GEOLOGIE UND PALÄONTOLOGIE the Miocene Flora of Parschlug

Total Page:16

File Type:pdf, Size:1020Kb

GEOLOGIE UND PALÄONTOLOGIE the Miocene Flora of Parschlug ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 105 A 45–159 Wien, Februar 2004 GEOLOGIE UND PALÄONTOLOGIE The Miocene Flora of Parschlug (Styria, Austria) – Revision and Synthesis By Johanna KOVAR-EDER1, Zlatko KVACEK2 & Margit STRÖBITZER-HERMANN3 (With 5 figures, 11 tables and 15 plates) Manuscript submitted on 23 October 2002, the revised manuscript on 21 January 2003 Abstract The first monographic treatment of the famous fossil flora of Parschlug (Styria, Austria) is presented. It com- prises more than 60 plant species including 4 ferns, 5 conifers, and over 50 angiosperms. Described for the first time are Ulmus parschlugiana and Antholithes stiriacus. Newly combined are Berberis teutonica, B. (?) ambigua, Mahonia (?) aspera, Ternstroemites pereger, Cedrelospermum ulmifolium, Leguminosites hesperidum, L. dionysi, L. palaeogaeus, L. parschlugianus, Prinsepia serra, Cotinus (?) aizoon, and Ailanthus pythii. Diversified mesophytic elements prevail over a few dominant or common azonal woody taxa. Among the for- mer, humid temperate components are relatively scarce and humid subtropical ones are rare, while subhumid, physiognomically sclerophyllous woody taxa are well represented. The age is considered as Karpatian/Early Badenian (late Early/early Middle Miocene) based on the floristic composition. Climatically this association indicates a drier warm-temperate/subtropical regime than documented from earlier and later Miocene times. Keywords: Macroflora, palaeoecology, palaeoclimate, floristic comparison, Miocene, Norian depression, Austria. Zusammenfassung Erstmals wird die Flora von Parschlug (Steiermark, Österreich) monographisch erfasst. Sie enthält mehr als 60 Pflanzenarten, davon 4 Farne, 5 Koniferen und mehr als 50 Angiospermen. Ulmus parschlugiana and Antholithes stiriacus werden erstmals beschrieben. Neu kombiniert werden Berberis teutonica, B. (?) ambigua, Mahonia (?) aspera, Ternstroemites pereger, Cedrelospermum ulmifolium, Leguminosites hesperidum, L. dionysi, L. palaeogaeus, L. parschlugianus, Prinsepia serra, Cotinus (?) aizoon, und Ailanthus pythii. Außer einigen dominierenden oder häufigen azonalen Gehölzen herrschen mesophytische Elemente vor. Unter diesen sind humid temperate nicht häufig und humid subtropische sogar selten. Aber subhumide, physiognomisch sklerophylle Gehölze sind reichlich vertreten. Basierend auf der floristischen Zusammen- setzung wird ein karpatisch/unter-badenisches Alter (oberes Unter-/unteres Mittel-Miozän) angenommen. Im Vergleich mit älteren und jüngeren miozänen Floren deutet die Vergesellschaftung von Parschlug auf relativ trockenere warm-temperat/subtropische klimatische Verhältnisse hin. Schlüsselwörter: Makroflora, Paläoökologie, Paläoklima, floristische Vergleiche, Miozän, Norische Senke, Österreich. 1 Johanna KOVAR-EDER, Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany; e-mail: [email protected]. 2 Zlatko KVACEK, Charles University, Faculty of Science, Albertov 6, CZ-128 43 Praha 2, Czech Republic; e-mail: [email protected]. 3 Margit STRÖBITZER-HERMANN, Geologisch-Paläontologische Abteilung, Naturhistorisches Museum, Burg- ring 7, P.B. 417, A-1014 Wien, Austria; e-mail: [email protected]. ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at 46 Annalen des Naturhistorischen Museums in Wien 105 A Table of contents Introduction ................................................................................................................................................. 48 Geography and geological frame ................................................................................................................ 49 Material and methods .................................................................................................................................. 50 Systematics .................................................................................................................................................. 52 Osmunda parschlugiana (UNGER)ANDREÁNSZKY ...................................................................................... 52 Pronephrium stiriacum (UNGER)KNOBLOCH & Z. KVACEK ....................................................................... 52 Adiantum renatum UNGER .......................................................................................................................... 52 Salvinia cf. mildeana GOEPPERT .................................................................................................................. 53 Pinus sp. div. ............................................................................................................................................... 53 ? Cathaya sp. ............................................................................................................................................... 54 Glyptostrobus europaeus (BRONGNIART)UNGER ........................................................................................ 54 ? Cupressus sp. ........................................................................................................................................... 55 Daphnogene polymorpha (A. BRAUN)ETTINGSHAUSEN ............................................................................. 55 Berberis teutonica (UNGER)KOVAR-EDER & Z. KVACEK comb. nov. ........................................................ 