Dale Alan Russell (1937-2019): Voyageur of a Vanished World

Total Page:16

File Type:pdf, Size:1020Kb

Dale Alan Russell (1937-2019): Voyageur of a Vanished World Canadian Journal of Earth Sciences Dale Alan Russell (1937-2019): Voyageur of a Vanished World Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0163.R1 Manuscript Type: Tribute Date Submitted by the 26-Nov-2020 Author: Complete List of Authors: Cumbaa, Stephen L.; Canadian Museum of Nature, Currie, Philip J.; University of Alberta, Biological Sciences Dodson, Peter; University of Pennsylvania School of Veterinary Medicine, Department of Biomedical Sciences; University of Pennsylvania, DepartmentDraft of Biomedical Sciences Mallon, Jordan; Canadian Museum of Nature Keyword: Dale Alan Russell, biography, dinosaurs, mosasaurs, extinction, evolution Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 37 Canadian Journal of Earth Sciences 1 Dale Alan Russell (1937-2019): Voyageur of a Vanished World 2 Stephen L. Cumbaa1, Philip J. Currie2, Peter Dodson3,4, Jordan C. Mallon1,5,* 3 4 1Beaty Centre for Species Discovery and Palaeobiology Section, Canadian Museum of Nature, 5 P.O. Box 3443, Station D, Ottawa, ON K1P 6P4, Canada 6 2University of Alberta, CW 405, Biological Sciences Building, Edmonton, AB T6G 2E9, Canada 7 3Department of Biomedical Sciences, University of Pennsylvania School of Veterinary 8 Medicine, Philadelphia, PA 19104, USA 9 4Department of Earth and EnvironmentalDraft Science, School of Arts and Sciences, University of 10 Pennsylvania, Philadelphia, PA 19104, USA 11 5Department of Earth Sciences, Carleton University, 2115 Herzberg Laboratories, 1125 Colonel 12 By Drive, Ottawa, ON K1S 5B6, Canada 13 14 *Corresponding author 15 1 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 37 16 Abstract 17 We review the distinguished and varied career of our friend and colleague, 18 palaeontologist Dr. Dale A. Russell, following the recent news of his death. Dale relished his 19 work, and approached his research—whether it be on mosasaur systematics, dinosaur extinction, 20 or the evolution of animal intelligence—with great gusto. A deep and contextual thinker, Dale 21 had a penchant for metanarrative rarely equaled in these times of increased research 22 specialization. This quality, combined with his outgoing and collaborative nature, allowed Dale 23 to make friends and colleagues with highly varied research interests throughout the world. We 24 remember Dale fondly, and cherish the opportunity to share the stories of his adventures (and 25 misadventures) across the globe. 26 Draft 27 Key words: Dale Alan Russell, biography, dinosaurs, mosasaurs, evolution, extinction 2 © The Author(s) or their Institution(s) Page 3 of 37 Canadian Journal of Earth Sciences 28 Introduction 29 Dale Alan Russell (Figure 1) died on December 21, 2019, six days short of his 82nd 30 birthday. Dale was the first modern student of Canadian dinosaurs, revitalizing their study 31 following the fabled decades of collection by Charles M. Sternberg and his contemporaries. 32 During his 30-year tenure at the Canadian Museum of Nature (previously the National Museum 33 of Canada, and the National Museum of Natural Sciences), he described dinosaurs from Canada, 34 China, North Africa and elsewhere. He sought to understand both the dinosaurs themselves and 35 the environments in which they lived. His restless energy drove him to explore remote regions of 36 the earth, from the Canadian High Arctic, to the New Caledonian cloud forest, from the High 37 Atlas Mountains of Morocco and the RiftDraft Valley of the Lake Turkana region of northern Kenya, 38 to the deserts of Xinjiang and Inner Mongolia in China. He endeavoured to understand dinosaur 39 habitats by exploring modern analogues to Cretaceous lowland habitats in Florida, Louisiana, 40 and North Carolina, where he documented swamp cypresses, magnolias, turtles and alligators