Southern Flounder

Total Page:16

File Type:pdf, Size:1020Kb

Southern Flounder SRAC Publication No. 726 VI October 2000 PR Species Profile Southern Flounder H.V. Daniels1 Flounder are known for their Natural history Some researchers hypothesize that unique and spectacular transfor- juvenile and young adult flounder mation from a normal-looking fish Range remain in low salinity water to with an eye on each side of the Southern flounder are found in overwinter for the first 2 years of head to one with both eyes on the rivers and estuaries along the life, migrating out to the ocean same side of the head. This meta- Atlantic Coast from North when they reach sexual maturity morphosis occurs while they are Carolina to northern Florida, and at 2 years of age. still larvae and is one of the more from Tampa Bay, Florida along the Appearance fascinating transformations Gulf coast into southern Texas. among fishes. Southern flounder Their distribution is discontinu- Adult flounder are asymmetrical (Paralichthys lethostigma) are in the ous around the southern tip of in appearance. Instead of swim- family Bothidae and the genus Florida, leading some biologists to ming through the water column Paralichthys. Other important cul- wonder if there are two genetical- like other fish, flounder rest on tured paralichthids are the sum- ly separate natural stocks. the bottom with a dark pigmented mer flounder (P. dentatus) and the Southern flounder are found in a side facing upwards and a white, Japanese flounder (P. olivaceous). wide range of salinities; adults unpigmented side facing down. There is considerable interest in have been captured in a range of 0 Both eyes and nostrils are on the the culture of southern flounder to 36 ppt salinity, and it is not upper side of the head. The because of its worldwide market uncommon to catch them by hook mouth is also slightly twisted appeal, high market value, and and line far inland on coastal toward the upper side. ability to grow in fresh or brackish rivers. Larval flounder look like other water. Southern flounder are Life history fish until they reach metamorpho- found throughout the southeast- sis. During metamorphosis, which ern U.S. and it might be possible Adult southern flounder migrate begins about 30 to 40 days post- to culture them over a large geo- offshore during the fall to spawn hatch, the right eye slowly graphic area. Because these floun- in marine waters. The spawning migrates to the left side of the der appear to grow well in low season begins in December in the head, the jaw twists slightly, and salinity water, growout operations northern extreme of their natural the fish changes from a side-to- could be located farther from range, and in late January to side swimming motion to an up- high-priced coastal areas, reduc- February in the southern extreme. and-down motion. When meta- ing the fixed costs associated with Adults return to estuaries and morphosis is complete in about 2 flounder farming. However, rivers immediately after spawn- to 3 weeks, the fish resemble research on southern flounder cul- ing. Larval flounder feed on zoo- adults and thereafter rest on the ture only began about 5 years ago. plankton in offshore waters for 30 bottom most of the time. Most of this work has concentrat- to 60 days; then metamorphosis Feeding habits in the wild ed on the hatchery phase of pro- begins and the larvae are washed duction. Definitive information is through inlets into estuaries. After Flounder feed by ambushing not yet available on growout metamorphosis, juvenile southern passing prey in a rapid upward methods or the economic feasibili- flounder begin migrating up the lunge, accompanied by a vacuum ty of southern flounder culture. rivers. action of the mouth, to capture and ingest the food in one swift 1North Carolina State University water for only a short time and can be transported in specially constructed live wells placed on the deck of a boat. Some researchers have obtained brood- stock caught by hook and line, from either commercial or recre- ational fishers, but this method is stressful to the fish and may lead to mortality or poor reproductive performance. Artificial spawning Because southern flounder spawn during fall and winter, the envi- ronmental conditions required to induce spawning are a short pho- toperiod of 9 to 10 hours and a water temperature of about 61 oF (16 oC). Photothermal condition- ing should be started several months in advance of the planned spawning date. Daylength and temperature should be reduced gradually and reach target levels at least 2 weeks before spawning to allow the females sufficient time to begin the process of egg development. Broodstock main- tained under these conditions can continue producing