56 Berberis (?) ambigua (UNGER)KOVAR-EDER & Z. KVACEK comb. nov. ................................................... 56 Mahonia (?) aspera (UNGER)KOVAR-EDER & Z. KVACEK comb. nov. ..................................................... 57 Cercidiphyllum crenatum (UNGER) R. BROWN ........................................................................................... 57 Liquidambar europaea A. BRAUN .............................................................................................................. 58 Liquidambar sp. – fructus ........................................................................................................................... 58 Platanus leucophylla (UNGER)KNOBLOCH ................................................................................................. 58 Betula cf. dryadum BRONGNIART ................................................................................................................ 59 Betula vel Alnus sp. .................................................................................................................................... 59 Alnus julianiformis (STERNB.) Z. KVACEK &HOLY .................................................................................... 59 Alnus gaudinii (HEER)KNOBLOCH & Z. KVACEK ....................................................................................... 60 Fagus sp. – leaf ........................................................................................................................................... 60 Fagus sp. – cupule ...................................................................................................................................... 60 Fagus vel Alnus sp. ..................................................................................................................................... 61 Quercus drymeja UNGER ............................................................................................................................. 61 Quercus mediterranea UNGER .................................................................................................................... 62 Quercus zoroastri UNGER ........................................................................................................................... 62 cf. ? Gordonia oberdorfensis KOVAR-EDER ................................................................................................ 63 Ternstroemites pereger (UNGER)KOVAR-EDER & Z. KVACEK comb. nov. ................................................ 63 Myrica lignitum (UNGER)SAPORTA ............................................................................................................. 64 Myrica oehningensis (A. BRAUN)HEER ...................................................................................................... 65 Myrica sp. – fructus .................................................................................................................................... 65 Engelhardia orsbergensis (WESSEL &WEBER)JÄHNICHEN,MAI &WALTHER .......................................... 65 Engelhardia macroptera (BRONGNIART)UNGER ......................................................................................... 65 Tilia longebracteata ANDRAE ..................................................................................................................... 66 Craigia bronnii (UNGER) Z. KVACEK,B˚UZEK &MANCHESTER .................................................................. 66 Ulmus plurinervia UNGER ........................................................................................................................... 66 Ulmus parschlugiana KOVAR-EDER & Z. KVACEK sp. nov. ....................................................................... 67 Cedrelospermum ulmifolium (UNGER)KOVAR-EDER & Z. KVACEK comb. nov. – foliage ........................ 68 Cedrelospermum stiriacum (ETTINGSHAUSEN)KOVAR-EDER & Z. KVACEK comb. nov. – fructus ............ 68 Zelkova zelkovifolia (UNGER)B˚UZEK &KOTLABA .....................................................................................
Recommended publications
  • Messinian Vegetation and Climate of the Intermontane Florina-Ptolemais
    bioRxiv preprint doi: https://doi.org/10.1101/848747; this version posted November 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Messinian vegetation and climate of the intermontane Florina-Ptolemais-Servia Basin, 2 NW Greece inferred from palaeobotanical data: How well do plant fossils reflect past 3 environments? 4 5 Johannes M. Bouchal1*, Tuncay H. Güner2, Dimitrios Velitzelos3, Evangelos Velitzelos3, 6 Thomas Denk1 7 8 1Swedish Museum of Natural History, Department of Palaeobiology, Box 50007, 10405 9 Stockholm, Sweden 10 2Faculty of Forestry, Department of Forest Botany, Istanbul University Cerrahpaşa, Istanbul, 11 Turkey 12 3National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, 13 Section of Historical Geology and Palaeontology, Greece 14 15 16 bioRxiv preprint doi: https://doi.org/10.1101/848747; this version posted November 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 17 The late Miocene is marked by pronounced environmental changes and the appearance of 18 strong temperature and precipitation seasonality. Although environmental heterogeneity is to 19 be expected during this time, it is challenging to reconstruct palaeoenvironments using plant 20 fossils. We investigated leaves and dispersed spores/pollen from 6.4–6 Ma strata in the 21 intermontane Florina-Ptolemais-Servia Basin (FPS) of NW Greece.
