Effect of Glucose/Sulfonylurea Interaction on Release of Insulin

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Glucose/Sulfonylurea Interaction on Release of Insulin Proc. Nati. Acad. Sci. USA Vol. 76, No. 11, pp. 5901-5904, November 1979 Medical Sciences Effect of glucose/sulfonylurea interaction on release of insulin, glucagon, and somatostatin from isolated perfused rat pancreas (glibenclamide) SUAD EFENDIt*, FRANZ ENZMANNf, ANITA NYLtN*, KERSTIN UVNAS-WALLENSTENt, AND ROLF LUFT* *Department of Endocrinology, Karolinska Hospital, 104 01 Stockholm; tDepartment of Pharmacology, Karolinska Institute, 104 01 Stockholm, Sweden; and tHoechst Aktiengesellschaft, Medizinische Abteilung, Frankfurt, West Germany Contributed by Rolf Luft, July 27, 1979 ABSTRACT The effect of a sulfonylurea, glibenclamide, method and separated on CM-cellulose column. The antibodies on the release of insulin, glucagon, and somatostatin was studied produced in our laboratory were used at a final dilution of 1: in the isolated perfused rat pancreas. At concentrations glucose 56,000. Crossreactivity of the antibody was less than 0.01% with of 1.1 mM or less, the drug stimulated somatostatin release, whereas glucagon release, after 2-3 min of increase, was insulin, glucagon, substance P, luliberin, vasopressin, and ox- markedly inhibited. Insulin release was moderately stimulated, ytocin. The antigenic specificity of the antibodies was deter- and maximal release occurred relatively late. A moderate glu- mined by using somatostatin analogues (11). Phosphate buffer cose load (6.7 mM) inhibited glibenclamide-induced release of (0.04 M, pH 7.4) containing 1% bovine serum albumin was used somatostatin, whereas the two in combination exerted an ad- as the diluent for all components in this radioimmunoassay. ditive action on insulin release. Greater glucose loads, which by themselves would stimulate somatostatin release, only Incubations were for 48 hr at 4°C. Separation of bound from marginally suppressed glibenclamide-induced somatostatin free tracer was on dextran-coated charcoal (12). Dilution of release. The insulinogenic effect of these glucose levels was not perfusates demonstrated binding parallel to that of the synthetic modified by glibenclamide. Glibenclamide may thus stimulate standard. The sensitivity of the assay was 5 pg/ml (13). both the alpha and beta as well as delta cells of the pancreas, depending on glucose concentration. We suggest a paracrine (local) interaction of somatostatin with the alpha and Cta cells, RESULTS which has an important role in the kinetics of insulin and glu- cagon release induced by sulfonylureas. Effect of Glucose Concentration on Responsiveness to Glibenclamide by Beta, Alpha, and Delta Cells of the Pan- Sulfonylurea compounds stimulate the release of insulin and creatic Islets. After isolation, each pancreas was equilibrated somatostatin from the pancreas (1-3). Their effect on insulin for 10 min with a medium containing 3.3 mM glucose and then release is dependent upon the prevailing glucose concentration perfused with either 0, 1.1, 3.3, or 4.4 mM glucose. Twenty (4, 5). There are contradictory reports regarding the effect of minutes after the start of these infusions, glibenclamide at 1 sulfonylureas on glucagon release: they have been considered ,ug/ml was added to the infusion medium (Fig. 1). Before the to either stimulate (6) or inhibit this function (2, 7, 8). addition of glibenclamide, the amount of insulin and soma- The present study demonstrates that the effect of one such tostatin in the perfusate increased with increasing glucose sulfonylurea, glibenclamide, on somatostatin and glucagon concentrations, whereas the amount of glucagon decreased (Fig. release is glucose