in 41 their natural habitats. He was among the first palaeontologists to give serious consideration to an 42 extraterrestrial cause of dinosaur extinction (Russell and Tucker, 1971), nearly a decade before 43 the Alvarez hypothesis gained traction. Dale is remembered not only for his fertile imagination, 44 his becoming modesty, and his nearly manic sense of humor, but also for his enthusiasm on 45 matters botanical. Not only did he learn about his fungi and plants of interest (mushrooms, figs, 46 ferns, etc.), but he cultivated them both at home and in the office, consumed them, and induced 47 his friends and co-workers to consume them (fiddlehead fern soup, anybody?). He is 48 remembered with great affection by all who knew and admired him. Some reflections and 49 cherished memories of Dale are provided in Supplementary Data 1. 50 Early Years 3 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 4 of 37 51 Dale was born on December 27, 1937 in San Francisco. He was the second of three 52 children of Clarence R. and Marion C. Russell (Figure 2). Ten years Dale’s senior, his older 53 brother, Donald Eugene, is a distinguished mammalian palaeontologist (recipient of the Romer- 54 Simpson Medal of the Society of Vertebrate Paleontology in 2005) who has spent most of his 55 career in France, where he now resides. His younger sister Dian Patricia was born in 1940. The 56 family moved to a 40-acre farm in Enterprise, Oregon in 1943. Brother Don remembers Dale’s 57 youthful interest in dinosaurs, which he never outgrew. He tells of a young Dale crafting a small, 58 wooden stegosaur, with unmistakable plates along its back. 59 Dale matriculated at Eastern Oregon College in La Grande, but a year later transferred to 60 the University of Oregon in Eugene. HereDraft he was mentored by J. Arnold Shotwell, a pioneer of 61 taphonomy, with whom he worked for several summers in the rich Oligocene fossil beds of 62 southeastern Oregon, also with a foray into Idaho (Figure 3). Dale graduated from the University 63 of Oregon in June 1958 and began a master’s program in palaeontology at the University of 64 California, Berkeley. During his time at Berkeley, Dale participated in field work in California, 65 Nevada, Wyoming, and Baja California. He received his master’s in palaeontology from UCB in 66 June 1960. His thesis (unpublished), supervised by Don E. Savage, was on fossil mammals of 67 Palaeocene-Eocene age from northwestern Wyoming. He published his first paper (of many; full 68 bibliography available in Supplementary Data 2) on an Oligocene insectivore from Montana 69 (Russell, 1960). Dale entered the Ph.D. program at Columbia University under the supervision of 70 Edwin H. Colbert in September, 1960. The topic of his dissertation was a review of the 71 mosasaurs of North America. The years at Columbia were pivotal for a number of reasons. Of 72 course, they resulted in a Ph.D. in short order (awarded January, 1964). Two other events stand 73 out that affected the rest of his life: his conversion to Roman Catholicism at Easter, 1961, and his 4 © The Author(s) or their Institution(s) Page 5 of 37 Canadian Journal of Earth Sciences 74 meeting Janice Alberti in front of the Law School on the Columbia campus in October 1962. 75 Janice became his wife on July 18, 1964. She also became Dr. Janice Russell, Ph.D. in May 76 1977, with a history degree from Columbia. 77 In 1964, Dale began a one-year post-doctoral fellowship at Yale University, supervised 78 by John H. Ostrom. While there, he published his first mosasaur paper (Russell, 1964), on 79 intracranial kinesis, indelibly marking him as a specialist in the anatomy of Mesozoic reptiles. 80 He also began the laborious process of turning his dissertation into a museum monograph 81 (Russell, 1967). 