    [Show full text]
  • Dioscorea Sphaeroidea (Dioscoreaceae), a Threatened New Species from the High- Altitude Grasslands of Southeastern Brazil with Wingless Seeds
    Phytotaxa 163 (4): 229–234 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.163.4.3 Dioscorea sphaeroidea (Dioscoreaceae), a threatened new species from the high- altitude grasslands of southeastern Brazil with wingless seeds RICARDO SOUSA COUTO1*, ROSANA CONRADO LOPES2 & JOÃO MARCELO ALVARENGA BRAGA3 1Museu Nacional, Universidade Federal do Rio de Janeiro. Quinta da Boa Vista s.n., São Cristovão. 20940-040, Rio de Janeiro, RJ, Brazil 2Universidade Federal do Rio de Janeiro. Rua Prof. Rodolfo Paulo Rocco s.n., CCS. 21941-490, Rio de Janeiro, RJ, Brazil. 3Instituto de Pesquisas Jardim Botânico do Rio de Janeiro. Rua Pacheco Leão, 915. 22460-030, Rio de Janeiro, RJ, Brazil. *Corresponding author: [email protected] Abstract Dioscorea sphaeroidea is endemic to the high-altitude grasslands of the Serra dos Órgãos National Park located in southeastern Brazil. Based on the spheroid shape of its fruit and seed, i.e., not flattened or winged, this new species is morphologically unusual in the Dioscorea genus. Moreover, its unique morphology leaves this new species with no clear position in the infrageneric taxonomy of Dioscorea. Herein we present the morphological description of this species, including a discussion of its ecology and habitat, distribution, and preliminary risk of extinction assessment. Key words: Atlantic rainforest, critically endangered species, Dioscoreales, endemism, neotropics Introduction Dioscoreaceae is comprised of four genera and about 650 species distributed worldwide, but particularly in tropical regions (Govaerts et al. 2007; WCSP 2014). With over 600 species, Dioscorea Linnaeus (1753: 1032) is the genus with largest number of species, and it is the most widely distributed genus in the family (Govaerts et al.
    [Show full text]
  • Pittosporum Angustifolium
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Southern Queensland ePrints University of Southern Queensland An investigation of the ecology and bioactive compounds of Pittosporum angustifolium endophytes A Thesis Submitted by Michael Thompson Bachelor of Science USQ For the Award of Honours in Science 2014 Abstract Endophytes are microorganisms that reside in the internal tissue of living plants without causing any apparent negative effects to the host. Endophytes are known to produce bioactive compounds and are looked upon as a promising source of novel bioactive compounds. There is currently limited knowledge of Australian endophytes regarding the species diversity, ecological roles and their potential as producers of antimicrobial compounds. The plant Pittosporum angustifolium was used medicinally by Indigenous Australians to treat a variety of conditions such as eczema, coughs and colds. In this study the diversity of endophytic species, host-preference of endophytes and antimicrobial potential of the resident endophytes is investigated in P. angustifolium. During this study a total of 54 endophytes were cultured from leaf samples of seven different P. angustifolium plants. Using molecular identification methods, the ITS-rDNA and SSU-rDNA regions of fungal and bacterial endophytes respectively were sequenced and matched to species recorded in GenBank. This approach, however, could not identify all isolates to the species level. Analysing the presence/absence of identified isolates in each of the seven trees found no evidence to indicate any host-specific relationships. Screening of each isolated endophyte against four human pathogens (Staphylococcus aureus, Serratia marcescens, Escherichia coli and Candida albicans) found two species displaying antimicrobial activity.