eggs for sev- eral months. Most researchers currently work- ing with southern flounder brood- stock use some form of hormone intervention to promote final egg maturation and spawning. Cellulose/cholesterol implants Figure 1. Southern flounder life cycle. containing a synthetic analogue of gonad releasing hormone (GnRHa) are placed into the mus- motion. Wild flounder consume batches of about 100,000 eggs per cle about midway between the mainly shrimp and small fish. kg (45,000 eggs per pound) over dorsal fin and the lateral line. A After feeding, they immediately several days. Although the num- dosage of 50 to 100 micrograms/ glide back down to the bottom. ber of eggs released per female at kg is used on female flounder Cultured flounder feed in the any one time is relatively low with maximum oocyte diameters same way as wild fish, but can be compared to other types of fish of 500 micrometers. Eligible trained to come to the water sur- with the same weight, total egg females will have a marked face to eat dry, pelleted feed. production is similar if all egg batches are combined. Eggs are swelling in the abdominal area. Reproduction in the wild about 1 mm in diameter, nearly Females with smaller egg diame- ters cannot be forced to matura- Adults migrate out of rivers and transparent with a single oil tion with hormone implants. estuaries in late fall and spawn in droplet, and highly buoyant. Generally, eggs will reach final the warmer offshore waters of the maturation and ovulation about Gulf stream from November to Culture techniques 48 hours after implantation, and February. Fertilized eggs have can be easily stripped and mixed been found at depths of 100 to Broodstock procurement with sperm from running males. 650 feet (30 to 200 meters). When Because adult flounder migrate at Eggs are released from the ventral southern flounders reach sexual certain times of the year to spawn, or blind side. Sperm is released maturity at 2 years of age, the they can be easily caught in from the dorsal or eyed side. males weigh 300 to 400 g (250 pound nets at the mouths of inlets Viable eggs float high in the water mm, 10 inches) and the females or along the shoreline of estuaries. column but not all viable eggs are weigh 800 to 1,000 g (350 mm, 14 High quality fish can be obtained fertilized. The fertilization rate of inches). Females spawn small this way as the fish are out of floating eggs can be determined at 6 hours post-fertilization. At this Larviculture meters and have an orange or red- time the embryos are in a multi- dish color similar to the Artemia. Eggs hatch after a 55-hour incuba- cell stage that is easily identified Once they are successfully tion period at 63 oF (17 oC). at 100 x magnification on a com- weaned, flounder are graded by Recently hatched larvae do not pound microscope. size to reduce cannibalism and have fins, eyes or mouths, but stocked into nursery tanks. At this Researchers have used strip- develop them during the 5 days time, the fish are about 1 inch spawning to produce fertilized before first-feeding. Larvae are (2.5 cm) long. eggs for larvae culture. Although stocked before first-feeding at 75 strip-spawning requires handling to 115/gallon (20 to 30/L) in 250- Growth rates the fish and is stressful to them, to 1,000-gallon (1- to 4-cubic Little is known about southern this method has the advantage of meter) tanks. Most culturists add flounder growout rates and feed producing a sufficient number of algae to the tank water at a densi- conversion values, but it has been eggs in a short period of time, ty of 570,000 cells/gallon (150,000 determined that southern floun- which is more convenient for cells/L). By first-feeding the yolk der females grow approximately stocking larviculture tanks. is completely absorbed, but the oil three times faster than males. As Recently, tank spawning without drop will remain for several days. with other flatfish, the sex of the hormone intervention has pro- Rotifers are fed at about 5/mL fish is not determined until after duced a significant number of fer- until about 15 to 20 days post- metamorphosis; the precise time tilized eggs, but this method has hatch, when they begin to eat is not known for southern floun- not yet reached the level of relia- Artemia nauplii (Fig. 2). Artemia der. In Japanese flounder, the sex bility needed for commercial-scale are fed at 1/mL initially, then up of the fish can be influenced by larval rearing. Tank spawning is to 5/mL through metamorphosis temperature. The optimum tem- clearly the least stressful method until the start of weaning at day perature for producing the highest on the fish, as handling and anes- 55 post-hatch. Metamorphosis percentage of females is approxi- thetizing are eliminated.