82 Establishment in Ottawa 83 Dale had the extraordinary goodDraft fortune of landing a curatorial position in the National 84 Museums of Canada, in what quickly became the National Museum of Natural Sciences (NMNS, 85 now the Canadian Museum of Nature [CMN]), and moved to Ottawa in January 1965. Moves to 86 Ottawa, one of the coldest national capital cities in the world, in the month of January, are not 87 necessarily recommended, but Dale embraced the opportunity. He became heir to one of the 88 greatest collections of Cretaceous dinosaurs in the world, built up by Lawrence M. Lambe, 89 Charles H. Sternberg and his three sons, and Wann Langston, Jr. Chief among these, however, 90 was Charles M. Sternberg, who at age 80 still visited the palaeontology lab with regularity, both 91 then and for many years thereafter. The lab was then located in an annex at Sussex Drive and 92 George Street in the ByWard Market, less than 1 km from Parliament Hill. The wooden floors of 93 the massive roughhewn limestone building creaked, and the collection room was allegedly 94 haunted by the ghost of Lambe, who surprisingly was also reported when the lab and collection 95 moved in the fall of 1968 to an industrial park in the west of Ottawa on Woodward Drive. 5 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 6 of 37 96 Dale jumped into his new position with gusto. By summer (June–July 1965), he was 97 already in the Arctic (Northwest Territories) collecting Cretaceous vertebrates along the 98 Anderson River in shallow marine deposits, recovering a Niobrara-like fauna of mosasaurs, 99 plesiosaurs, and toothed birds (Russell, 1967). He did make a point of returning to Ottawa for the 100 birth of his son Frank on August 26. In January 1966, he visited the Royal Ontario Museum in 101 Toronto to investigate their fine collection of Canadian dinosaurs, collected principally by 102 William A. Parks and Levi Sternberg. In May, he was off to London and Brussels, still chasing 103 down mosasaurs.
Recommended publications
  • The Dashanpu Dinosaur Fauna of Zigong Sichuan Short Report V - Labyrinthodont Amphibia
    The Dashanpu Dinosaur Fauna of Zigong Sichuan Short Report V - Labyrinthodont Amphibia Zhiming Dong (Institute of Vertebrate Paleontology, Paleoanthropology, Academia Sinica) Vertebrata PalAsiatica Volume XXIII, No. 4 October, 1985 pp. 301-305 Translated by Will Downs Department of Geology Bilby Research Center Northern Arizona University December, 1990 Abstract A brief discussion is presented on the morphological characteristics and phylogenetic position of Sinobrachyops placenticephalus (gen. et sp. nov.). The specimen is derived from the well-known Middle Jurassic Dashanpu dinosaur quarries of Zigong County, Sichaun Province. Sinobrachyops is the youngest geological occurrence of a labyrinthodont amphibian known to date. Its discovery extends the upper geochronological limit for the Labyrinthodontia into the Middle Jurassic. Introduction The first fossils collected from Dashanpu, Zigong, in 1979, were a pair of rhachitomous vertebrae. This discovery created a sense of perplexity among the workers, for the morphology of these pleurocentra and intercentra suggested an assignment to the Labyrinthodontia. This group of amphibians, however, was traditionally believed to have become extinct in the Late Triassic, a traditional concept that must be abandoned if scientific investigation is to be advanced and left unfettered. In 1983 the Institute of Vertebrate Paleontology, Paleoanthropology Academia Sinica launched a paleontological expedition in the Shishugou Formation (Middle-Late Jurassic) from the Kelameili region, northeast Jungar Basin, Xinjiang Autonomous Region, where several rhachitomous vertebrae were discovered. Later, a fragmentary skull of a labyrinthodont amphibian was collected, confirming that this group extended into the Middle Jurassic. The discovery from the Shishugou Formation convinced the workers that the rhachitomous vertebrae at Dashanpu belonged to the Labyrinthodontia.