dependent as well and suggests a paracrine 1). action of somatostatin on the alpha and beta cells of the is- The insulin release by glibenclamide was considerably more lets. pronounced at glucose concentrations of 3.3 and 4.4 mM than MATERIAL AND METHODS 0-and 1.1 mM. In contrast, the release of somatostatin after glibenclamide addition was more pronounced at glucose con- The pancreas was removed from fasting (18 hr) Sprague- centrations of 0-3.3 mM than at 4.4 mM. Dawley rats (Cimex, Stockholm) and attached by the coeliac The elevated levels of glucagon appearing at glucose con- artery to an open-circuit perfusion system. The glands were centrations of 0 and 1.1 mM were markedly inhibited by gli- perfused with a Krebs-Ringer bicarbonate solution (5) con- taining 2% bovine serum albumin, to which the various con- centrations of were an glucose added. After initial equilibration Table 1. Effect of interaction of glibenclamide and glucose on period (20-40 min) with basal glucose concentration, gliben- release of insulin and somatostatin clamide (Daonil; final concentration, 1 Mug/ml) or glucose (to give 6.7-33.3 mM) was added. The perfusion system was op- Hormone Glucose Glibenclamide (1 Ag/ml) mM - erated at a flow rate of 2.5 ml/min. released* load, + Insulin was determined by a double-antibody radioimmu- Insulin, 3.3 0 2,955 ± 184 noassay (9), using an insulin reagent kit (Radiochemical Centre, itU min-' mlh' 6.7 1,260 + 147 4,887 + 380 Amersham). Glucagon was assayed by the charcoal separation 16.7 12,965 + 1129 10,532 i 1060 technique, using an antibody specific for pancreatic glucagon 33.3 20,649 i 2176 20,656 ± 2741 (10). Somatostatin was measured with a radioimmunoassay. Somatostatin, 3.3 -86 i 37 507 + 115 Tyr-somatostatin was labeled with 125I by the lactoperoxidase pg min-I ml-, 6.7 -31 + 37 108 i 42 16.7 97 + 62 308 + 57 The publication costs of this article were defrayed in part by page 33.3 142 i 72 390 i 102 charge payment. This article must therefore be hereby marked "ad- AU, microunit. vertisement" in accordance with 18 U. S. C. §1734 solely to indicate * Insulin and somatostatin responses are expressed as incremental this fact. areas from 0 to 20 min (see Fig. 2). Values are given as mean i SEM. 5901 Downloaded by guest on September 28, 2021 5902 Medical Sciences: Efendic et al. Proc. Natl. Acad. Sci. USA 76 (1979) 500 mM 1.1 mM 3.3 mM 4.4 mM C: 400- D 300 .: 200 c 100 .---0 8000' 7000' 6000- c E1 5000 C 4000 0 , 3000 2000 1000 I 0 I -i 40 c 30- .E CLcx - 20' 0 00E en1o10. -20-10 0 10 20 30-20-10 0 10 20 30-20-1 00 10 20 30-20-o 0 10o 20 30 Time, min FIG. 1. Effect of glibenclamide (1 ,gg/ml) (V////l) on the release of inrulin, glucagon, and somatostatin from the isolated rat pancreas perfused with 0 (n = 6), 1.1 (n = 8), 3.3 (n = 9), and 4.4 (n = 5) mM glucose (solid line). Hatched areas between the curves denote control experiments without glibenclamide. Values are given as mean i SEM. U, unit. benclamide. This latter effect become apparent 4-5 min after produced an additive effect on insulin release. The drug had the glibenclamide infusion was started. In addition, gliben- no effect on the insulin release stimulated by'16.7 and 33.3 mM clamide seemed to exert a stimulatory effect on glucagon re- glucose. lease during the first 2 min. The increase in somatostatin release by glibenclamide was Effect of Glibenclamide on Release of Insulin and So- markedly inhibited by 6.7 mM glucose (P < 0.005). The inhi- matostatin with Increasing Glucose Loads. In these experi- bition was less pronounced at 16.7 mM glucose (P > 0.05) and for 20 min with 3.3 mM almost absent at 33.3 mM glucose (P > 0.05) (Table 1). ments, the pancreas was equilibrated This complex interaction between glucose concentration, glucose