Genome Informatics 4–8 September 2002, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d. -
Towards a Knowledge Graph for Science
Towards a Knowledge Graph for Science Invited Article∗ Sören Auer Viktor Kovtun Manuel Prinz TIB Leibniz Information Centre for L3S Research Centre, Leibniz TIB Leibniz Information Centre for Science and Technology and L3S University of Hannover Science and Technology Research Centre at University of Hannover, Germany Hannover, Germany Hannover [email protected] [email protected] Hannover, Germany [email protected] Anna Kasprzik Markus Stocker TIB Leibniz Information Centre for TIB Leibniz Information Centre for Science and Technology Science and Technology Hannover, Germany Hannover, Germany [email protected] [email protected] ABSTRACT KEYWORDS The document-centric workflows in science have reached (or al- Knowledge Graph, Science and Technology, Research Infrastructure, ready exceeded) the limits of adequacy. This is emphasized by Libraries, Information Science recent discussions on the increasing proliferation of scientific lit- ACM Reference Format: erature and the reproducibility crisis. This presents an opportu- Sören Auer, Viktor Kovtun, Manuel Prinz, Anna Kasprzik, and Markus nity to rethink the dominant paradigm of document-centric schol- Stocker. 2018. Towards a Knowledge Graph for Science: Invited Article. arly information communication and transform it into knowledge- In WIMS ’18: 8th International Conference on Web Intelligence, Mining and based information flows by representing and expressing informa- Semantics, June 25–27, 2018, Novi Sad, Serbia. ACM, New York, NY, USA, tion through semantically rich, interlinked knowledge graphs. At 6 pages. https://doi.org/10.1145/3227609.3227689 the core of knowledge-based information flows is the creation and evolution of information models that establish a common under- 1 INTRODUCTION standing of information communicated between stakeholders as The communication of scholarly information is document-centric. -
Biocuration 2016 - Posters
Biocuration 2016 - Posters Source: http://www.sib.swiss/events/biocuration2016/posters 1 RAM: A standards-based database for extracting and analyzing disease-specified concepts from the multitude of biomedical resources Jinmeng Jia and Tieliu Shi Each year, millions of people around world suffer from the consequence of the misdiagnosis and ineffective treatment of various disease, especially those intractable diseases and rare diseases. Integration of various data related to human diseases help us not only for identifying drug targets, connecting genetic variations of phenotypes and understanding molecular pathways relevant to novel treatment, but also for coupling clinical care and biomedical researches. To this end, we built the Rare disease Annotation & Medicine (RAM) standards-based database which can provide reference to map and extract disease-specified information from multitude of biomedical resources such as free text articles in MEDLINE and Electronic Medical Records (EMRs). RAM integrates disease-specified concepts from ICD-9, ICD-10, SNOMED-CT and MeSH (http://www.nlm.nih.gov/mesh/MBrowser.html) extracted from the Unified Medical Language System (UMLS) based on the UMLS Concept Unique Identifiers for each Disease Term. We also integrated phenotypes from OMIM for each disease term, which link underlying mechanisms and clinical observation. Moreover, we used disease-manifestation (D-M) pairs from existing biomedical ontologies as prior knowledge to automatically recognize D-M-specific syntactic patterns from full text articles in MEDLINE. Considering that most of the record-based disease information in public databases are textual format, we extracted disease terms and their related biomedical descriptive phrases from Online Mendelian Inheritance in Man (OMIM), National Organization for Rare Disorders (NORD) and Orphanet using UMLS Thesaurus. -
Gearing up to Handle the Mosaic Nature of Life in the Quest for Orthologs. Kristoffer Forslund
The Jackson Laboratory The Mouseion at the JAXlibrary Faculty Research 2018 Faculty Research 1-15-2018 Gearing up to handle the mosaic nature of life in the quest for orthologs. Kristoffer Forslund Cecile Pereira Salvador Capella-Gutierrez Alan Sousa da Silva Adrian Altenhoff See next page for additional authors Follow this and additional works at: https://mouseion.jax.org/stfb2018 Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons Recommended Citation Forslund, Kristoffer; Pereira, Cecile; Capella-Gutierrez, Salvador; Sousa da Silva, Alan; Altenhoff, Adrian; Huerta-Cepas, Jaime; Muffato, Matthieu; Patricio, Mateus; Vandepoele, Klaas; Ebersberger, Ingo; Blake, Judith A.; Fernández Breis, Jesualdo Tomás; Orthologs Consortium, The Quest for; Boeckmann, Brigitte; Gabaldón, Toni; Sonnhammer, Erik; Dessimoz, Christophe; and Lewis, Suzanna, "Gearing up to handle the mosaic nature of life in the quest for orthologs." (2018). Faculty Research 2018. 25. https://mouseion.jax.org/stfb2018/25 This Article is brought to you for free and open access by the Faculty Research at The ousM eion at the JAXlibrary. It has been accepted for inclusion in Faculty Research 2018 by an authorized administrator of The ousM eion at the JAXlibrary. For more information, please contact [email protected]. Authors Kristoffer Forslund, Cecile Pereira, Salvador Capella-Gutierrez, Alan Sousa da Silva, Adrian Altenhoff, Jaime Huerta-Cepas, Matthieu Muffato, Mateus Patricio, Klaas Vandepoele, Ingo Ebersberger, Judith A. Blake, Jesualdo Tomás -