    [Show full text]
  • Investigating Sexual Dimorphism in Ceratopsid Horncores
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-01-25 Investigating Sexual Dimorphism in Ceratopsid Horncores Borkovic, Benjamin Borkovic, B. (2013). Investigating Sexual Dimorphism in Ceratopsid Horncores (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/26635 http://hdl.handle.net/11023/498 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Investigating Sexual Dimorphism in Ceratopsid Horncores by Benjamin Borkovic A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES CALGARY, ALBERTA JANUARY, 2013 © Benjamin Borkovic 2013 Abstract Evidence for sexual dimorphism was investigated in the horncores of two ceratopsid dinosaurs, Triceratops and Centrosaurus apertus. A review of studies of sexual dimorphism in the vertebrate fossil record revealed methods that were selected for use in ceratopsids. Mountain goats, bison, and pronghorn were selected as exemplar taxa for a proof of principle study that tested the selected methods, and informed and guided the investigation of sexual dimorphism in dinosaurs. Skulls of these exemplar taxa were measured in museum collections, and methods of analysing morphological variation were tested for their ability to demonstrate sexual dimorphism in their horns and horncores.
    [Show full text]
  • Download Full Article in PDF Format
    comptes rendus palevol 2021 20 20 iles — Jean- pt Cl re au d d n e a R s a n g a e i — b i h P p a l a m e a o f b o i o y l h o p g a y r g a o n e d g p o i a l b a o e DIRECTEURS DE LA PUBLICATION / PUBLICATION DIRECTORS : Bruno David, Président du Muséum national d’Histoire naturelle Étienne Ghys, Secrétaire perpétuel de l’Académie des sciences RÉDACTEURS EN CHEF / EDITORS-IN-CHIEF : Michel Laurin (CNRS), Philippe Taquet (Académie des sciences) ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Adenise Lopes (Académie des sciences ; [email protected]) MISE EN PAGE / PAGE LAYOUT : Fariza Sissi (Muséum national d’Histoire naturelle ; [email protected]) RÉVISIONS LINGUISTIQUES DES TEXTES ANGLAIS / ENGLISH LANGUAGE REVISIONS : Kevin Padian (University of California at Berkeley) RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS : Micropaléontologie/Micropalaeontology Maria Rose Petrizzo (Università di Milano, Milano) Paléobotanique/Palaeobotany Cyrille Prestianni (Royal Belgian Institute of Natural Sciences, Brussels) Métazoaires/Metazoa Annalisa Ferretti (Università di Modena e Reggio Emilia, Modena) Paléoichthyologie/Palaeoichthyology Philippe Janvier (Muséum national d’Histoire naturelle, Académie des sciences, Paris) Amniotes du Mésozoïque/Mesozoic amniotes Hans-Dieter Sues (Smithsonian National Museum of Natural History, Washington) Tortues/Turtles Juliana Sterli (CONICET, Museo Paleontológico Egidio Feruglio, Trelew) Lépidosauromorphes/Lepidosauromorphs Hussam Zaher (Universidade de São Paulo) Oiseaux/Birds Eric Buffetaut (CNRS, École Normale Supérieure, Paris) Paléomammalogie (mammifères de moyenne et grande taille)/Palaeomammalogy (large and mid-sized mammals) Lorenzo Rook* (Università degli Studi di Firenze, Firenze) Paléomammalogie (petits mammifères sauf Euarchontoglires)/Palaeomammalogy (small mammals except for Euarchontoglires) Robert Asher (Cambridge University, Cambridge) Paléomammalogie (Euarchontoglires)/Palaeomammalogy (Euarchontoglires) K.