and then stimulated with increasing amounts of glucose glibenclamide, and the release of insulin and somatostatin was in the absence or presence of glibenclamide (Fig. 2, Table 1). confirmed by another series of experiments (Fig. 3). Again, The lowest glucose load applied, 6.7 mM, clearly stimulated glibenclamide enhanced the insulmiogenic effect of 6.7 mM but insulin relepse. This was even more pronounced with 16.7 mM not of 16.7 mM glucose. Furthermore, 6.7 mM glucose itself had glucose, whereas infusion of 33.3 mM glucose was accompanied no effect on somatostatin release but markedly inhibited gli- by only a minor further increase. Somatostatin release was not benclamide-induced release of somatostatin. Conversely, 16.7 affected by 6.7 mM glucose whereas glucose at 16.7 and 33.3 mM glucose stimulated somatostatin release while somewhat mM was stimulatory. inhibiting the effect of glibenclamide on somatostatin re- Infusion of 1 gg of glibenclamide per ml with 6.7 mM glucose lease. Downloaded by guest on September 28, 2021 Medical Sciences: Efendic" et al. Proc. Natl. Acad. Sci. USA 76 (1979) 5903 2000 40- n = 4 II = 9 30' 1000- 20 101-3 3.3 3.3 3.3 a.- 200CI. 40 n = 8 30 looc 20 10 - 3.3 6.7 3.'3 6. 3.3 6.7 ._, m = 2000 Xl4C40 'U cC ln = 7 n = 8 3C 1000. 20 10 16.7 3.3 16.7 3.3 16.7 3.3 , 16.7 1 3.3 2000 401- n =8 n= 8 30 1000. 20 10l I I 3.3 33.3 3.3 33.3 3.3 L 33 33 -i 3.3 33.3, Glucose, mM -20-10 0 10 20-20-10 0 10 20 -20-10 0 10 20-20-10 0 10 20 Time, min FIG. 2. Effect of interaction of glibenclamide (1 tig/ml) C777Z=1) and increasing glucose loads (6.7, 16.7, and 33.3 mM) on insulin and so- matostatin release from the isolated perfused rat pancreas. Hormones were measured in 1-min samples. Values are given as mean + SEM. U, unit. DISCUSSION rapid increase in somatostatin release, implies that somatostatin may have mediated the inhibition of glucagon release.
Recommended publications
  • Journal of Diabetes and Obesity
    Journal of Diabetes and Obesity Research Article Open Access The Different Association between Metformin and Sulfony- lurea Derivatives and the Risk of Cancer May be Confounded by Body Mass Index Catherine E. de Keyser1,2, Loes E. Visser1, Albert Hofman1, Bruno H. Stricker1,2*, Rikje Ruiter1# 1 Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands 2 The Health Care Inspectorate, The Hague, the Netherlands *Corresponding author: Bruno H. Stricker, Department of Epidemiology, Erasmus MC, P.O. Box 2040, 3000CA Rotterdam, the Netherlands, Tel: +31-10-7044958; Fax: +31-10-7044657; E-mail: [email protected] #Submitting author: Rikje Ruiter, Department of Epidemiology, Erasmus MC, P.O. Box 2040, 3000CA Rotterdam, the Nether- lands, Tel: +31-10-7044958; Fax: +31-10-7044657; E-mail: [email protected] Abstract Received date: July 09, 2016 Aim: Several studies in large databases suggest that in comparison to glucose-low- Accepted date: : September 05, 2016 ering sulfonylurea derivatives, metformin is associated with a reduced risk of cancer Publication date: September 12, 2016 in patients with diabetes. As many databases miss relevant confounder data, our objective was to investigate whether the determinants age, body mass index (BMI), alcohol consumption, and renal function were associated with dispensing of either Citation: Stricker, B.H., et al. The Dif- metformin or sulfonylurea derivatives as first drug therapy for type 2 diabetes mel- ferent Association between Metformin and litus while taking into account calendar time. Sulfonylurea Derivatives and the Risk of Methods: We identified 639 incident metformin users and 934 incident sulfonylurea Cancer May be Confounded by Body Mass derivatives users in the Rotterdam Study, a prospective population-based cohort Index.
