverk i området 100 MWe, men även skalbarheten av designmetoden har studerats. Den utvecklade konstruktionsmetoden implementerades i in-house designverktyg devISEcrs som även integrerar andra moduler som modellerar solspegelfält, lagring och kraftblocket för att beräkna den totala kraftverksverkningsgraden.
    [Show full text]
  • The First 5 Years of Estela Report 3 Index
    The FirsT Years oF esTeLa 5 SOLAR POWER FROM EUROPE’S SUN BELT European Solar Thermal Electricity Association soLar ThermaL eLecTriciTY secTor 2007-2011: The reaL UpTake Credits A report by the European Solar Thermal Electricity Association Authors : Luis Crespo, Mariàngels Pérez Latorre, Micaela Fernández, Janis Leung, Elena Dufour, ESTELA Eduardo Garcia Iglesias, Protermosolar Editing : Mariàngels Pérez Latorre, Janis Leung, ESTELA D e s i g n : www.acg-bxl.be P h o t o s : courtesy of Members of ESTELA and Protermosolar Published in February 2012 2 European Solar Thermal inTrodUcTion Electricity Association n February 2007 the 11-MW PS10 power ESTELA commitments and activities in these 5 years focused plant in Seville, Spain, was first connected on helping to build the legal framework that will be applied to the grid. In May 2007 the 64-MW until 2020. Besides its assisting role to the European legisla- Nevada Solar One power plant was con- tive and executive Institutions - Parliament, Council, Commis- nected to the grid. These two important sion, Committee of the Regions, European Investment Bank, milestones represent the renaissance of the ESTELA has provided assessment to national authorities and Solar Thermal Electricity technologies following the long and public institutions in Europe and in other regions of the world. dark STE night since the last SEGS plant was commissioned ESTELA was also one of the main contributors in building and in California in 1991. shaping the Solar Mediterranean Plan and still continues its contribution and suggesting ways for making it happen. The European Solar Thermal Electricity Association, ESTELA, was constituted in July 2007 and since then has been devoted ESTELA has today 60 direct members representing more than to promote the deployment of STE plants in Europe.
    [Show full text]
  • Master Thesis Economic Study of Solar Thermal Plant Based on Gas
    Master Thesis Economic Study of Solar Thermal Plant based on Gas Turbines Author: Albert Cabané Fernández Supervisor: Jens Klingmann LTH School of Engineering March 2013 1 Economic Study of Solar Thermal Plant based on Gas Turbines Albert Cabané Fernández Department of Energy Sciences Faculty of Engineering LTH • Lund University • 2013 Department of Energy Sciences Faculty of Engineering LTH, Lund University P.O. Box 118 SE-221 00 Lund Sweden 2 Preface I would like to express my gratitude towards Professor Jens Klingmann and Bengt Sunden, who have initially proposed the idea for this project and has directed me along the way. His experience and guidance are the most important factors contributing to the results presented here. I would also like to acknowledge invaluable the help and insight provided by some of the members of the Energy Sciences department at LTH, such as Majed Sammak and Björn Nyberg, who have helped whenever I needed. I dedicate this work to my mum and my aunt, who have patiently supported me during these 5 years of studies and encouraging me to write and finish this thesis. Finally, I would like to thank both universities involved in my exchange to give me the opportunity of staying these months in Lund, Sweden. It has been one of my best experiences in my life, undoubtedly. Albert Cabané Fernández, March 2013 3 Table of contents 1. Introduction.................................................................................................................................... 9 1.1. Framework...................................................................................................................................10
    [Show full text]
  • DIPLOMARBEIT Concentrated Solar Thermal Power For
    Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der Hauptbibliothek der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/). DIPLOMARBEIT Concentrated Solar Thermal Power for Electricity Generation: Cost and Potential Analysis for the Mediterranean Region ausgeführt zum Zwecke der Erlangung desakademischen Grades einesDiplom-Ingenieurs unter der Leitungvon Ao. Univ. Prof. Dr. ReinhardHaas und Dipl.-Ing. Dr. Gustav Resch am Institut für Elektrische Anlagen und Energiewirtschaft (E373) eingereicht an der Technischen Universität Wien Fakultät für Elektrotechnik undInformationstechnik von Karl Anton Zach Matr. Nr.: 0125509 Waldsiedlung22 2320 Rauchenwarth Wien, im November 2008 II Acknowledgements First of all I want to thank Univ. Prof. Dr. ReinhardHaas, the referee of my thesis, and Dipl.-Ing. Dr. Gustav Resch, both of the Energy Economics Group at the Technical University in Vienna, for guiding andsupporting me in writingthis. But this work wouldnot have been possible without the support of my family andfriends, so I want to take this opportunity to say thank you, especially to: My parents, Helga and Karl, who offered me the opportunity to study at the Technical University of Vienna andfor their backup (andwho also always reminded me - at least weekly - to take the next examination andfinish the study) My grandmother Margareta,
    [Show full text]
  • Showcase of In-Production Solar Power Technologies in Seville Province, Andalusia, Spain
    Sentinel Vision EVT-563 Showcase of in-production solar power technologies in 28 November 2019 Seville province, Andalusia, Spain Sentinel-2 MSI acquired on 11 June 2019 at 11:06:21 UTC Sentinel-1 CSAR IW acquired on 20 October 2019 at 06:26:23 & 18:18:36 UTC Sentinel-2 MSI acquired on 24 October 2019 at 11:10:49 UTC Sentinel-2 MSI acquired on 26 October 2019 at 11:01:41 UTC 3D Layerstack Author(s): Sentinel Vision team, VisioTerra, France - [email protected] Keyword(s): Solar power, renewable energy, climate change, infrastructure, Spain Fig. 1 - S1 (20.10.2019 18:18) - vv,vh,vv colour composite - Numerous photovoltaic and concentrated solar power are located in Andalusia. 2D view Areas in the province of Seville receives at least nine hours of sunshine 320 days per year, with 15 hours per day in mid summer. With 2000 kWh/m2/yr, it is no wonder solar energy has bright perspectives there. Global Horizontal Irradiation Map of Spain - source: SolarGIS GeoModel Solar 2011 / Spain initially had a leading role in the development of solar power. Generous prices for grid connected solar power were offered to encourage the industry. The boom in solar power installations were faster than anticipated and prices for grid connected solar power were not cut to reflect this, leading to a fast but unsustainable boom in installations. Spain would find itself second only to Germany in the world for solar power installed capacity. In the wake of the 2008 financial crisis, the Spanish government drastically cut its subsidies for solar power and capped future increases in capacity at 500 MW per year, with effects upon the industry worldwide.
    [Show full text]
  • Renewable Energy
    Renewable Energy LET'S GO GREEN! Student's Book Unless someone like you cares a whole awful lot, nothing is going to get better. It's not. Dr. Seuss, The Lorax Renewable Energy LET'S GO GREEN! Student's Book Mirja Mrovlje Pečnik Polona Petrovčič Amresh Prakash Torul Professional consultant: Stanko Vrščaj April 2013 Contents Unit 1: Energy 4 Unit 6: Hydroelectric Power 60 1. What is energy? 1. How does a hydroelectric power plant 2. Electricity generation in Slovenia and around work? the world 2. Generating methods 3. Inside the power plant Unit 2: Renewable Energy 10 4. Advantages and disadvantages of hydro energy 1. What is renewable energy 5.Learn more 2. Top 10 renewable sources of energy 3. The future of alternative energy Unit 7: Geothermal Energy 72 Unit 3: Carbon Dioxide Footprint 17 1. What is geothermal energy 2. Geothermal heating 3. Geothermal power plants 1. What is a CO2 footprint 2. What is carbon dioxide and what is global 4. Glossary of key words warming? 5. Helsinki’s underground data centre and 3. Calculate your carbon footprint the world’s largest heat pump 4. Carbon footprint reduction 5. Kyoto Protocol Unit 8: Biomass 90 Unit 4: Solar Power 27 What is biomass 1. Learn a few facts about solar energy Unit 9: Waste Management 96 2. How a solar electric power system works 3. Solar PV modules 1. What is waste management 4. Solar thermal energy 2. What can be done (3Rs) 5. Solar power plant on the roof of SŠTS Šiška 3. The waste management concept in 6.