Recommended publications
  • Pleuronectidae, Poecilopsettidae, Achiridae, Cynoglossidae
    1536 Glyptocephalus cynoglossus (Linnaeus, 1758) Pleuronectidae Witch flounder Range: Both sides of North Atlantic Ocean; in the western North Atlantic from Strait of Belle Isle to Cape Hatteras Habitat: Moderately deep water (mostly 45–330 m), deepest in southern part of range; found on mud, muddy sand or clay substrates Spawning: May–Oct in Gulf of Maine; Apr–Oct on Georges Bank; Feb–Jul Meristic Characters in Middle Atlantic Bight Myomeres: 58–60 Vertebrae: 11–12+45–47=56–59 Eggs: – Pelagic, spherical Early eggs similar in size Dorsal fin rays: 97–117 – Diameter: 1.2–1.6 mm to those of Gadus morhua Anal fin rays: 86–102 – Chorion: smooth and Melanogrammus aeglefinus Pectoral fin rays: 9–13 – Yolk: homogeneous Pelvic fin rays: 6/6 – Oil globules: none Caudal fin rays: 20–24 (total) – Perivitelline space: narrow Larvae: – Hatching occurs at 4–6 mm; eyes unpigmented – Body long, thin and transparent; preanus length (<33% TL) shorter than in Hippoglossoides or Hippoglossus – Head length increases from 13% SL at 6 mm to 22% SL at 42 mm – Body depth increases from 9% SL at 6 mm to 30% SL at 42 mm – Preopercle spines: 3–4 occur on posterior edge, 5–6 on lateral ridge at about 16 mm, increase to 17–19 spines – Flexion occurs at 14–20 mm; transformation occurs at 22–35 mm (sometimes delayed to larger sizes) – Sequence of fin ray formation: C, D, A – P2 – P1 – Pigment intensifies with development: 6 bands on body and fins, 3 major, 3 minor (see table below) Glyptocephalus cynoglossus Hippoglossoides platessoides Total myomeres 58–60 44–47 Preanus length <33%TL >35%TL Postanal pigment bars 3 major, 3 minor 3 with light scattering between Finfold pigment Bars extend onto finfold None Flexion size 14–20 mm 9–19 mm Ventral pigment Scattering anterior to anus Line from anus to isthmus Early Juvenile: Occurs in nursery habitats on continental slope E.
    [Show full text]
  • NHBSS 034 1G Wongratana R
    NAT. NAT. HIST. BULL. SIAM So c. 34 (1) :65 ・70 ,1986 RECORD OF AMBICOLORATION IN CYNOGLOSSUS (PISCES : CYNOGLOSSIDAE) FROM THAILAND Thosaporn Thosaporn Wongratana * ABSTRACT An almost ambico10rate “Four- Ii ned tongu e- sole" ,Cynoglossus bilinealus (La cepede) , is is reported from Thailand. It is presumab1y the first record for the genus. Except for most of of the head on the blind side and its.corresponding finrays ,which are pale as in normal specimens ,the body and fins are pigmented. The norma Jl y cycloid scales on the blind side in in the pigmented area are who Jl y replaced by ctenoid scales ,but those on the unpigmented part part on the head are cyc10id. The latera1line sca1es of the pigmented area on the blind side are are cycloid. The pelvic fins are entirely separated from the anal fin by the absence of membrane. membrane. No other major externa1 anomaly is found. PREVIOUS ACCOUNTS Abnormalities Abnormalities in coloration 釘 e more common among members of the order Pleuronectiformes Pleuronectiformes than in any other group of fishes. Other anomalies occasionally in those those fishes are a hooked dorsal fin , incomplete eye migration and side reversa l. Abnormal pigmentation in flatfish is divided into three main types: ambicoloration , albinism ,and xanthochromism (DEVEEN , 1969; COLMAN ,1972 勾). P 町 “tia 剖10 町Ir incomplete ambic ∞010 町r羽 ion is mor 問ec ∞ommon than trunk pigmentation , nearly complete amb 凶ic ∞0- lor 問at “ion and complete ambic ∞010 町ra 創ti 拘on (υJONES & MENON , 1950). NORMAN'S (1 934) previous previous explanation of this phenomenon ,later accepted by many authors ,was that “..訓 nbicoloration merely represents variation in the direction of the original bilateral symmetrical symmetrical condition of the ancester of flatfishes." It is also regularly observed that that wholly ambicolorate fishes normally display a higher degree of symmetry than normal normal specimens in pigmentation ,scales , paired fins and final position of the eyes (NORMAN , 1934; COLMAN , 1972).