    [Show full text]
  • Going Clonal: Beyond Seed Collecting
    22 Arnoldia 75/3 • February 2018 Going Clonal: Beyond KYLE PORT Seed Collecting Robert Dowell eed is the most important and most valu- able propagation material an expedition Stargets. A handful of seed can offer geneti- cally diverse, and logistically easy, material to procure and grow for the Arboretum’s col- lections. Yet some target taxa present unique difficulties for collectors searching for seed. White, pea-like flowers of Cladrastis kentuckea are abun- One species that exemplifies this is Cladrastis dantly borne in long racemes, as in this old tree in the Arbore- kentukea (American yellowwood). tum’s collection (accession 16370*A). As part of the Campaign, American yel- lowwood is a target. This species is unique as the only member of its genus native to North America—all others occur in Eastern Asia. Furthermore, not only is it disjunct from its Asian relatives, but its North American popu- lations are scattered in distribution. Of the 13 living accessions in the Arboretum landscape, only one (accession 51-87) has known wild origins, collected in 1986 by Rob Nicholson in Tennessee during the Southeastern States Expedition. Thus, to broaden the species’ genetic diversity in cultivation in the Arbo- retum, we selected its westernmost range to source additional wild material. Cladrastis kentuckea occurs in scattered, disjunct popula- During the September 22 to 30, 2017 tions throughout the south-central United States. The large Arkansas-Missouri Expedition to the Ozarks expanse in the westernmost part of the species range served as the source of the 2017 collection. Modified from Little, E. L. Jr.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Tree of Life Marula Oil in Africa
    HerbalGram 79 • August – October 2008 HerbalGram 79 • August Herbs and Thyroid Disease • Rosehips for Osteoarthritis • Pelargonium for Bronchitis • Herbs of the Painted Desert The Journal of the American Botanical Council Number 79 | August – October 2008 Herbs and Thyroid Disease • Rosehips for Osteoarthritis • Pelargonium for Bronchitis • Herbs of the Painted Desert • Herbs of the Painted Bronchitis for Osteoarthritis Disease • Rosehips for • Pelargonium Thyroid Herbs and www.herbalgram.org www.herbalgram.org US/CAN $6.95 Tree of Life Marula Oil in Africa www.herbalgram.org Herb Pharm’s Botanical Education Garden PRESERVING THE FULL-SPECTRUM OF NATURE'S CHEMISTRY The Art & Science of Herbal Extraction At Herb Pharm we continue to revere and follow the centuries-old, time- proven wisdom of traditional herbal medicine, but we integrate that wisdom with the herbal sciences and technology of the 21st Century. We produce our herbal extracts in our new, FDA-audited, GMP- compliant herb processing facility which is located just two miles from our certified-organic herb farm. This assures prompt delivery of freshly-harvested herbs directly from the fields, or recently HPLC chromatograph showing dried herbs directly from the farm’s drying loft. Here we also biochemical consistency of 6 receive other organic and wildcrafted herbs from various parts of batches of St. John’s Wort extracts the USA and world. In producing our herbal extracts we use precision scientific instru- ments to analyze each herb’s many chemical compounds. However, You’ll find Herb Pharm we do not focus entirely on the herb’s so-called “active compound(s)” at fine natural products and, instead, treat each herb and its chemical compounds as an integrated whole.
    [Show full text]
  • Pittosporum Tobira – Mock Orange
    Pittosporum tobira – Mock Orange Common Name(s): Japanese pittosporum, Mock Orange, Pittosporum Cultivar(s): Variegata, Mojo, Cream de Mint Categories: Shrub Habit: Evergreen Height/Width: 8 to 12 feet tall and 4 to 8 feet wide; some dwarf varieties available Hardiness: Zones 7 to 10 Foliage: Alternate, simple, leathery, lustrous dark green leaves; 1.5 to 4 inches long Flower: 2 to 3 inch clusters of fragrant flowers in late spring Flower Color: creamy white Site/Sun: Sun to shade; Well-drained soil Form: Stiff branches; dense broad spreading mound Regions: Native to Japan and China; grows well in the Coastal Plains and Eastern Piedmont of North Carolina. Comments: Tough and durable plant that tolerates drought, heat, and salt spray. It can be severely pruned. However, heavy pruning may cause blooming to be reduced. The plant is frequently damaged by deer. Variegated pittosporum. Photo Karen Russ Pittosporum tobira growth habit. Photo Scott Zona Currituck Master Gardeners Plant of the Month – December 2017 When, Where, and How to Plant Pittosporums are very tolerant of a range of soil conditions, as long as the soil is well drained. Poor drainage or excessive moisture can lead to rapid death from root rot diseases. So, avoid planting in areas where water accumulates after rains. They grow well in both full sun and shade, and are very heat tolerant. Pittosporums can suffer from cold damage if they are grown in the upper Piedmont or Mountain regions of North Carolina. Growing Tips and Propagation This shrub is relatively low maintenance and can be pruned at any time during the year.
