Use of Exenatide and Liraglutide in Denmark: a Drug Utilization Study

Total Page:16

File Type:pdf, Size:1020Kb

Use of Exenatide and Liraglutide in Denmark: a Drug Utilization Study Eur J Clin Pharmacol DOI 10.1007/s00228-013-1595-4 PHARMACOEPIDEMIOLOGY AND PRESCRIPTION Use of exenatide and liraglutide in Denmark: a drug utilization study Anton Pottegård & Bine Kjøller Bjerregaard & Michael Due Larsen & Kasper Søltoft Larsen & Jesper Hallas & Filip K. Knop & Søren Ilsøe Moreno Received: 10 June 2013 /Accepted: 23 September 2013 # Springer-Verlag Berlin Heidelberg 2013 Abstract was most often performed by a hospital physician and was not Purpose The purpose of this study was to characterise the associated with any changes in concomitant treatment with utilization of the glucagon-like peptide-1 (GLP-1) analogues antihypertensives, cholesterol-lowering drugs or exenatide and liraglutide in Denmark. anticoagulants. Of liraglutide and exenatide users, 38 % and Methods From the Danish National Prescription Registry, we 43 % also used insulin. Low kidney function (eGFR<30 ml/ extracted all prescriptions for either liraglutide or exenatide min) was found in 10.1 % and 9.0 % of users of liraglutide and twice-daily in the period 1 April 2007 to 31 December 2012. exenatide respectively. Using descriptive statistics, we calculated incidence rates, Conclusions The preferred GLP-1 analogue in Denmark is prevalence proportions, daily consumption, and concomitant liraglutide. Certain aspects of the utilization of GLP-1 drug use. For a subset of users we included data from other analogues, such as large regional differences and concomitant registries and characterised the baseline characteristics of use of GLP-1 analogues and insulin, warrant further incident users of GLP-1 analogues. investigation. Results We identified 21,561 and 2,354 users of liraglutide and exenatide respectively. From market entry in 2009 Keywords GLP-1 . Diabetes mellitus . Denmark . liraglutide showed an increasing prevalence reaching 2.4 per Prescribing . Drug utilization thousand inhabitants in 2012. Exenatide ranged between 0.01 and 0.25 per thousand inhabitants from 2007 to 2012. Treatment intensity showed geographical variation ranging Introduction from 1.84per thousand inhabitants to 3.22 per thousand inhabitants for liraglutide. Average doses were 1.34 mg/day More than 200,000 Danes are estimated to suffer from type 2 (liraglutide) and 16.4 μg/day (exenatide). Treatment initiation diabetes [1–3]. The disease and related complications such as ischaemic heart disease, peripheral neuropathy and related A. Pottegård (*) : M. D. Larsen : K. S. Larsen : J. Hallas micro- and macrovascular complications constitute a Institute of Public Health, Clinical Pharmacology, University of worldwide increasing threat to public health and a massive Southern Denmark, JB Winsløwsvej 19, 2, 5000 Odense C, Denmark economic burden to society [1, 4]. Metformin in combination e-mail: [email protected] with lifestyle changes is the first drug of choice to achieve B. K. Bjerregaard glycaemic control [5, 6]. This is based on evidence of Data Deliveries and Medicinal Products Statistics, Sector for clinically relevant effects on glucose levels, micro- and National Health Surveillance and Research, Statens Serum Institut, macrovascular outcome measures, and mortality [7–10]. 