    [Show full text]
  • Marked Improvement in Glycemic Control with Exenatide on Addition
    Journal of Diabetes Mellitus, 2018, 8, 152-159 http://www.scirp.org/journal/jdm ISSN Online: 2160-5858 ISSN Print: 2160-5831 Marked Improvement in Glycemic Control with Exenatide on Addition to Metformin, Sulfonylurea and Insulin Glargine in Type 2 Diabetes Mellitus, a Real World Experience Salina Esmail1, Sonal Banzal2, Udaya M. Kabadi2,3* 1University of Iowa, Iowa City, IA, USA 2MGM College of Medicine, Indore, India 3Broadlawns Medical Center, Des Moines, IA, USA How to cite this paper: Esmail, S., Banzal, S. Abstract and Kabadi, U.M. (2018) Marked Improve- ment in Glycemic Control with Exenatide on Background: The major effect of Exenatide is attributed to lowering of Addition to Metformin, Sulfonylurea and post-prandial glycemia, whereas insulin glargine mainly improves fasting Insulin Glargine in Type 2 Diabetes Mellitus, glycemia [FPG]. Objective: Therefore, we assessed effect of Exenatide a Real World Experience. Journal of Diabetes Mellitus, 8, 152-159. administration at 6 months and for at 1 year on glycemic control, lipids, body https://doi.org/10.4236/jdm.2018.84015 weight [BW], daily insulin dose and hypoglycemic events. Methods: Records of 164 subjects, 126 men and 38 women administered Exenatide between Received: August 27, 2018 January 2011 and December 2013 are included in this report. Exenatide was Accepted: November 12, 2018 Published: November 15, 2018 initiated at 5 mcg subcutaneously twice daily [BID] in obese subjects, BMI > 30 kg/m2, with C-peptide > 1 ng/d, and HbA1c 7.5% - 9.5%, while receiving Copyright © 2018 by authors and daily metformin 2000 mg, Sulfonylurea Glimepiride 8 mg and insulin Glar- Scientific Research Publishing Inc.
    [Show full text]
  • Diabetes in the Elderly: Matching Meds to Needs
    Barbara Keber, MD; Jennifer Fiebert, PharmD Hofstra Northwell School of Diabetes in the elderly: Medicine, Northwell Health, Glen Cove, NY Matching meds to needs [email protected] The authors reported no Elderly patients, whose insulin resistance is complicated potential conflict of interest relevant to this article. by age-related loss of beta-cell function and concomitant diseases, require personalized Tx considerations. s members of the baby boomer generation (adults PRACTICE ≥65 years) age, the number of people at risk for dia- RECOMMENDATIONS betes increases. Already nearly one-quarter of people ❯ Allow higher A1C goals for A 1 over age 65 have type 2 diabetes (T2DM). With a proliferation elderly patients who have of new medications to treat diabetes, deciding which ones to such comorbid conditions use in older patients is becoming complex. as cognitive dysfunction, dementia, or cardiovascu- In this article we review the important issues to consider lar or renal disease. B when prescribing and monitoring diabetes medications in older adults. To provide optimal patient-centered care, it’s nec- ❯ Look to metformin first essary to assess comorbid conditions as well as the costs, risks, in most instances if there are no contraindications. and benefits of each medication. Determining appropriate Monitor renal function goals of therapy and selecting agents that minimize the risk of frequently and vitamin B12 hypoglycemia will help ensure safe and effective management levels periodically. B of older patients with diabetes. ❯ Consider glucagon-like peptide-1 receptor agonists for patients who also have What makes elderly patients unique established cardiovascular The pathophysiology of T2DM in the elderly is unique in that disease, or consider starting it involves not just insulin resistance but also age-related loss basal insulin instead of using of beta-cell function, leading to reduced insulin secretion and multiple oral agents.