    [Show full text]
  • American Smoketree (Cotinus Obovatus Raf.)
    ACADBJIY OJl'· SCIBNCm FOR 1M2 11 o AMERICAN SMOKETREE (COTINUS OBOVATUS RAP.), ONE OF OKLAHOMA'S RAREST TREE SPECIES ELBERT L. LITTLE, IlL, Forest Senlee United States DepartmeDt of J.grlealture, Washington, D. C. Though the American Smoketree was discovered in Oklahoma by Thomu Nuttall in 1819, only one more collection of this rare tree species within the state has been reported. This article summarizes these records, add8 a third Oklahoma locality, and calle attention to the older lClenttf1c name, Cotfftu ob0'V4tu Ral, which 8hould replace the one In ue, Coth," (lm.en. eo".. Hutt. II PROCDDINGS OJ' THE OKLAHOMA Nattall (1821), the flnt botaDl8t to mit what 11 now Okahoma, men­ tlODed In hie journal for July 18, 1819, the dl8covery, to his great 81U'Prlse, of thla new, Jarp Ihrub, aearcely dlltlnet from BA.. cot'"'' of Europe. He deIcrlbed the location as on l1mestone clUb of the Grand (or Neosho) RITer near a bend called the Eagle'e Neat more tban thirty miles north of the confluence of the Grand and Arkanlla8 River.. The place probably ..... alODC the 8&lt bank of the river In eoutheastern Mayes County, at the weetern edge of the Ozark Plateau in northeastern Oklahoma. It 11 hoped that Oklahoma botaDleti w1ll revisit the type locality and a1eo die. COTer other etatloD•. Thll Dew species was Dot mentioned In Nuttall'. (1837) unfinished publication on his collections of the flora of Arkansas Territory. Torrey aD4 Gray (1888) IDcluded Nuttall's frultfng specimens doubtfully under the related European species, then known as Rhu coUnu L., with Nuttall's upubllehed herbariUM Dame, Bh., coUnoUles Nutt., as a synonym.
    [Show full text]
  • Auranticarpa Rhombifolia (A.Cunn
    Australian Tropical Rainforest Plants - Online edition Auranticarpa rhombifolia (A.Cunn. ex Hook.) L.Cayzer, Crisp & I.Telford Family: Pittosporaceae Cayzer, L.W., Crisp, M.D. & Telford, I.R.H. (2000) Aust. Syst. Bot. 13(6): 907-909. Common name: Diamond leaf Laurel; Hollywood; Queensland Pittosporum; White Holly Stem Tree up to 25 metres. Bark pale grey, fissured, more or less corky. Leaves Alternate, commonly clustered in pseudo-whorls behind terminal bud, without stipules; petioles short, Flowers. CC-BY: APII, ANBG. 5-15 mm. Blades obovate to elliptic, coarsely toothed in distal half or entire, glabrous, 5-12 cm long, 3-5 cm wide; pinnately veined with 11-15 pairs of secondary veins each side of midvein; secondary veins distinct to raised on both surfaces; apex acuminate, blunt; base markedly attenuate. Flowers In axillary corymbs or panicles; strongly fragrant; sepals 5, free, cream to white, 1-2 mm long; petals 5, free, much longer than sepals, white to cream, 5-6 mm long; stamens 5, free; anthers 2-3 mm long, dorsifixed on filaments that taper from a broad base; gynoecium superior and borne on a prominent gynophore; locules 2 (3). Fruit. CC-BY: APII, ANBG. Fruit An obovoid, yellow-orange capsule, opening to release one or more black seeds that are not embedded in a sticky matrix; locules 2 (or 3); placentation axile. Seedlings Seed germination time ca. 84 days. Cotyledons ovate or lanceolate, about 15-22 x 4-8 mm. First pair of leaves alternate, rhomboid or obovate, lobed or coarsely toothed towards the apex. Tenth leaf stage not available but probably: leaf blade margin toothed.