The Evaluation of Ontologies: Editorial Review Vs
The Evaluation of Ontologies: Editorial Review vs. Democratic Ranking Barry Smith Department of Philosophy, Center of Excellence in Bioinformatics and Life Sciences, and National Center for Biomedical Ontology University at Buffalo from Proceedings of InterOntology 2008 (Tokyo, Japan, 26-27 February 2008), 127-138. ABSTRACT. Increasingly, the high throughput technologies used by biomedical researchers are bringing about a situation in which large bodies of data are being described using controlled structured vocabularies—also known as ontologies—in order to support the integration and analysis of this data. Annotation of data by means of ontologies is already contributing in significant ways to the cumulation of scientific knowledge and, prospectively, to the applicability of cross-domain algorithmic reasoning in support of scientific advance. This very success, however, has led to a proliferation of ontologies of varying scope and quality. We define one strategy for achieving quality assurance of ontologies—a plan of action already adopted by a large community of collaborating ontologists—which consists in subjecting ontologies to a process of peer review analogous to that which is applied to scientific journal articles. 1 From OBO to the OBO Foundry Our topic here is the use of ontologies to support scientific research, especially in the domains of biology and biomedicine. In 2001, Open Biomedical Ontologies (OBO) was created by Michael Ashburner and Suzanna Lewis as an umbrella body for the developers of such ontologies in the domain of the life sciences, applying the key principles underlying the success of the Gene Ontology (GO) [GOC 2006], namely, that ontologies be (a) open, (b) orthogonal, (c) instantiated in a well-specified syntax, and such as (d) to share a common space of identifiers [Ashburner et al. -
Challenges for Ontology Repositories and Applications to Biomedicine & Agronomy
Position paper – Keynote SIMBig 2017 – September 2017, Lima, Peru Challenges for ontology repositories and applications to biomedicine & agronomy Clement Jonquet Laboratory of Informatics, Robotics, and Microelectronics of Montpellier (LIRMM), University of Montpellier & CNRS, France & Center for BioMedical Informatics Research (BMIR), Stanford University, USA [email protected] (ORCID: 0000-0002-2404-1582) Abstract 1 Introduction The explosion of the number of ontologies The Semantic Web produces many vocabularies and vocabularies available in the Semantic and ontologies to represent and annotate any kind Web makes ontology libraries and reposi- of data. However, those ontologies are spread out, tories mandatory to find and use them. in different formats, of different size, with differ- Their functionalities span from simple on- ent structures and from overlapping domains. The tology listing with more or less of metada- scientific community has always been interested ta description to portals with advanced on- tology-based services: browse, search, vis- in designing common platforms to list and some- ualization, metrics, annotation, etc. Ontol- time host and serve ontologies, align them, and ogy libraries and repositories are usually enable their (re)use (Ding and Fensel, 2001; developed to address certain needs and Hartmann et al., 2009; D’Aquin and Noy, 2012; , communities. BioPortal, the ontology re- 1995). These platforms range from simple ontol- pository built by the US National Center ogy listings or libraries with structured metadata, for Biomedical Ontologies BioPortal relies to advanced repositories (or portals) which fea- on a domain independent technology al- ture a variety of services for multiple types of ready reused in several projects from bio- semantic resources (ontologies, vocabularies, medicine to agronomy and earth sciences. -
Refined Mapping of the Human Serotonin Transporter (SLC6A4) Gene Within 17Q11 Adjacent to the CPD and NF1 Genes