2300 København S, Denmark However, sufficient glycaemic control is often not maintained F. K. Knop using metformin combined with lifestyle changes alone, and Diabetes Research Division, Department of Medicine, additional antidiabetic drugs are needed to achieve glycaemic Gentofte Hospital, 2900 Hellerup, Denmark goals. Current treatment guidelines suggest the use of dipeptidyl peptidase 4 (DPP-4) inhibitors, sulphonylureas, S. I. Moreno Institute for Rational Pharmacotherapy, Danish Health and thiazolidinediones, basal insulins or glucagon-like peptide 1 Medicines Authority, 2300 København S, Denmark (GLP-1) analogues as second-line add-on treatment. Of these, Eur J Clin Pharmacol GLP-1 analogues have gained increased interest owing to Exenatide twice-daily and once-weekly were marketed in glucose-lowering properties comparable to sulphonylureas Denmark in April 2007 and October 2011 respectively, and and superior to DPP-4 inhibitors and thiazolidinedione as liraglutide in July 2009. We thus obtained data regarding these add-ons to metformin, a low risk of hypoglycaemia, and their drugs from 1 April 2007 to 31 December 2012. body weight-reducing effect [11–14]. GLP-1 analogues stimulate insulin secretion and inhibit glucagon secretion in Databases a glucose-dependent manner [15]. Furthermore, GLP-1 analogues reduce gastric emptying, appetite and food intake, The Danish National Prescription Registry (DNPR) [19] and, consequently, give rise to weight loss [15]. Thus, GLP-1 contains data on all prescription drugs redeemed by Danish analogues are considered particularly relevant when weight citizens (population 5.5 million) since 1995. Prescription data reduction is central to treatment. Thereby, GLP-1 analogues include the type of drug, date of dispensing, and quantity. can be considered in a substantial proportion of overweight Dosing information and indication for each prescription are patients with insufficient glycaemic control on metformin available in the DNPR, but data are incomplete and are treatment [16]. therefore not used in the present study. Drugs are categorized At present, three GLP-1 analogues are available: exenatide according to the Anatomic Therapeutic Chemical (ATC) in a formulation administered twice-daily (Byetta™), classification; a hierarchical classification system developed liraglutide (Victoza™) administered once-daily, exenatide in by the World Health Organisation (WHO) for the purposes of a formulation designed for once-weekly administration drug use statistics [20], and the quantity dispensed for each (Bydureon™), and the most recent lixisenatide (Lyxumia™), prescription is expressed by the defined daily dose (DDD) administered once-daily. They were introduced in Europe in measure, also developed by the WHO [20]. 2007, 2009, 2011 and 2013 respectively. As current treatment Odense University Pharmacoepidemiological Database guidelines recommend the use of these drugs in different (OPED) is a regional prescription database covering Funen dosages and in a variety of combinations with other County (population 480,000) since 1990, extended to the antidiabetic drugs, while also advocating individualised, region of Southern Denmark (1.2 million) in 2007 [21]. The patient-centred treatment regimens, there is a strong need to structure of the database is roughly similar to that of the have post-marketing knowledge of the use patterns, actual national database. However, contrary to the national database, concordance with treatment guidelines and characteristics of prescription drugs that are not reimbursed (i.e. oral the GLP-1 analogue drug users. Unfortunately, data on the contraceptives, hypnotics, sedatives, dieting products and utilization of GLP-1 analogues in Denmark are sparse. The certain antibiotics) are not covered. nationwide prescription registry available in Denmark offers a Funen County Patient Administrative System (FPAS) unique tool for pharmacoepidemiological research [17, 18]. holds data on all hospital contacts and discharge diagnoses Accordingly, the aim of the present study was to characterise for the population of Funen since 1977 for inpatients and since the utilization of GLP-1 analogues in Denmark from a 1989 for outpatients. The diagnoses have been encoded national perspective, using