    [Show full text]
  • Copy of Summer Flounder/Fluke Fast Facts
    YOFUISTH EERDUIECSATION FLUKE (SUMMER FLOUNDER) Poor Paralichthys dentatus Conservation Status "Poor" in NYS Range Map (fishbase.org) FACT ONE FACT TWO Fluke is a species of flatfish also known as The way to distinguish fluke and winter summer flounder. Some other names include flounder is by knowing if they are right or northern fluke or hirame. Fluke is a type of left - eyed. Fluke face left when their mouth flounder but this name helps distinguish it from points up and winter flounder face right the very similar Winter Flounder. when their mouth points up. FACT THREE FACT FOUR Like other flounder, fluke hide at the bottom Fluke is a valuable food fish and has remained a to catch prey. They are a lighter, more popular commercial and recreational catch for dappled brown than winter flounder. They hundreds of years. CCE Marine Program conducts also have “eye” spots patterned along their important applied research on fluke including body. They can change color to match dark discard mortality (how many fish survive after or light sediment they are lying in, too! being caught and thrown back). For more information about F.I.S.H. Initiative: https://www.localfish.org/ FISHERIES Overview Status Fluke are found in inshore and offshore Summer flounder are not overfished and are not waters from Nova Scotia, Canada, to the east subject to overfishing, according to the Atlantic coast of Florida along the East Coast of the States Marine Fisheries Commission (ASMFC). United States. It is a left-eyed flatfish that However, the population of Fluke has decreased over lives 12 to 14 years.
    [Show full text]
  • Food Choice of Different Size Classes of Flounder (Platichthys Flesus ) In
    Food choice of different size classes of flounder ( Platichthys flesus ) in the Baltic Sea Jennie Ljungberg Degree project in biology, Master of science (2 years), 2014 Examensarbete i biologi 30 hp till masterexamen, 2014 Biology Education Centre Supervisor: Bertil Widbom Table of Contents ABSTRACT ............................................................................................................................................ 3 INTRODUCTION ................................................................................................................................... 4 Flounders in the Baltic Sea .................................................................................................................. 5 The diet of flounders ........................................................................................................................... 6 Blue mussel (Mytilus edulis) ............................................................................................................... 7 Blue mussels in the Baltic Sea............................................................................................................. 8 The nutritive value of blue mussels ..................................................................................................... 9 The condition of flounders in the Baltic Sea ....................................................................................... 9 Aims .................................................................................................................................................
    [Show full text]
  • (Paralichthys Lethostigma) in the Galveston Bay Estuary, TX
    DISTRIBUTION, CONDITION, AND GROWTH OF NEWLY SETTLED SOUTHERN FLOUNDER (Paralichthys lethostigma) IN THE GALVESTON BAY ESTUARY, TX A Thesis by LINDSAY ANN GLASS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2006 Major Subject: Wildlife and Fisheries Sciences DISTRIBUTION, CONDITION, AND GROWTH OF NEWLY SETTLED SOUTHERN FLOUNDER (Paralichthys lethostigma) IN THE GALVESTON BAY ESTUARY, TX A Thesis by LINDSAY ANN GLASS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Jay R. Rooker Committee Members, William H. Neill Antonietta Quigg Head of Department, Delbert M.Gatlin III May 2006 Major Subject: Wildlife and Fisheries Sciences iii ABSTRACT Distribution, Condition, and Growth of Newly Settled Southern Flounder (Paralichthys lethostigma) in the Galveston Bay Estuary, TX. (May 2006) Lindsay Ann Glass, B.S., Texas A&M University-Galveston Chair of Advisory Committee: Dr. Jay R. Rooker Several flatfish species including southern flounder (Paralichthys lethostigma) recruit to estuaries during early life. Therefore, the evaluation of estuarine sites and habitats that serve as nurseries is critical to conservation and management efforts. I used biochemical condition and growth measurements in conjunction with catch-density data to evaluate settlement sites used by southern flounder in the Galveston Bay Estuary (GBE). In 2005, beam-trawl collections were made in three major sections of the GBE (East Bay, West Bay, Galveston Bay), and three sites were sampled in each bay.