    [Show full text]
  • Re-Description of the Sauropod Dinosaur Amanzia (“Ornithopsis
    Schwarz et al. Swiss J Geosci (2020) 113:2 https://doi.org/10.1186/s00015-020-00355-5 Swiss Journal of Geosciences ORIGINAL PAPER Open Access Re-description of the sauropod dinosaur Amanzia (“Ornithopsis/Cetiosauriscus”) greppini n. gen. and other vertebrate remains from the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, Switzerland Daniela Schwarz1* , Philip D. Mannion2 , Oliver Wings3 and Christian A. Meyer4 Abstract Dinosaur remains were discovered in the 1860’s in the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, northwestern Switzerland. In the 1920’s, these were identifed as a new species of sauropod, Ornithopsis greppini, before being reclassifed as a species of Cetiosauriscus (C. greppini), otherwise known from the type species (C. stewarti) from the late Middle Jurassic (Callovian) of the UK. The syntype of “C. greppini” consists of skeletal elements from all body regions, and at least four individuals of diferent sizes can be distinguished. Here we fully re-describe this material, and re-evaluate its taxonomy and systematic placement. The Moutier locality also yielded a theropod tooth, and fragmen- tary cranial and vertebral remains of a crocodylomorph, also re-described here. “C.” greppini is a small-sized (not more than 10 m long) non-neosauropod eusauropod. Cetiosauriscus stewarti and “C.” greppini difer from each other in: (1) size; (2) the neural spine morphology and diapophyseal laminae of the anterior caudal vertebrae; (3) the length-to-height proportion in the middle caudal vertebrae; (4) the presence or absence of ridges and crests on the middle caudal cen- tra; and (5) the shape and proportions of the coracoid, humerus, and femur.
    [Show full text]
  • Postcranial Skeletal Pneumaticity in Sauropods and Its
    Postcranial Pneumaticity in Dinosaurs and the Origin of the Avian Lung by Mathew John Wedel B.S. (University of Oklahoma) 1997 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Kevin Padian, Co-chair Professor William Clemens, Co-chair Professor Marvalee Wake Professor David Wake Professor John Gerhart Spring 2007 1 The dissertation of Mathew John Wedel is approved: Co-chair Date Co-chair Date Date Date Date University of California, Berkeley Spring 2007 2 Postcranial Pneumaticity in Dinosaurs and the Origin of the Avian Lung © 2007 by Mathew John Wedel 3 Abstract Postcranial Pneumaticity in Dinosaurs and the Origin of the Avian Lung by Mathew John Wedel Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Kevin Padian, Co-chair Professor William Clemens, Co-chair Among extant vertebrates, postcranial skeletal pneumaticity is present only in birds. In birds, diverticula of the lungs and air sacs pneumatize specific regions of the postcranial skeleton. The relationships among pulmonary components and the regions of the skeleton that they pneumatize form the basis for inferences about the pulmonary anatomy of non-avian dinosaurs. Fossae, foramina and chambers in the postcranial skeletons of pterosaurs and saurischian dinosaurs are diagnostic for pneumaticity. In basal saurischians only the cervical skeleton is pneumatized. Pneumatization by cervical air sacs is the most consilient explanation for this pattern. In more derived sauropods and theropods pneumatization of the posterior dorsal, sacral, and caudal vertebrae indicates that abdominal air sacs were also present.
    [Show full text]
  • Discovery of Omeisaurus (Dinosauria: Sauropoda)
    第57卷 第2期 古 脊 椎 动 物 学 报 pp. 105–116 figs. 1–3 2019年4月 VERTEBRATA PALASIATICA DOI: 10.19615/j.cnki.1000-3118.181115 Discovery of Omeisaurus (Dinosauria: Sauropoda) in the Middle Jurassic Shaximiao Formation of Yunyang, Chongqing, China TAN Chao1 DAI Hui1 HE Jian-Jun1 ZHANG Feng1 HU Xu-Feng1 YU Hai-Dong1 LI Ning1 WEI Guang-Biao2 PENG Guang-Zhao3 YE Yong3 ZHANG Qian-Nan4,5,6 REN Xin-Xin4,5,6 YOU Hai-Lu4,5,6* (1 Chongqing Laboratory of Geological Heritage Protection and Research, No. 208 Hydrogeological and Engineering Geological Team, Chongqing Bureau of Geological and Mineral Resource Exploration and Development Chongqing 400700) (2 Chongqing Institute of Geological Survey Chongqing 401122) (3 Zigong Dinosaur Museum Zigong, Sichuan 643013) (4 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044) (5 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044) (6 University of Chinese Academy of Sciences Beijing 100049 * Corresponding author: [email protected]) Abstract A cervical vertebra recovered from the Middle Jurassic Lower Member of the Shaximiao Formation in Town of Puan, Yunyang County, Chongqing is assigned to an species undeterminata of the sauropod dinosaur Omeisaurus based on morphological and comparative study. The centrum of this mid-cervical is much hollower than solider with extremely developed fossa/foramen complex and has a high ratio (5.05) of its anteroposterior length excluding the articular ball divided by the mean value of the posterior articular surface mediolateral width and dorsoventral height.