population-based pharmacy according to the International Classification of Diseases 10th dispensing data. We also compared the characteristics of revision (ICD-10) since January 1994. actual GLP-1 analogue users with characteristics of patients The laboratory database of Odense University Hospital enrolled in the core clinical trials of GLP-1 analogues. (NetLab) is a clinical laboratory system, which holds information on all blood samples analysed at various hospital laboratories in the Funen area since November 1999. The Material and methods coverage includes both primary and secondary health providers as well as inpatients and outpatients. In this study, we described the use of the GLP-1 analogues Linkage was performed using a unique personal identifier, liraglutide and exenatide (twice-daily) in Denmark, using the Danish Central Person Registry Code, which is assigned to descriptive statistics. The analysis was divided into five all Danish citizens since 1968 [22]. questions, four of which were answered using national data and one was answered using data from the geographical Study drugs region of Southern Denmark. Data were extracted from the Danish National Prescription We included all prescriptions for exenatide twice-daily and Registry. For the comparison of real-life users and trial liraglutide. Exenatide twice-daily has the ATC code enrolees, we also extracted data from the following regional A10BX04 and a DDD of 15 μg. Liraglutide has the ATC databases: The Odense University Pharmacoepidemiological code A10BX07 and a DDD of 1.2 mg. Database, the Funen County Patient Administrative System We excluded prescriptions for exenatide in its once-weekly and the laboratory database of Odense University Hospital. formulation, as it was introduced late in the study period and Eur J Clin Pharmacol was rarely used (234 unique subjects within the study Which drugs relevant to the treatment of type 2 diabetes period). Lixisenatide was not included at it was marketed are used by users of GLP-1 analogues? in Denmark after the study period had ended (15 April 2013). To
Recommended publications
  • Rosiglitazone-Associated Fractures in Type 2 Diabetes an Analysis from a Diabetes Outcome Progression Trial (ADOPT)
    Clinical Care/Education/Nutrition/Psychosocial Research ORIGINAL ARTICLE Rosiglitazone-Associated Fractures in Type 2 Diabetes An analysis from A Diabetes Outcome Progression Trial (ADOPT) 1 7 STEVEN E. KAHN, MB, CHB DAHONG YU, PHD preclinical data and better understand the 2 7 BERNARD ZINMAN, MD MARK A. HEISE, PHD clinical implications of and possible interven- 3 7 JOHN M. LACHIN, SCD R. PAUL AFTRING, MD, PHD tions for these findings. 4 8 STEVEN M. HAFFNER, MD GIANCARLO VIBERTI, MD 5 WILLIAM H. HERMAN, MD FOR THE ADIABETES OUTCOME Diabetes Care 31:845–851, 2008 6 RURY R. HOLMAN, MD PROGRESSION TRIAL (ADOPT) STUDY 7 BARBARA G. KRAVITZ, MS GROUP* ype 2 diabetes is associated with an increased risk of fractures, with the risk increasing with longer duration OBJECTIVE — The purpose of this study was to examine possible factors associated with the T increased risk of fractures observed with rosiglitazone in A Diabetes Outcome Progression Trial of disease (1,2). These fractures affect pre- (ADOPT). dominantly the hip, arm, and foot (1–5) and occur despite the fact that bone min- RESEARCH DESIGN AND METHODS — Data from the 1,840 women and 2,511 men eral density is either normal or even in- randomly assigned in ADOPT to rosiglitazone, metformin, or glyburide for a median of 4.0 years creased in patients with type 2 diabetes were examined with respect to time to first fracture, rates of occurrence, and sites of fractures. compared with those who are not hyper- glycemic (5–7). Although the reason for RESULTS — In men, fracture rates did not differ between treatment groups.