    [Show full text]
  • For Summer Flounder Is Defined As
    FISHERY MANAGEMENT PLAN FOR THE SUMMER FLOUNDER FISHERY October 1987 Mid-Atlantic Fishery Management Council in cooperation with the National Marine Fisheries Service, the New England Fishery Management Council, and the South Atlantic Fishery Management Council Draft adopted by MAFMC: 29 October 1987 Final adopted by MAFMC: 16 April1988 Final approved by NOAA: 19 September 1988 3.14.89 FISHERY MANAGEMENT PLAN FOR THE SUMMER FLOUNDER FISHERY October 1987 Mid-Atlantic Fishery Management Council in cooperation with the National Marine Fisheries Service, the New England Fishery Management Council, and the South Atlantic Fishery Management Council See page 2 for a discussion of Amendment 1 to the FMP. Draft adopted by MAFMC: 21 October 1187 final adopted by MAFMC: 16 April1988 final approved by NOAA: 19 September 1988 1 2.27 91 THIS DOCUMENT IS THE SUMMER FLOUNDER FISHERY MANAGEMENT PLAN AS ADOPTED BY THE COUNCIL AND APPROVED BY THE NATIONAL MARINE FISHERIES SERVICE. THE REGULATIONS IN APPENDIX 6 (BLUE PAPER) ARE THE REGULATIONS CONTROLLING THE FISHERY AS OF THE DATE OF THIS PRINTING (27 FEBRUARY 1991). READERS SHOULD BE AWARE THAT THE COUNCIL ADOPTED AMENDMENT 1 TO THE FMP ON 31 OCTOBER 1990 TO DEFINE OVERFISHING AS REQUIRED BY 50 CFR 602 AND TO IMPOSE A 5.5" (DIAMOND MESH) AND 6" (SQUARE MESH) MINIMUM NET MESH IN THE TRAWL FISHERY. ON 15 FEBRUARY 1991 NMFS APPROVED THE OVERFISHING DEFINITION AND DISAPPROVED THE MINIMUM NET MESH. OVERFISHING FOR SUMMER FLOUNDER IS DEFINED AS FISHING IN EXCESS OF THE FMAX LEVEL. THIS ACTION DID NOT CHANGE THE REGULATIONS DISCUSSED ABOVE. 2 27.91 2 2.