    [Show full text]
  • Liraglutide for the Treatment of Diabetes Mellitus in Japan
    REVIEW Liraglutide for the treatment of diabetes mellitus in Japan Kohei Kaku† A once‑daily 0.9 mg dose of liraglutide administered to Japanese subjects with Type 2 diabetes mellitus provides a significant glycated reduction hemoglobin of 1.5% or more from the baseline with few Points hypoglycemic episodes. Stepwise dose titration by 0.3‑mg increments at intervals of 1 week significantly reduces the frequency of gastrointestinal symptoms. Practice When liraglutide is used in combination with sulfonylurea, dose reduction of sulfonylurea should be considered to avoid a risk of hypoglycemia. A once‑daily 0.9‑mg dose of liraglutide is not always sufficient to suppress bodyweight gain. The use of liraglutide in insulin‑dependent patients should be strictly avoided. The safety of liraglutide is not established in pregnant patients or in pediatric patients. SUMMARY Impaired b‑cell function in Type 2 diabetes mellitus (T2DM) is generally progressive. The commonly used sulfonylureas (SU) lose efficacy over time and are associated with impaired b‑cell function, and undesirable events such as weight gain and hypoglycemia. Thus, there is a strong need to develop antidiabetic agents that control glycemia without weight gain and hypoglycemia, and preserve b‑cell function. Glucagon‑like‑peptide‑1 (GLP‑1) is known to improve glycemic control by enhancement of glucose‑stimulated insulin secretion, preserving b‑cell function, and minimizing hypoglycemia and weight gain. Liraglutide, a human GLP‑1 analog, has recently been approved for use in Japanese patients with T2DM. To assess liraglutide in management of Japanese patients with T2DM, the results of clinical studies in Japan is summarized and also compared with the data from Europe and the USA.
    [Show full text]
  • Sulfonylureas
    Therapeutic Class Overview Sulfonylureas INTRODUCTION In the United States (US), diabetes mellitus affects more than 30 million people and is the 7th leading cause of death (Centers for Disease Control and Prevention [CDC] 2018). Type 2 diabetes mellitus (T2DM) is the most common form of diabetes and is characterized by elevated fasting and postprandial glucose concentrations (American Diabetes Association [ADA] 2019[a]). It is a chronic illness that requires continuing medical care and ongoing patient self-management education and support to prevent acute complications and to reduce the risk of long-term complications (ADA 2019[b]). ○ Complications of T2DM include hypertension, heart disease, stroke, vision loss, nephropathy, and neuropathy (ADA 2019[a]). In addition to dietary and lifestyle management, T2DM can be treated with insulin, one or more oral medications, or a combination of both. Many patients with T2DM will require combination therapy (Garber et al 2019). Classes of oral medications for the management of blood glucose levels in patients with T2DM focus on increasing insulin secretion, increasing insulin responsiveness, or both, decreasing the rate of carbohydrate absorption, decreasing the rate of hepatic glucose production, decreasing the rate of glucagon secretion, and blocking glucose reabsorption by the kidney (Garber et al 2019). Pharmacologic options for T2DM include sulfonylureas (SFUs), biguanides, thiazolidinediones (TZDs), meglitinides, alpha-glucosidase inhibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like peptide-1 (GLP-1) analogs, amylinomimetics, sodium-glucose cotransporter 2 (SGLT2) inhibitors, combination products, and insulin (Garber et al 2019). SFUs are the oldest of the oral antidiabetic medications, and all agents are available generically. The SFUs can be divided into 2 categories: first-generation and second-generation.