    [Show full text]
  • Effect of Glucose/Sulfonylurea Interaction on Release of Insulin
    Proc. Nati. Acad. Sci. USA Vol. 76, No. 11, pp. 5901-5904, November 1979 Medical Sciences Effect of glucose/sulfonylurea interaction on release of insulin, glucagon, and somatostatin from isolated perfused rat pancreas (glibenclamide) SUAD EFENDIt*, FRANZ ENZMANNf, ANITA NYLtN*, KERSTIN UVNAS-WALLENSTENt, AND ROLF LUFT* *Department of Endocrinology, Karolinska Hospital, 104 01 Stockholm; tDepartment of Pharmacology, Karolinska Institute, 104 01 Stockholm, Sweden; and tHoechst Aktiengesellschaft, Medizinische Abteilung, Frankfurt, West Germany Contributed by Rolf Luft, July 27, 1979 ABSTRACT The effect of a sulfonylurea, glibenclamide, method and separated on CM-cellulose column. The antibodies on the release of insulin, glucagon, and somatostatin was studied produced in our laboratory were used at a final dilution of 1: in the isolated perfused rat pancreas. At concentrations glucose 56,000. Crossreactivity of the antibody was less than 0.01% with of 1.1 mM or less, the drug stimulated somatostatin release, whereas glucagon release, after 2-3 min of increase, was insulin, glucagon, substance P, luliberin, vasopressin, and ox- markedly inhibited. Insulin release was moderately stimulated, ytocin. The antigenic specificity of the antibodies was deter- and maximal release occurred relatively late. A moderate glu- mined by using somatostatin analogues (11). Phosphate buffer cose load (6.7 mM) inhibited glibenclamide-induced release of (0.04 M, pH 7.4) containing 1% bovine serum albumin was used somatostatin, whereas the two in combination exerted an ad- as the diluent for all components in this radioimmunoassay. ditive action on insulin release. Greater glucose loads, which by themselves would stimulate somatostatin release, only Incubations were for 48 hr at 4°C.
    [Show full text]
  • Diabetes Mellitus: Patterns of Pharmaceutical Use in Manitoba
    Diabetes Mellitus: Patterns of Pharmaceutical Use in Manitoba by Kim¡ T. G. Guilbert A Thesis submitted to The Faculty of Graduate Studies in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Faculty of Pharmacy The University of Manitoba Winnipeg, Manitoba @ Kimi T.G. Guilbert, March 2005 TIIE UMYERSITY OF MANITOBA F'ACULTY OF GRADUATE STTJDIES +g+ù+ COPYRIGIIT PERMISSION PAGE Diabetes Mellitus: Patterns of Pharmaceutical Use in Manitoba BY Kimi T.G. Guilbert A ThesisÆracticum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE KIMI T.G. GTIILBERT O2()O5 Permission has been granted to the Library of The University of Manitoba to lend or sell copies of this thesis/practicum, to the National Library of Canada to microfïlm this thesis and to lend or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this thesis/practicum. The author reserves other publication rights, and neither this thesis/practicum nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission. Acknowledgements Upon initiation of this project I had a clear objective in mind--to learn more. As with many endeavors in life that are worthwhile, the path I have followed has brought me many places I did not anticipate at the beginning of my journey. ln reaching the end, it is without a doubt that I did learn more, and the knowledge I have been able to take with me includes a wider spectrum than the topic of population health and medication utilization.
    [Show full text]
  • Identification of a Novel Selective Agonist of Pparc with No Promotion
    OPEN Identification of a novel selective agonist c SUBJECT AREAS: of PPAR with no promotion of DRUG DISCOVERY ENDOCRINE SYSTEM AND adipogenesis and less inhibition of METABOLIC DISEASES osteoblastogenesis Received 28 October 2014 Chang Liu, Tingting Feng, Ningyu Zhu, Peng Liu, Xiaowan Han, Minghua Chen, Xiao Wang, Ni Li, Yongzhen Li, Yanni Xu & Shuyi Si Accepted 5 March 2015 Published Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China. 1 April 2015 Nuclear receptor peroxisome proliferator-activated receptor c (PPARc) plays an important role in the regulation of glucose homeostasis and lipid metabolism. However, current PPARc-targeting drugs such as Correspondence and thiazolidinediones (TZDs) are associated with undesirable side effects. We identified a small molecular requests for materials compound, F12016, as a selective PPARc agonist by virtual screening, which showed moderate PPARc should be addressed to agonistic activity and binding ability for PPARc. F12016 did not activate other PPAR subtypes at 30 mM and S.S. (sisyimb@hotmail. selectively modulated PPARc target gene expression. In diabetic KKAy mice, F12016 had insulin-sensitizing com) or Y.X. and glucose-lowering properties, and suppressed weight gain. In vitro, F12016 effectively increased glucose c (xuyanniwendeng@ uptake and blocked cyclin-dependent kinase 5-mediated phosphorylation of PPAR at Ser273, but slightly triggered adipogenesis and less inhibited osteoblastogenesis than rosiglitazone. Moreover, compared with hotmail.com) the full agonist rosiglitazone, F12016 had a distinct group of coregulators and a different predicted binding mode for the PPARc ligand-binding domain. A site mutation assay confirmed the key epitopes, especially Tyr473 in AF-2.