    [Show full text]
  • Winter Flounder
    Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 Pseudopleuronectes americanus (Winter Flounder) Priority 2 Species of Greatest Conservation Need (SGCN) Class: Actinopterygii (Ray-finned Fishes) Order: Pleuronectiformes (Flatfish) Family: Pleuronectidae (Righteye Flounders) General comments: Maine DMR jurisdiction; W Atlantic specialist = LB-GA No Species Conservation Range Maps Available for Winter Flounder SGCN Priority Ranking - Designation Criteria: Risk of Extirpation: NA State Special Concern or NMFS Species of Concern: NA Recent Significant Declines: Winter Flounder is currently undergoing steep population declines, which has already led to, or if unchecked is likely to lead to, local extinction and/or range contraction. Notes: ASMFC Stock Assess, 30yr, and DFO. 2012. Assessment of winter flounder (Pseudopleuronectes americanus) in the southern Gulf of St. Lawrence (NAFO Div. 4T). DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2012/016. Regional Endemic: NA High Regional Conservation Priority: Atlantic States Marine Fisheries Commission Stock Assessments: Status: Unstable/Decreasing, Status Comment: Reference: High Climate Change Vulnerability: NA Understudied rare taxa: NA Historical: NA Culturally Significant: NA Habitats Assigned to Winter Flounder: Formation Name Subtidal Macrogroup Name Subtidal Coarse Gravel Bottom Habitat System Name: Coarse Gravel **Primary Habitat** Notes: adult spawning Habitat System Name: Kelp Bed Notes: juvenile Macrogroup Name Subtidal Mud Bottom Habitat System Name: Submerged Aquatic
    [Show full text]
  • Combined Effects of Turbulence and Salinity on Growth, Survival, and Whole-Body Osmolality of Larval Southern Flounder
    JOURNAL OF THE Vol. 37, No. 4 WORLD AQUACULTURE SOCIETY December, 2006 Combined Effects of Turbulence and Salinity on Growth, Survival, and Whole-body Osmolality of Larval Southern Flounder ADAM MANGINO JR. AND WADE O. WATANABE1 University of North Carolina Wilmington, Center for Marine Science, 7205 Wrightsville Avenue, Wilmington, North Carolina 28403 USA Abstract The southern flounder (Paralichthys lethostigma) is a commercially important marine flatfish from the southeastern Atlantic and Gulf Coasts of the USA and an attractive candidate for aquaculture. Hatchery methods are relatively well developed for southern flounder; however, knowledge of the optimum environmental conditions for culturing the larval stages is needed to make these technologies more cost effective. The objectives of this study were to determine the effects of water turbulence (as controlled by varying rates of diffused aeration) on growth, survival, and whole-body osmolality of larval southern flounder from hatching through day 16 posthatching (d16ph). Embryos were stocked into black 15-L cylindrical tanks under four turbulence levels (20, 90, 170, and 250 mL/min of diffused aeration) and two salinities (24 and 35 ppt) in a 4 3 2 factorial design. Larvae were provided with enriched s-type rotifers from d2ph at a density of 10 individuals/mL. Temperature was 19 C, light intensity was 390 lx, and photoperiod was 18 L:6 D. Significant (P , 0.05) effects of turbulence on growth (notochord length [NL], wet weight, and dry weight) were observed. On d16ph, NL (mm) increased with decreasing turbulence level and was significantly greater at 20 mL/min (64.2) and 90 mL/min (58.2) than at 170 mL/min (56.3) and 250 mL/min (57.2).
    [Show full text]
  • Citharichthys Uhleri Jordan in Jordan and Goss, 1889 Cyclopsetta Fimbriata
    click for previous page Pleuronectiformes: Paralichthyidae 1917 Citharichthys uhleri Jordan in Jordan and Goss, 1889 En - Voodoo whiff. Maximum size to 11 cm standard length. Poorly known species. Similar to other Citharichthys. Visually orient- ing ambush predator feeding on various invertebrates and small fishes. Apparently rare. Taxonomic status needs further investigation. Sourthern Gulf of Mexico to Costa Rica; Haiti. from Gutherz, 1967 Cyclopsetta fimbriata (Goode and Bean, 1885) En - Spotfin flounder; Fr - Perpeire à queue tachetée; Sp - Lenguado rabo manchado. Maximum size 33 cm, commonly to 25 cm. Soft bottom habitats between 20 to 230 m. Taken as bycatch in in- dustrial trawl fisheries for shrimps. Marketed fresh. Continental shelf off Atlantic and Gulf coasts of the USA from North Carolina to Yucatán, Mexico; Greater Antilles; Caribbean Sea from Mexico to Trinidad; Atlantic coast of South America to Ilha dos Búzios, São Paulo, Brazil. Etropus crossotus Jordan and Gilbert, 1882 UCO En - Fringed flounder; Fr - Rombou petite gueule; Sp - Lenguado boca chica. Maximum size 20 cm, commonly to 15 cm total length. On very shallow, soft bottoms, from the coastline to depths of 30 m, occasionally to 65 m. Caught with beach seines. Artisanal fishery; of minor commercial impor- tance because of its small average size. Virginia to Gulf of Mexico, Caribbean Islands and Atlantic and Pacific coasts of Central America; Tobago; to Tramandí, Rio Grande do Sul, Brazil. Etropus intermedius Norman, 1933 is a junior synonym of E. crossotus. 1918 Bony Fishes Etropus cyclosquamus Leslie and Stewart, 1986 En - Shelf flounder. Maximum size to about 10 cm standard length, commonly 5 to 8 cm standard length.