    [Show full text]
  • University of Michigan University Library
    CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN VOL.XX, NO. 5, pp. 89-119 (6 pls., 1 fig.) MAY10, 1966 ADDITIONS TO AND REVISION OF THE OLIGOCENE RUBY PAPER SHALE FLORA OF SOUTHWESTERN MONTANA BY HERMAN I?. BECKER Published with aid from the Paleontology Accessions Fund through the generosity of MR. AND MRS.EDWARD PULTENEY WRIGHT MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Director: LEWIS B. KELLUM The series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collection in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan. VOLS.11-XIX. Parts of volumes may be obtained if available 1. Upper Devonian and Lower Mississipian Pectinoid Pelecypods from Michi- gan, Ohio, Indiana, Iowa, and Missouri, by Thomas W. Hutchinson and Erwin C. Stumm. Pages 1-48, with 7 plates. 2. Two New Middle Devonian Species of the Starfish Devonaster from South- western Ontario, by Robert V. Kesling and Jean D. Wright. Pages 49-61, with 4 plates. 3. A Revision of the Ordovician Trilobite Asaphus platycephalus Stokes, by David G. Darby and Erwin C. Stumm. Pages 63-73, with 2 plates. 4. Proctotkylacocrinus esseri, a New Crinoid from the Middle Devonian Silica Formation of Northwestern Ohio, by Robert V.
    [Show full text]
  • Introduction: the Tiliaceae and Genustilia
    Cambridge University Press 978-0-521-84054-5 — Lime-trees and Basswoods Donald Pigott Excerpt More Information Introduction: the 1 Tiliaceae and genus Tilia Tilia is the type genus of the family name Tiliaceae Juss. (1789), The ovary is syncarpous with five or more carpels but only and T. × europaea L.thetypeofthegenericname(Jarviset al. one style and a stigma with a lobe above each carpel. In Tili- 1993). Members of Tiliaceae have many morphological char- aceae, the ovules are anatropous. In Malvaceae, filaments of acters in common with those of Malvaceae Juss. (1789) and the stamens are fused into a tube but have separate apices that both families were placed in the order Malvales by Engler each bear a unilocular anther. Staminodes are absent. Each of (1912). In Engler’s treatment, Tiliaceae consisted mainly of five or more carpels supports a separate style, which together trees and shrubs belonging to several genera, including a pass through the staminal tube so that the stigmas are exposed few herbaceous genera, almost all occurring in the warmer above the anthers. The ovules may be either anatropous or regions. campylotropous. This treatment was revised by Engler and Diels (1936). The Molecular studies comprising sequence analysis of DNA of family was retained by Cronquist (1981) and consisted of about two plastid genes (Bayer et al. 1999) show that, in general, the 50 genera and 700 species distributed in the tropics and warmer inclusion of most genera, including Tilia, traditionally placed parts of the temperate zones in Asia, Africa, southern Europe in Malvales is correct. There is, however, clear evidence that and America.
    [Show full text]
  • First Record of Citheronia Regalis (Lepidoptera: Saturniidae) Feeding on Cotinus Obovatus (Anacardiaceae) Author(S): Gary R
    First Record of Citheronia regalis (Lepidoptera: Saturniidae) Feeding on Cotinus obovatus (Anacardiaceae) Author(s): Gary R. Graves Source: Florida Entomologist, 100(2):474-475. Published By: Florida Entomological Society https://doi.org/10.1653/024.100.0210 URL: http://www.bioone.org/doi/full/10.1653/024.100.0210 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Scientific Notes First record of Citheronia regalis (Lepidoptera: Saturniidae) feeding on Cotinus obovatus (Anacardiaceae) Gary R. Graves1,2,* The regal moth (Citheronia regalis F.; Lepidoptera: Saturniidae) 2016) shows historic and recent records of C. regalis for only 11 of was historically distributed in eastern North America from southern the 34 counties in which natural populations of smoketree have been New England and southern Michigan, south to southern Florida, and documented (Davis & Graves 2016). west to eastern Nebraska and eastern Texas (Tuskes et al.
    [Show full text]