    [Show full text]
  • Journal of Diabetes and Obesity
    Journal of Diabetes and Obesity Research Article Open Access The Different Association between Metformin and Sulfony- lurea Derivatives and the Risk of Cancer May be Confounded by Body Mass Index Catherine E. de Keyser1,2, Loes E. Visser1, Albert Hofman1, Bruno H. Stricker1,2*, Rikje Ruiter1# 1 Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands 2 The Health Care Inspectorate, The Hague, the Netherlands *Corresponding author: Bruno H. Stricker, Department of Epidemiology, Erasmus MC, P.O. Box 2040, 3000CA Rotterdam, the Netherlands, Tel: +31-10-7044958; Fax: +31-10-7044657; E-mail: [email protected] #Submitting author: Rikje Ruiter, Department of Epidemiology, Erasmus MC, P.O. Box 2040, 3000CA Rotterdam, the Nether- lands, Tel: +31-10-7044958; Fax: +31-10-7044657; E-mail: [email protected] Abstract Received date: July 09, 2016 Aim: Several studies in large databases suggest that in comparison to glucose-low- Accepted date: : September 05, 2016 ering sulfonylurea derivatives, metformin is associated with a reduced risk of cancer Publication date: September 12, 2016 in patients with diabetes. As many databases miss relevant confounder data, our objective was to investigate whether the determinants age, body mass index (BMI), alcohol consumption, and renal function were associated with dispensing of either Citation: Stricker, B.H., et al. The Dif- metformin or sulfonylurea derivatives as first drug therapy for type 2 diabetes mel- ferent Association between Metformin and litus while taking into account calendar time. Sulfonylurea Derivatives and the Risk of Methods: We identified 639 incident metformin users and 934 incident sulfonylurea Cancer May be Confounded by Body Mass derivatives users in the Rotterdam Study, a prospective population-based cohort Index.
    [Show full text]
  • Marked Improvement in Glycemic Control with Exenatide on Addition
    Journal of Diabetes Mellitus, 2018, 8, 152-159 http://www.scirp.org/journal/jdm ISSN Online: 2160-5858 ISSN Print: 2160-5831 Marked Improvement in Glycemic Control with Exenatide on Addition to Metformin, Sulfonylurea and Insulin Glargine in Type 2 Diabetes Mellitus, a Real World Experience Salina Esmail1, Sonal Banzal2, Udaya M. Kabadi2,3* 1University of Iowa, Iowa City, IA, USA 2MGM College of Medicine, Indore, India 3Broadlawns Medical Center, Des Moines, IA, USA How to cite this paper: Esmail, S., Banzal, S. Abstract and Kabadi, U.M. (2018) Marked Improve- ment in Glycemic Control with Exenatide on Background: The major effect of Exenatide is attributed to lowering of Addition to Metformin, Sulfonylurea and post-prandial glycemia, whereas insulin glargine mainly improves fasting Insulin Glargine in Type 2 Diabetes Mellitus, glycemia [FPG]. Objective: Therefore, we assessed effect of Exenatide a Real World Experience. Journal of Diabetes Mellitus, 8, 152-159. administration at 6 months and for at 1 year on glycemic control, lipids, body https://doi.org/10.4236/jdm.2018.84015 weight [BW], daily insulin dose and hypoglycemic events. Methods: Records of 164 subjects, 126 men and 38 women administered Exenatide between Received: August 27, 2018 January 2011 and December 2013 are included in this report. Exenatide was Accepted: November 12, 2018 Published: November 15, 2018 initiated at 5 mcg subcutaneously twice daily [BID] in obese subjects, BMI > 30 kg/m2, with C-peptide > 1 ng/d, and HbA1c 7.5% - 9.5%, while receiving Copyright © 2018 by authors and daily metformin 2000 mg, Sulfonylurea Glimepiride 8 mg and insulin Glar- Scientific Research Publishing Inc.