    [Show full text]
  • Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2016 Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes Christi Linardich Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Environmental Health and Protection Commons, and the Marine Biology Commons Recommended Citation Linardich, Christi. "Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes" (2016). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/hydh-jp82 https://digitalcommons.odu.edu/biology_etds/13 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES by Christi Linardich B.A. December 2006, Florida Gulf Coast University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY August 2016 Approved by: Kent E. Carpenter (Advisor) Beth Polidoro (Member) Holly Gaff (Member) ABSTRACT HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES Christi Linardich Old Dominion University, 2016 Advisor: Dr. Kent E. Carpenter Understanding the status of species is important for allocation of resources to redress biodiversity loss.
    [Show full text]
  • Chapter 5: Commercial and Recreational Fisheries
    Ocean Special Area Management Plan Chapter 5: Commercial and Recreational Fisheries Table of Contents 500 Introduction.............................................................................................................................9 510 Marine Fisheries Resources in the Ocean SAMP Area.....................................................12 510.1 Species Included in this Chapter ..........................................................................12 510.1.1 Species important to commercial and recreational fisheries.....................12 510.1.2 Forage fish ................................................................................................15 510.1.3 Threatened and endangered species and species of concern ....................15 510.2 Life History, Habitat, and Fishery of Commercially and Recreationally Important Species............................................................................................................17 510.2.1 American lobster.......................................................................................17 510.2.2 Atlantic bonito ..........................................................................................19 510.2.3 Atlantic cod...............................................................................................20 510.2.4 Atlantic herring .........................................................................................21 510.2.5 Atlantic mackerel......................................................................................23 510.2.6 Atlantic
    [Show full text]
  • Pictorial Guide to the Gill Arches of Gadids and Pleuronectids in The
    Alaska Fisheries Science Center National Marine Fisheries Service U.S. DEPARTMENT OF COMMERCE AFSC PROCESSED REPORT 91.15 Pictorial Guide to the G¡ll Arches of Gadids and Pleuronectids in the Eastern Bering Sea May 1991 This report does not const¡Ute a publicalion and is for lnformation only. All data herein are to be considered provisional. ERRATA NOTICE This document is being made available in .PDF format for the convenience of users; however, the accuracy and correctness of the document can only be certified as was presented in the original hard copy format. Inaccuracies in the OCR scanning process may influence text searches of the .PDF file. Light or faded ink in the original document may also affect the quality of the scanned document. Pictorial Guide to the ciII Arches of Gadids and Pleuronectids in the Eastern Beri-ng Sea Mei-Sun Yang Alaska Fisheries Science Center National Marine Fisheries Se:nrice, NoAÀ 7600 Sand Point Way NE, BIN C15700 Seattle, lÍA 98115-0070 May 1991 11I ABSTRÀCT The strrrctures of the gill arches of three gadids and ten pleuronectids were studied. The purPose of this study is, by using the picture of the gill arches and the pattern of the gi[- rakers, to help the identification of the gadids and pleuronectids found Ín the stomachs of marine fishes in the eastern Bering Sea. INTRODUCTION One purjose of the Fish Food Habits Prograrn of the Resource Ecology and FisherY Managenent Division (REF![) is to estimate predation removals of cornmercially inportant prey species by predatory fish (Livingston et al. 1986).
    [Show full text]