European Journal of Human Genetics (2000) 8, 75–78 © 2000 Macmillan Publishers Ltd All rights reserved 1018–4813/00 $15.00 y www.nature.com/ejhg SHORT REPORT Refined mapping of the human serotonin transporter (SLC6A4) gene within 17q11 adjacent to the CPD and NF1 genes Sanbing Shen1, Sharon Battersby1, Molly Weaver2, Elma Clark1, Karen Stephens2,3 and Anthony J Harmar1 1MRC Brain Metabolism Unit, University Department of Neuroscience, Edinburgh, Scotland; Departments of 2Medicine and 3Laboratory Medicine, University of Washington, Seattle, WA 98195, USA The SLC6A4 gene encodes the serotonin transporter, the target of an important class of antidepressant drugs (serotonin selective reuptake inhibitors). Polymorphisms in the SLC6A4 gene have been reported to be associated with susceptibility to depression and other psychiatric disorders. We have constructed a 1 Mb YAC and PAC contig which harbours both the SLC6A4 and the carboxypeptidase D (CPD) genes. The order of loci within the contig was cen–D17S975–D17S1549–24R–D17S1294–SLC6A4–28L–(CPD, D17S2009, D17S2004)–D17S2120–ter. Both genes were deleted in one of 17 neurofibromatosis type 1 (NF1) patients carrying submicroscopic NF1 contiguous gene deletions. European Journal of Human Genetics (2000) 8, 75–78. Keywords: serotonin transporter; CPD; NF1; YAC contig Introduction and YAC libraries from ICRF (35D8, 132C6 and 49A9) and The actions of the neurotransmitter serotonin (5-HT) are CEPH (704F1, 782E2 and 765D1). Yeast DNA was prepared by terminated by reuptake via a Na+ -dependent serotonin combined methods of Schedl et al2 and Bellis et al.3 Pulsed- transporter (SERT) encoded by the SLC6A4 gene. The SERT is field gel electrophoresis was performed in 0.5 ϫ TBE buffer at the target for an important class of antidepressant drugs (the 6 V/cm for 24 h at 14°C with 60 s switch time and gels were serotonin selective reuptake inhibitors) and also of certain blotted overnight onto Appligene Positive Membrane. -
S41564-021-00949-1.Pdf
ARTICLES https://doi.org/10.1038/s41564-021-00949-1 CcrZ is a pneumococcal spatiotemporal cell cycle regulator that interacts with FtsZ and controls DNA replication by modulating the activity of DnaA Clement Gallay 1,5, Stefano Sanselicio1,5, Mary E. Anderson2, Young Min Soh1, Xue Liu1, Gro A. Stamsås3, Simone Pelliciari 4, Renske van Raaphorst1, Julien Dénéréaz 1, Morten Kjos 3, Heath Murray 4, Stephan Gruber 1, Alan D. Grossman 2 and Jan-Willem Veening 1 ✉ Most bacteria replicate and segregate their DNA concomitantly while growing, before cell division takes place. How bacteria synchronize these different cell cycle events to ensure faithful chromosome inheritance by daughter cells is poorly understood. Here, we identify Cell Cycle Regulator protein interacting with FtsZ (CcrZ) as a conserved and essential protein in pneumococci and related Firmicutes such as Bacillus subtilis and Staphylococcus aureus. CcrZ couples cell division with DNA replication by controlling the activity of the master initiator of DNA replication, DnaA. The absence of CcrZ causes mis-timed and reduced initiation of DNA replication, which subsequently results in aberrant cell division. We show that CcrZ from Streptococcus pneu- moniae interacts directly with the cytoskeleton protein FtsZ, which places CcrZ in the middle of the newborn cell where the DnaA-bound origin is positioned. This work uncovers a mechanism for control of the bacterial cell cycle in which CcrZ controls DnaA activity to ensure that the chromosome is replicated at the right time during the cell cycle. n many bacterial species, DNA replication and cell division MapZ was shown to guide Z-ring formation, analogous to the Min occur concomitantly1–3. -
Interactive Knowledge Capture in the New Millennium: How the Semantic Web Changed Everything
To appear in the Special Issue for the 25th Anniversary the Knowledge Engineering Review, 2011. Interactive Knowledge Capture in the New Millennium: How the Semantic Web Changed Everything Yolanda Gil USC Information Sciences Institute [email protected] Last updated: January 10, 2011 Abstract The Semantic Web has radically changed the landscape of knowledge acquisition research. It used to be the case that a single user would edit a local knowledge base, that the user would have domain expertise to add to the system, and that the system would have a centralized knowledge base and reasoner. The world surrounding knowledge‐rich systems changed drastically with the advent of the Web, and many of the original assumptions were no longer a given. Those assumptions had to be revisited and addressed in combination with new challenges that were put forward. Knowledge‐rich systems today are distributed, have many users with different degrees of expertise, and integrate many shared knowledge sources of varying quality. Recent work in interactive knowledge capture includes new and exciting research on collaborative knowledge sharing, collecting knowledge from web volunteers, and capturing knowledge provenance. 1. Introduction For this special anniversary issue of the Knowledge Engineering Review, I prepared a personal perspective on recent research in the area of interactive knowledge capture. My research interest has always been human‐computer collaboration, in particular how to assist people in performing complex, knowledge‐rich tasks that cannot be -
A Chromosome-Centric Human Proteome Project (C-HPP) To