    [Show full text]
  • Diabetes in the Elderly: Matching Meds to Needs
    Barbara Keber, MD; Jennifer Fiebert, PharmD Hofstra Northwell School of Diabetes in the elderly: Medicine, Northwell Health, Glen Cove, NY Matching meds to needs [email protected] The authors reported no Elderly patients, whose insulin resistance is complicated potential conflict of interest relevant to this article. by age-related loss of beta-cell function and concomitant diseases, require personalized Tx considerations. s members of the baby boomer generation (adults PRACTICE ≥65 years) age, the number of people at risk for dia- RECOMMENDATIONS betes increases. Already nearly one-quarter of people ❯ Allow higher A1C goals for A 1 over age 65 have type 2 diabetes (T2DM). With a proliferation elderly patients who have of new medications to treat diabetes, deciding which ones to such comorbid conditions use in older patients is becoming complex. as cognitive dysfunction, dementia, or cardiovascu- In this article we review the important issues to consider lar or renal disease. B when prescribing and monitoring diabetes medications in older adults. To provide optimal patient-centered care, it’s nec- ❯ Look to metformin first essary to assess comorbid conditions as well as the costs, risks, in most instances if there are no contraindications. and benefits of each medication. Determining appropriate Monitor renal function goals of therapy and selecting agents that minimize the risk of frequently and vitamin B12 hypoglycemia will help ensure safe and effective management levels periodically. B of older patients with diabetes. ❯ Consider glucagon-like peptide-1 receptor agonists for patients who also have What makes elderly patients unique established cardiovascular The pathophysiology of T2DM in the elderly is unique in that disease, or consider starting it involves not just insulin resistance but also age-related loss basal insulin instead of using of beta-cell function, leading to reduced insulin secretion and multiple oral agents.
    [Show full text]
  • Liraglutide for the Treatment of Diabetes Mellitus in Japan
    REVIEW Liraglutide for the treatment of diabetes mellitus in Japan Kohei Kaku† A once‑daily 0.9 mg dose of liraglutide administered to Japanese subjects with Type 2 diabetes mellitus provides a significant glycated reduction hemoglobin of 1.5% or more from the baseline with few Points hypoglycemic episodes. Stepwise dose titration by 0.3‑mg increments at intervals of 1 week significantly reduces the frequency of gastrointestinal symptoms. Practice When liraglutide is used in combination with sulfonylurea, dose reduction of sulfonylurea should be considered to avoid a risk of hypoglycemia. A once‑daily 0.9‑mg dose of liraglutide is not always sufficient to suppress bodyweight gain. The use of liraglutide in insulin‑dependent patients should be strictly avoided. The safety of liraglutide is not established in pregnant patients or in pediatric patients. SUMMARY Impaired b‑cell function in Type 2 diabetes mellitus (T2DM) is generally progressive. The commonly used sulfonylureas (SU) lose efficacy over time and are associated with impaired b‑cell function, and undesirable events such as weight gain and hypoglycemia. Thus, there is a strong need to develop antidiabetic agents that control glycemia without weight gain and hypoglycemia, and preserve b‑cell function. Glucagon‑like‑peptide‑1 (GLP‑1) is known to improve glycemic control by enhancement of glucose‑stimulated insulin secretion, preserving b‑cell function, and minimizing hypoglycemia and weight gain. Liraglutide, a human GLP‑1 analog, has recently been approved for use in Japanese patients with T2DM. To assess liraglutide in management of Japanese patients with T2DM, the results of clinical studies in Japan is summarized and also compared with the data from Europe and the USA.