    [Show full text]
  • Three-Dimensionally Preserved Integument Reveals Hydrodynamic Adaptations in the Extinct Marine Lizard Ectenosaurus (Reptilia, Mosasauridae)
    Fort Hays State University FHSU Scholars Repository Sternberg Museum of Natural History Faculty Publications Sternberg Museum of Natural History 12-1-2011 Three-Dimensionally Preserved Integument Reveals Hydrodynamic Adaptations in the Extinct Marine Lizard Ectenosaurus (Reptilia, Mosasauridae) Johan Lindgren Lunds Universitet Michael J. Everhart Fort Hays State University Michael W. Caldwell University of Alberta Follow this and additional works at: https://scholars.fhsu.edu/sternberg_facpubs Part of the Paleontology Commons Recommended Citation Lindgren, J., Everhart, M. J., & Caldwell, M. W. (2011). Three-Dimensionally Preserved Integument Reveals Hydrodynamic Adaptations in the Extinct Marine Lizard Ectenosaurus (Reptilia, Mosasauridae). PLOS ONE, 6(11), e27343. https://doi.org/10.1371/journal.pone.0027343 This Article is brought to you for free and open access by the Sternberg Museum of Natural History at FHSU Scholars Repository. It has been accepted for inclusion in Sternberg Museum of Natural History Faculty Publications by an authorized administrator of FHSU Scholars Repository. Three-Dimensionally Preserved Integument Reveals Hydrodynamic Adaptations in the Extinct Marine Lizard Ectenosaurus (Reptilia, Mosasauridae) Johan Lindgren1*, Michael J. Everhart2, Michael W. Caldwell3 1 Department of Earth and Ecosystem Sciences, Lund University, Lund, Sweden, 2 Sternberg Museum of Natural History, Fort Hays State University, Hays, Kansas, United States of America, 3 Department of Earth and Atmospheric Sciences, and Department of Biological
    [Show full text]
  • A New Species of Sauropod from the Late Jurassic of the Sichuan Basin (Mamenchisaurus Jingyanensis Sp. Nov.)
    A new species of sauropod from the Late Jurassic of the Sichuan Basin (Mamenchisaurus jingyanensis sp. nov.) by Yihong Zhang*, Kui Li**, and Qinghua Zeng*** *Chongqing Natural History Museum **Chengdu University of Technology ***Management Office of Cultural Relicts, Jingyan County, Sichuan Journal of the Chengdu University of Technology Volume 25, Number 1 January, 1998 pp. 61-68 Translated By Will Downs Bilby Research Center Northern Arizona University January, 2001 Abstract The text describes new specimens of a large sauropod collected from the Upper Jurassic Upper Shaximiao Fm. in the Sichuan basin erected as Mamenchisaurus jingyanensis sp. nov. The new species further substantiates the genus Mamenchisaurus Young, 1954 and the inclusion of the family Mamenchisauridae within the superfamily Bothrosauropodoidea. Introduction At the end of the 1970’s and beginning of the 1990’s, the Chongqing (Chungking) Natural History Museum in collaboration with the Jingyan County Management Office of Cultural Relics conducted a series of sauropod excavations in the Upper Jurassic Upper (Shang) Shaximiao Fm. from the localities of Sanjiang and Meiwang, Yanxian Co. and Dujia, Rongxian Co. The humerus collected from Dujia was previously identified by Zhiming Dong as belonging to Mamenchisaurus (Dong et al., 1983), the remaining specimens were long since left unidentified due to the absence of diagnostic comparative specimens. Recent publications on more diagnostic data resulting in the erection of M. youngi and M. anyuensis allows the Rongxian and Jingyan specimens to be reevaluated for diagnosis. This text provides brief descriptions of these specimens for future reference. Description Saurischia Seeley, 1888 Sauropodomorpha Huene, 1932 Sauropoda Marsh, 1878 Bothrosauropodoidea Young, 1958 Mamenchisauridae Young and Chao, 1972 Mamenchisaurus Young, 1954 Mamenchisaurus jingyanensis sp.