    [Show full text]
  • Solar Charged Electric Farming Tractors
    Department of Mechanical and Aerospace Engineering Solar Charged Electric Farming Tractors Author: Konstantinos Michail Akritidis Supervisor: Dr. Paul Tuohy A thesis submitted in partial fulfilment for the requirement of degree in Master of Science in Advanced Mechanical Engineering 2015 Copyright Declaration This thesis is the result of the author’s original research. It has been composed by the author and has not been previously submitted for examination which has led to the award of a degree. The copyright of this thesis belongs to the author under the terms of the United Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. Signed: Konstantinos Michail Akritidis Date: 30/8/2015 2 Acknowledgements I would like to thank my wife, Natalie, for being supportive in this tough year, without her nothing would be possible, my family for all these years of devotion and support and of course Dr. Paul Tuohy for all his guidance and cooperation. I would like to extend my thanks to my classmates and colleagues for making this year more enjoyable. This thesis is devoted to my new-born son Nicolas. 3 Contents Acknowledgements ........................................................................................................ 3 Table of Figures ............................................................................................................. 7 List of tables ..................................................................................................................
    [Show full text]
  • Small-Scale Solar Central Receiver System Design and Analysis
    SMALL-SCALE SOLAR CENTRAL RECEIVER SYSTEM DESIGN AND ANALYSIS A Thesis presented to the Faculty at California Polytechnic State University San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Mechanical Engineering By Daniel James Murray June 2012 © 2012 Daniel James Murray ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Small-Scale Solar Central Receiver System Design and Analysis AUTHOR: Daniel James Murray DATE SUBMITTED: June 2012 COMMITTEE CHAIR: Andrew Kean, Associate Professor of Mechanical Engineering COMMITTEE MEMBER: Jesse Maddren, Professor of Mechanical Engineering COMMITTEE MEMBER: Craig Baltimore, Professor of Architectural Engineering iii Abstract Small-Scale Solar Central Receiver Design and Analysis Daniel James Murray This thesis develops an analytical model of a small-scale solar central receiver power plant located at the California Polytechnic State University in San Luis Obispo, California at 35.28° N, 120.66° W. The model is used to analyze typical energy output at any time during the year. The power plant is designed to produce an output of 100 kW electrical power, and is supplemented by the combustion of natural gas. Methodologies for determining the proper size and layout of heliostats, optimal tower height, receiver size, and turbine engine selection are developed. In this specific design, solar shares of up to 73.2% and an annual average of 44% are possible through the use of a gas-solar hybrid microturbine engine. Larger solar shares are not possible due to the limited size of land (about 0.5 acres used for this project) which limits the number of possible heliostat installations.
    [Show full text]
  • Solar Power - Wikipedia, the Free Encyclopedia Solar Power from Wikipedia, the Free Encyclopedia
    14/12/2013 Solar power - Wikipedia, the free encyclopedia Solar power From Wikipedia, the free encyclopedia Solar power is the conversion of sunlight into electricity, either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP). Concentrated solar power systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Photovoltaics convert light into electric current using the photoelectric effect.[2] Photovoltaics were initially, and still are, used to power small and medium-sized applications, from the calculator powered by a single solar cell to off-grid homes powered by a photovoltaic array. They The 150 MW Andasol solar power are an important and relatively inexpensive source of electrical energy station is a commercial parabolic where grid power is inconvenient, unreasonably expensive to connect, trough solar thermal power plant, or simply unavailable. However, as the cost of solar electricity is located in Spain. The Andasol plant falling, solar power is also increasingly being used even in grid- uses tanks of molten salt to store connected situations as a way to feed low-carbon energy into the solar energy so that it can continue grid. generating electricity even when the sun isn't shining.[1] Commercial concentrated solar power plants were first developed in the 1980s. The 354 MW SEGS CSP installation is the largest solar power plant in the world, located in the Mojave Desert of California. Other large CSP plants include the Solnova Solar Power Station (150 MW) and the Andasol solar power station (150 MW), both in Spain. The 250+ MW Agua Caliente Solar Project in the United States, and the 221 MW Charanka Solar Park in India, are the world’s largest photovoltaic power stations.
    [Show full text]