    [Show full text]
  • AVANDIA (Rosiglitazone Maleate Tablets), for Oral Use Ischemic Cardiovascular (CV) Events Relative to Placebo, Not Confirmed in Initial U.S
    HIGHLIGHTS OF PRESCRIBING INFORMATION ----------------------- WARNINGS AND PRECAUTIONS ----------------------- These highlights do not include all the information needed to use • Fluid retention, which may exacerbate or lead to heart failure, may occur. AVANDIA safely and effectively. See full prescribing information for Combination use with insulin and use in congestive heart failure NYHA AVANDIA. Class I and II may increase risk of other cardiovascular effects. (5.1) • Meta-analysis of 52 mostly short-term trials suggested a potential risk of AVANDIA (rosiglitazone maleate tablets), for oral use ischemic cardiovascular (CV) events relative to placebo, not confirmed in Initial U.S. Approval: 1999 a long-term CV outcome trial versus metformin or sulfonylurea. (5.2) • Dose-related edema (5.3) and weight gain (5.4) may occur. WARNING: CONGESTIVE HEART FAILURE • Measure liver enzymes prior to initiation and periodically thereafter. Do See full prescribing information for complete boxed warning. not initiate therapy in patients with increased baseline liver enzyme levels ● Thiazolidinediones, including rosiglitazone, cause or exacerbate (ALT >2.5X upper limit of normal). Discontinue therapy if ALT levels congestive heart failure in some patients (5.1). After initiation of remain >3X the upper limit of normal or if jaundice is observed. (5.5) AVANDIA, and after dose increases, observe patients carefully for signs • Macular edema has been reported. (5.6) and symptoms of heart failure (including excessive, rapid weight gain; • Increased incidence of bone fracture was observed in long-term trials. dyspnea; and/or edema). If these signs and symptoms develop, the heart (5.7) failure should be managed according to current standards of care.
    [Show full text]
  • Sulfonylureas
    Therapeutic Class Overview Sulfonylureas INTRODUCTION In the United States (US), diabetes mellitus affects more than 30 million people and is the 7th leading cause of death (Centers for Disease Control and Prevention [CDC] 2018). Type 2 diabetes mellitus (T2DM) is the most common form of diabetes and is characterized by elevated fasting and postprandial glucose concentrations (American Diabetes Association [ADA] 2019[a]). It is a chronic illness that requires continuing medical care and ongoing patient self-management education and support to prevent acute complications and to reduce the risk of long-term complications (ADA 2019[b]). ○ Complications of T2DM include hypertension, heart disease, stroke, vision loss, nephropathy, and neuropathy (ADA 2019[a]). In addition to dietary and lifestyle management, T2DM can be treated with insulin, one or more oral medications, or a combination of both. Many patients with T2DM will require combination therapy (Garber et al 2019). Classes of oral medications for the management of blood glucose levels in patients with T2DM focus on increasing insulin secretion, increasing insulin responsiveness, or both, decreasing the rate of carbohydrate absorption, decreasing the rate of hepatic glucose production, decreasing the rate of glucagon secretion, and blocking glucose reabsorption by the kidney (Garber et al 2019). Pharmacologic options for T2DM include sulfonylureas (SFUs), biguanides, thiazolidinediones (TZDs), meglitinides, alpha-glucosidase inhibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like peptide-1 (GLP-1) analogs, amylinomimetics, sodium-glucose cotransporter 2 (SGLT2) inhibitors, combination products, and insulin (Garber et al 2019). SFUs are the oldest of the oral antidiabetic medications, and all agents are available generically. The SFUs can be divided into 2 categories: first-generation and second-generation.