    [Show full text]
  • Utah Medicaid Pharmacy and Therapeutics Committee Drug
    Utah Medicaid Pharmacy and Therapeutics Committee Drug Class Review DPP-4 Inhibitor Products AHFS Classification: 68:20.05 Dipeptidyl Peptidase-4 Inhibitors Alogliptin (Nesina) Alogliptin and Metformin (Kazano) Alogliptin and Pioglitazone (Oseni) Linagliptin (Tradjenta) Linagliptin and Empagliflozin (Glyxambi) Linagliptin and Metformin (Jentadueto, Jentadueto XR) Saxagliptin (Onglyza) Saxagliptin and Dapagliflozin (Qtern) Saxagliptin and Metformin (Kombiglyze XR) Sitagliptin (Januvia) Sitagliptin and Metformin (Janumet, Janumet XR) Final Report November 2017 Review prepared by: Elena Martinez Alonso, B.Pharm., MSc MTSI, Medical Writer Valerie Gonzales, Pharm.D., Clinical Pharmacist Vicki Frydrych, Pharm.D., Clinical Pharmacist Joanita Lake, B.Pharm., MSc EBHC (Oxon), Assistant Professor University of Utah College of Pharmacy Michelle Fiander, MA, MLIS, Systematic Review/Evidence Synthesis Librarian Joanne LaFleur, Pharm.D., MSPH, Associate Professor University of Utah College of Pharmacy University of Utah College of Pharmacy, Drug Regimen Review Center Copyright © 2017 by University of Utah College of Pharmacy Salt Lake City, Utah. All rights reserved 1 Contents List of Abbreviations .................................................................................................................................... 3 Executive Summary ...................................................................................................................................... 4 Introduction ..................................................................................................................................................
    [Show full text]
  • (Glyburide) Tablets USP 1.25, 2.5 and 5 Mg DESCRIPTION Diaßeta
    Diaßeta® (glyburide) Tablets USP 1.25, 2.5 and 5 mg DESCRIPTION Diaßeta® (glyburide) is an oral blood-glucose-lowering drug of the sulfonylurea class. It is a white, crystalline compound, formulated as tablets of 1.25 mg, 2.5 mg, and 5 mg strengths for oral administration. Diaßeta tablets USP contain the active ingredient glyburide and the following inactive ingredients: dibasic calcium phosphate USP, magnesium stearate NF, microcrystalline cellulose NF, sodium alginate NF, talc USP. Diaßeta 1.25 mg tablets USP also contain D&C Yellow #10 Aluminum Lake and FD&C Red #40 Aluminum Lake. Diaßeta 2.5 mg tablets USP also contain FD&C Red #40 Aluminum Lake. Diaßeta 5 mg tablets USP also contain D&C Yellow #10 Aluminum Lake, and FD&C Blue #1. Chemically, Diaßeta is identified as 1-[[p-[2-(5-Chloro-o-anisamido)ethyl]phenyl]sulfonyl]-3-cyclohexylurea. The CAS Registry Number is 10238-21-8. The structural formula is: Cl CONHCH2CH2 SO2NHCONH OCH3 The molecular weight is 493.99. The aqueous solubility of Diaßeta increases with pH as a result of salt formation. CLINICAL PHARMACOLOGY Diaßeta appears to lower the blood glucose acutely by stimulating the release of insulin from the pancreas, an effect dependent upon functioning beta cells in the pancreatic islets. The mechanism by which Diaßeta lowers blood glucose during long-term administration has not been clearly established. With chronic administration in Type II diabetic patients, the blood glucose lowering effect persists despite a gradual decline in the insulin secretory response to the drug. Extrapancreatic effects may play a part in the mechanism of action of oral sulfonylurea hypoglycemic drugs.
    [Show full text]
  • Glucagon-Like Peptide-1 Receptor Agonists
    Clinical Policy: Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists Reference Number: HIM.PA.53 Effective Date: 03.01.18 Last Review Date: 02.21 Line of Business: HIM Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description The following agents contain a synthetic glucagon-like peptide-1 (GLP-1) receptor agonist and require prior authorization: dulaglutide (Trulicity®), exenatide ER (Bydureon®, Bydureon BCise®), exenatide IR (Byetta®), liraglutide (Victoza®), liraglutide/insulin degludec (Xultophy®), lixisenatide (Adlyxin®), lixisenatide/insulin glargine (Soliqua®), and semaglutide (Ozempic®, Rybelsus®). FDA Approved Indication(s) GLP-1 receptor agonists are indicated as adjunct to diet and exercise to improve glycemic control with type 2 diabetes mellitus. Victoza is indicated in patients 10 years of age and older, while the other GLP-1 receptor agonists are indicated in adults. Ozempic, Trulicity and Victoza are also indicated to reduce the risk of major adverse cardiovascular events in adults with type 2 diabetes mellitus and: • Established cardiovascular disease (Ozempic, Trulicity, Victoza); • Cardiovascular risk factors (Trulicity only). Limitation(s) of use: • Trulicity, Bydureon, Bydureon BCise, and Xultophy are not recommended as a first-line therapy for patients inadequately controlled on diet and exercise. • Other than Soliqua and Xultophy which contains insulin, GLP-1 receptor agonists are not a substitute for insulin. They should not be used for the treatment of type 1 diabetes or diabetic ketoacidosis. • Other than Trulicity, concurrent use with prandial insulin has not been studied and cannot be recommended. • GLP-1 receptor agonists have not been studied in patients with a history of pancreatitis.