    [Show full text]
  • A New Horned Dinosaur from an Upper Cretaceous Bone Bed in Alberta
    Darren H. Tanke Darren H. Tanke Langston, Jr. Wann Philip J. Currie, Philip J. Currie is a professor and Canada In the first monographic treatment of Research Chair at The University of Alberta Philip J. Currie, Wann Langston, Jr., & Darren H. Tanke a horned (ceratopsid) dinosaur in almost a (Department of Biological Sciences), is an Adjunct century, this monumental volume presents Professor at the University of Calgary, and was for- merly the Curator of Dinosaurs at the Royal Tyrrell one of the closest looks at the anatomy, re- Museum of Palaeontology. He took his B.Sc. at the lationships, growth and variation, behavior, University of Toronto in 1972, and his M.Sc. and ecology and other biological aspects of a sin- Ph.D. at McGill in 1975 and 1981. He is a Fellow of gle dinosaur species. The research, which was the Royal Society of Canada (1999) and a member A New Horned conducted over two decades, was possible of the Explorers Club (2001). He has published more because of the discovery of a densely packed than 100 scientific articles, 95 popular articles and bonebed near Grande Prairie, Alberta. The fourteen books, focussing on the growth and varia- tion of extinct reptiles, the anatomy and relationships Dinosaur From an locality has produced abundant remains of a of carnivorous dinosaurs, and the origin of birds. new species of horned dinosaur (ceratopsian), Fieldwork connected with his research has been con- and parts of at least 27 individual animals centrated in Alberta, Argentina, British Columbia, were recovered. China, Mongolia, the Arctic and Antarctica.
    [Show full text]
  • Allometric Growth in the Skull of Tylosaurus Proriger (Squamata: Mosasauridae) and Its Taxonomic Implications Robert F
    Vertebrate Anatomy Morphology Palaeontology 6:75–90 75 ISSN 2292-1389 Allometric growth in the skull of Tylosaurus proriger (Squamata: Mosasauridae) and its taxonomic implications Robert F. Stewart1 and Jordan C. Mallon2,* 1Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada, K1S 5B6; [email protected] 2Palaeobiology, Canadian Museum of Nature, PO Box 3223, Station D, Ottawa, Ontario, Canada, K1P 6P4; [email protected] Abstract: Ontogeny—the growth and development of an organism—is among the more poorly understood aspects of the life history of mosasaurs, largely owing to a dearth of fossil material from young individuals. We describe the par- tial and nearly complete skulls of two subadult individuals of the mosasaurid Tylosaurus proriger from the upper Smoky Hills Chalk Member of the Niobrara Formation (upper Santonian) in Kansas. We include the more complete of the two specimens in an allometric analysis to better understand proportional changes in the skull through growth. Although our small sample size produces several instances of ‘soft isometry’, we recover the length of the edentulous rostrum as significantly negatively allometric, and quadrate height as significantly positively allometric. In light of our findings, we consider the question of whether T. kansasensis represents an immature ontogimorph of T. nepaeolicus, and find substan- tive evidence to reject this hypothesis. INTRODUCTION Seaway of North America (Williston 1898; Russell 1967; Everhart 2017). These are among the smallest skulls known Mosasauridae is a clade of carnivorous, mostly marine for the species, and they help to elucidate the allometric reptiles known from Upper Cretaceous deposits world- changes undergone by T. proriger through life.