computational proteomics Laboratory for Computational Proteomics www.FenyoLab.org E-mail: [email protected] Facebook: NYUMC Computational Proteomics Laboratory Twitter: @CompProteomics Perspective pubs.acs.org/jpr A Chromosome-centric Human Proteome Project (C-HPP) to Characterize the Sets of Proteins Encoded in Chromosome 17 † ‡ § ∥ ‡ ⊥ Suli Liu, Hogune Im, Amos Bairoch, Massimo Cristofanilli, Rui Chen, Eric W. Deutsch, # ¶ △ ● § † Stephen Dalton, David Fenyo, Susan Fanayan,$ Chris Gates, , Pascale Gaudet, Marina Hincapie, ○ ■ △ ⬡ ‡ ⊥ ⬢ Samir Hanash, Hoguen Kim, Seul-Ki Jeong, Emma Lundberg, George Mias, Rajasree Menon, , ∥ □ △ # ⬡ ▲ † Zhaomei Mu, Edouard Nice, Young-Ki Paik, , Mathias Uhlen, Lance Wells, Shiaw-Lin Wu, † † † ‡ ⊥ ⬢ ⬡ Fangfei Yan, Fan Zhang, Yue Zhang, Michael Snyder, Gilbert S. Omenn, , Ronald C. Beavis, † # and William S. Hancock*, ,$, † Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States ‡ Stanford University, Palo Alto, California, United States § Swiss Institute of Bioinformatics (SIB) and University of Geneva, Geneva, Switzerland ∥ Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States ⊥ Institute for System Biology, Seattle, Washington, United States ¶ School of Medicine, New York University, New York, United States $Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia ○ MD Anderson Cancer Center, Houston, Texas, United States ■ Yonsei University College of Medicine, Yonsei University, -
Omaima Nasir1
Available online freely at www.isisn.org Bioscience Research Print ISSN: 1811-9506 Online ISSN: 2218-3973 Journal by Innovative Scientific Information & Services Network RESEARCH ARTICLE BIOSCIENCE RESEARCH, 2020 17(1): 327-346. OPEN ACCESS Exploring the Physiological and Molecular Mechanism of the Gum arabic ( Acacia senegal ) Based on Gene Expression Microarray Omaima Nasir1 1Department of Biology, Turabah University College, Taif University, Saudi Arabia. *Correspondence: [email protected], [email protected] Received 22-01-2019, Revised: 16-02-2020, Accepted: 20- 02-2020 e-Published: 01-03-2020 To investigate the differential expression of genes after Gum Arabic (Acacia senegal) administration by microarray study.The microarray was performed using colonic tissue of BALB/c s at 8 weeks of age treated with10% (w/w) GA dissolved in drinking water and control had a normal tap water for 4 days. A total 100 genes were analyzed by the pathway, gene ontology (GO) enrichment analysis, construction of protein-protein interaction (PPI) network, module analysis, construction of target genes—miRNA interaction network, target and genes-transcription factor (TF) interaction. We discuss key issues pertaining to experimental design, data preprocessing, and gene selection methods. Common types of data representation are illustrated. A total of 100 differentially miRNAs were screened and identified by microarray according to fold change the top genes which were significantly 59 genes with up-regulation and 41 genes down regulation, after Gum Arabic administration for 4 days. The data may unravel the future molecular mechanisms of Gum arabic by applying various bio-informatical approaches, we have revealed top score upregulation genes were 23, and down regulated genes with top score were 38. -
Genomic Sites Hypersensitive to Ultraviolet Radiation
Genomic sites hypersensitive to ultraviolet radiation Sanjay Premia,1, Lynn Hana, Sameet Mehtab, James Knightb, Dejian Zhaob, Meg A. Palmatiera, Karl Kornackerc,2, and Douglas E. Brasha,d,e,2 aDepartment of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040; bDepartment of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005; cKarl Kornacker & Associates, LLC, Worthington, OH 43085; dDepartment of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059; and eYale Cancer Center, Yale School of Medicine, New Haven, CT 06510 Edited by James E. Cleaver, University of California, San Francisco Medical Center, San Francisco, CA, and approved October 18, 2019 (received for review May 6, 2019) If the genome contains outlier sequences extraordinarily sensitive scription factor binding motifs in many genes mutated in mela- to environmental agents, these would be sentinels for monitoring noma reveal that CPDs are elevated at these positions (21–23). personal carcinogen exposure and might drive direct changes in Yet the frequency of CPD induction at single-nucleotide resolu- cell physiology rather than acting through rare mutations. New tion across the entire genome remains unknown, as do hotspots methods, adductSeq and freqSeq, provided statistical resolution to and tissue-dependence. quantify rare lesions at single-base resolution across the genome. Here we probed the genome of primary human fibroblasts and Primary human melanocytes, but not fibroblasts, carried sponta- melanocytes for genome regions that are outliers for UV sensi- neous apurinic sites and TG sequence lesions more frequent than ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs). UV tivity.