    [Show full text]
  • Tresiba-Product-Monograph.Pdf
    PRODUCT MONOGRAPH INCLUDING PATIENT MEDICATION INFORMATION TRESIBA® insulin degludec injection TRESIBA® FlexTouch® 100 U/mL, Solution for injection in a pre-filled pen TRESIBA® FlexTouch® 200 U/mL, Solution for injection in a pre-filled pen Subcutaneous Antidiabetic Agent Long-Acting Basal Insulin Analogue ATC Code: A10AE06 Novo Nordisk Canada Inc. Date of Initial Authorization: AUG 25, 2017 101-2476 Argentia Road Date of Revision: Mississauga, Ontario JUL 23, 2021 Canada L5N 6M1 Submission Control Number: 250276 Product Monograph Master Template Template Date: September 2020 TRESIBA® (insulin degludec injection) Page 1 of 2 RECENT MAJOR LABEL CHANGES 7 Warnings and Precautions 03/2021 TABLE OF CONTENTS Sections or subsections that are not applicable at the time of authorization are not listed. TABLE OF CONTENTS ..............................................................................................................2 1 INDICATIONS ..................................................................................................................4 1.1 Pediatrics ................................................................................................................4 1.2 Geriatrics ................................................................................................................4 2 CONTRAINDICATIONS ..................................................................................................4 3 SERIOUS WARNINGS AND PRECAUTIONS BOX .......................................................4 4 DOSAGE AND ADMINISTRATION
    [Show full text]
  • Association of Body Mass Index with Risk of Major Adverse
    Journal of Obesity & Metabolic Syndrome 2018;27:61-70 https://doi.org/10.7570/jomes.2018.27.1.61 CROSSMARK_logo_3_Test 1 / 1 pISSN 2508-6235 Original Article eISSN 2508-7576 https://crossmark-cdn.crossref.org/widget/v2.0/logos/CROSSMARK_Color_square.svg 2017-03-16 Association of Body Mass Index with Risk of Major Adverse Cardiovascular Events and Mortality in People with Diabetes Dong Hun Lee1, Kyoung Hwa Ha2,3, Hyeon Chang Kim4,5, Dae Jung Kim2,3,* 1Ajou University School of Medicine, Suwon; 2Department of Endocrinology and Metabolism and 3Cardiovascular and Metabolic Disease Etiology Research Center, Ajou University School of Medicine, Suwon; 4Department of Preventive Medicine and 5Cardiovascular and Metabolic Diseases Etiology Research Center, Yonsei University College of Medicine, Seoul, Korea Background: The relationship between cardiovascular and all-cause mortality and obesity in people with dia- Received January 25, 2018 betes is still controversial. We investigated the association of body mass index (BMI) with the risk of major ad- Reviewed February 12, 2018 verse cardiovascular events (MACE) and all-cause mortality in people with diabetes. Accepted February 19, 2018 Methods: In total, 48,438 people with diabetes were enrolled in the Korean National Health Insurance Service- National Health Screening Cohort from 2002 to 2003 and were followed until 2013. Baseline BMI was catego- * Corresponding author Dae Jung Kim rized as underweight (<18.5 kg/m2), normal-weight (18.5–22.9 kg/m2), overweight (23.0–24.9 kg/m2), obese class I (25.0–29.9 kg/m2), and obese class II (≥30.0 kg/m2). Results: During a median of 10.7 years of follow-up (interquartile range, 10.2–11.2 years), there were 7,360 https://orcid.org/0000-0003-1025-2044 MACE and 5,766 deaths.