    [Show full text]
  • AVANDIA® (Rosiglitazone Maleate) Tablets
    PRESCRIBING INFORMATION AVANDIA® (rosiglitazone maleate) Tablets WARNING: CONGESTIVE HEART FAILURE ● Thiazolidinediones, including rosiglitazone, cause or exacerbate congestive heart failure in some patients (see WARNINGS). After initiation of AVANDIA, and after dose increases, observe patients carefully for signs and symptoms of heart failure (including excessive, rapid weight gain, dyspnea, and/or edema). If these signs and symptoms develop, the heart failure should be managed according to current standards of care. Furthermore, discontinuation or dose reduction of AVANDIA must be considered. ● AVANDIA is not recommended in patients with symptomatic heart failure. Initiation of AVANDIA in patients with established NYHA Class III or IV heart failure is contraindicated. (See CONTRAINDICATIONS and WARNINGS.) DESCRIPTION AVANDIA (rosiglitazone maleate) is an oral antidiabetic agent which acts primarily by increasing insulin sensitivity. AVANDIA is used in the management of type 2 diabetes mellitus (also known as non-insulin-dependent diabetes mellitus [NIDDM] or adult-onset diabetes). AVANDIA improves glycemic control while reducing circulating insulin levels. Pharmacological studies in animal models indicate that rosiglitazone improves sensitivity to insulin in muscle and adipose tissue and inhibits hepatic gluconeogenesis. Rosiglitazone maleate is not chemically or functionally related to the sulfonylureas, the biguanides, or the alpha-glucosidase inhibitors. Chemically, rosiglitazone maleate is (±)-5-[[4-[2-(methyl-2- pyridinylamino)ethoxy]phenyl]methyl]-2,4-thiazolidinedione, (Z)-2-butenedioate (1:1) with a molecular weight of 473.52 (357.44 free base). The molecule has a single chiral center and is present as a racemate. Due to rapid interconversion, the enantiomers are functionally indistinguishable. The structural formula of rosiglitazone maleate is: The molecular formula is C18H19N3O3S•C4H4O4.
    [Show full text]
  • Utah Medicaid Pharmacy and Therapeutics Committee Drug
    Utah Medicaid Pharmacy and Therapeutics Committee Drug Class Review DPP-4 Inhibitor Products AHFS Classification: 68:20.05 Dipeptidyl Peptidase-4 Inhibitors Alogliptin (Nesina) Alogliptin and Metformin (Kazano) Alogliptin and Pioglitazone (Oseni) Linagliptin (Tradjenta) Linagliptin and Empagliflozin (Glyxambi) Linagliptin and Metformin (Jentadueto, Jentadueto XR) Saxagliptin (Onglyza) Saxagliptin and Dapagliflozin (Qtern) Saxagliptin and Metformin (Kombiglyze XR) Sitagliptin (Januvia) Sitagliptin and Metformin (Janumet, Janumet XR) Final Report November 2017 Review prepared by: Elena Martinez Alonso, B.Pharm., MSc MTSI, Medical Writer Valerie Gonzales, Pharm.D., Clinical Pharmacist Vicki Frydrych, Pharm.D., Clinical Pharmacist Joanita Lake, B.Pharm., MSc EBHC (Oxon), Assistant Professor University of Utah College of Pharmacy Michelle Fiander, MA, MLIS, Systematic Review/Evidence Synthesis Librarian Joanne LaFleur, Pharm.D., MSPH, Associate Professor University of Utah College of Pharmacy University of Utah College of Pharmacy, Drug Regimen Review Center Copyright © 2017 by University of Utah College of Pharmacy Salt Lake City, Utah. All rights reserved 1 Contents List of Abbreviations .................................................................................................................................... 3 Executive Summary ...................................................................................................................................... 4 Introduction ..................................................................................................................................................
    [Show full text]