    [Show full text]
  • A Subadult Individual of Styracosaurus Albertensis
    Vertebrate Anatomy Morphology Palaeontology 8:67–95 67 ISSN 2292-1389 A subadult individual of Styracosaurus albertensis (Ornithischia: Ceratopsidae) with comments on ontogeny and intraspecific variation inStyracosaurus and Centrosaurus Caleb M. Brown1,*, Robert B. Holmes2, Philip J. Currie2 1Royal Tyrrell Museum of Palaeontology, Box 7500, Drumheller, AB, T0J 0Y0, Canada; [email protected] 2Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; [email protected]; [email protected] Abstract: Styracosaurus albertensis is an iconic centrosaurine horned dinosaur from the Campanian of Alberta, Canada, known for its large spike-like parietal processes. Although described over 100 years ago, subsequent dis- coveries were rare until the last few decades, during which time several new skulls, skeletons, and bonebeds were found. Here we described an immature individual, the smallest known for the species, represented by a complete skull and fragmentary skeleton. Although ~80% maximum size, it possesses a suite of characters associated with immaturity, and is regarded as a subadult. The ornamentation is characterized by a small, recurved, but fused nasal horncore; short, rounded postorbital horncores; and short, triangular, and flat parietal processes. Using this specimen, and additional skulls and bonebed material, the cranial ontogeny of Styracosaurus is described, and compared to Centrosaurus. In early ontogeny, the nasal horncores of Styracosaurus and Centrosaurus are thin, recurved, and unfused, but in the former the recurved morphology is retained into large adult size and the horncore never develops the procurved morphology common in Centrosaurus. The postorbital horncores of Styracosaurus are shorter and more rounded than those of Centrosaurus throughout ontogeny, and show great- er resorption later in ontogeny.
    [Show full text]
  • Cranial Anatomy of a Maastrichtian (Upper Cretaceous) Mosasaur (Squamata, Mosasauridae) from North-East Mexico
    Revista Mexicana de Ciencias Geológicas,Cranial anatomy v. 24, núm.of a Maastrichtian 1, 2007, p. 89-103 mosasaur from north-east Mexico 89 Cranial anatomy of a Maastrichtian (Upper Cretaceous) mosasaur (Squamata, Mosasauridae) from north-east Mexico Marie-Céline Buchy1,*, Eberhard Frey2, Wolfgang Stinnesbeck3, and José Guadalupe López-Oliva4 1 Universität Karlsruhe, Geologisches Institut, Postfach 6980, D-76128 Karlsruhe, Germany. Current address: Museo del Desierto, Apartado Postal 307, 25000 Saltillo, Coahuila, Mexico. 2 Geowissenschaftliche Abteilung, Staatliches Museum für Naturkunde, Erbprinzenstrasse 13, D-76133 Karlsruhe, Germany. 3 Universität Karlsruhe, Geologisches Institut, Postfach 6980, D-76128 Karlsruhe, Germany. 4 Universidad Autónoma de Nuevo León, Facultad de Ciencias de la Tierra, Apartado Postal 104, 67700 Linares, N.L., Mexico. * [email protected] ABSTRACT We here describe the first mosasaur from Mexico known by significant cranial remains, from the late Early Maastrichtian Méndez Formation of Nuevo León, north-east Mexico. The specimen comprises a fragmentary skull and parts of the mandibles. Some anatomical features suggest a juvenile animal. The skull possesses a rostral tuberosity on the premaxilla, as well as a combination of features known from different mosasaur genera, like its frontopremaxillary suture situated caudal to the external naris, its prefrontal and postorbitofrontal being in contact lateral to the orbit, associated with the supra- and infrastapedial processes of its quadrate which almost contact one another. Despite being clearly distinct from any hitherto described mosasaur, the affinities of this specimen with other mosasaurs remain obscure, not only because of incompleteness, but also because of the poorly understood biological significance of the characters used for the classification of Mosasauridae.
    [Show full text]