    [Show full text]
  • Weekly GLP-1 Receptor Agonist Albiglutide Versus
    Diabetes Care Volume 37, October 2014 2723 Lawrence A. Leiter,1 Molly C. Carr,2 Efficacy and Safety of the Once- Murray Stewart,2 Angela Jones-Leone,2 CLIN CARE/EDUCATION/NUTRITION/PSYCHOSOCIAL Rhona Scott,3 Fred Yang,2 and Weekly GLP-1 Receptor Agonist Yehuda Handelsman4 Albiglutide Versus Sitagliptin in Patients With Type 2 Diabetes and Renal Impairment: A Randomized Phase III Study Diabetes Care 2014;37:2723–2730 | DOI: 10.2337/dc13-2855 OBJECTIVE To evaluate weekly subcutaneous albiglutide versus daily sitagliptin in renally impaired patients with type 2 diabetes and inadequately controlled glycemia on a regimen of diet and exercise and/or oral antihyperglycemic medications. RESEARCH DESIGN AND METHODS In this phase III, randomized, double-blind, multicenter, 52-week study, the pri- mary study end point was HbA1c change from baseline at week 26 in patients with renal impairment, as assessed with estimated glomerular filtration rate and cat- egorized as mild, moderate, or severe (‡60 to £89, ‡30 to £59, and ‡15 to £29 mL/min/1.73 m2, respectively). Secondary end points included fasting plasma glucose (FPG), weight, achievement of treatment targets, hyperglycemic rescue, and safety. 1Division of Endocrinology and Metabolism, Li Ka RESULTS Shing Knowledge Institute and Keenan Research Centre for Biomedical Science, St. Michael’s Hos- Baseline demographics were similar across treatment and renal impairment pital, University of Toronto, Toronto, Ontario, groups with overall mean age of 63.3 years, BMI of 30.4 kg/m2,HbA of 8.2% Canada 1c 2 (66 mmol/mol), and diabetes disease duration of 11.2 years.
    [Show full text]
  • Therapeutic Class Overview Dipeptidyl Peptidase-4 (DPP-4) Inhibitors
    Therapeutic Class Overview Dipeptidyl Peptidase-4 (DPP-4) Inhibitors Therapeutic Class Overview/Summary: The dipeptidyl peptidase-4 (DPP-4) inhibitors are one of two incretin-based therapies currently available for the management of type 2 diabetes. The DPP-4 inhibitors linagliptin, saxagliptin, and sitagliptin, are available as single-entity agents (linagliptin [Tradjenta®], saxagliptin [Onglyza®], and sitagliptin [Januvia®]) or in fixed-dose combination products with metformin (linagliptin/metformin [Jentadueto®], saxagliptin/metformin [Kombiglyze ER®], and sitagliptin/metformin [Janumet®, Janumet XR®]) or simvastatin (sitagliptin/simvastatin [Juvisync®]). Single-entity agents are available for use either as monotherapy or in combination with other antidiabetic agents. The fixed-dose combination products are available for use when treatment with both drug components is appropriate.1-8 The DPP-4 inhibitors reversibly block the enzyme DPP-4, which is responsible for the rapid degradation of endogenous incretin hormones. These hormones are involved in the regulation of insulin and have multiple antidiabetic actions, including the enhancement of meal stimulated insulin secretion, decreased glucagon secretion, improvements in β cell function, and slowing of gastric emptying. Through their effect on these hormones, the DPP-4 inhibitors primarily target post-prandial glucose and have also been shown to decrease fasting plasma glucose. In general, this medication class is associated with a favorable side effect profile and also have a weight neutral effect compared to other antidiabetic agents commonly used in the management of type 2 diabetes.9-11 Most of products within this medication class are available for once-daily dosing; however, the fixed-dose combination products containing metformin immediate- release require twice-daily dosing.
    [Show full text]